
More on Approximate 
String Matching

Giulia Bernardini

giulia.bernardini@units.it 

Fundamentals of algorithms

a.y. 2021/2022 

mailto:giulia.bernardini@units.it


The k-difference global alignment problem
Given two strings S and T, the k-difference global alignment 
problem, is to find the best edit transcript between S and T that 
contains at most k errors (insertions, deletions and replacements), 
for some input k, if it exists.


Suppose, without loss of generality, that |S| |T|. The goal is to 
reduce the time bound for the solution from O(|S||T|) (obtained by 
applying the standard dynamic programming algorithm) to O(k|T|).

≤



The k-difference global 
alignment problem

Reference: Chapter 12.2.3 of: Gusfield, D. 
Algorithms on Strings, Trees and Sequences.



The idea is to fill in only an O(k|T|)-size portion of the dynamic 
programming table (assuming that |S| |T|)

We make use of the following key observation. Let call cells (i,i), 
for all i |S| |T|, the main diagonal of the DP table. 

Lemma 1. Any path in the DP table that defines a k-difference 
global alignment cannot contain any cell (i,i+z) or (i,i-z) with z>k.

Proof. Any path defining a global alignment must begin in cell 
(0,0) and end in cell (|T|,|S|). Therefore, the path must introduce 
one space in the alignment for every horizontal (or vertical) move 
that the path makes off the main diagonal. Thus, only the paths 
that are never more than k horizontal (or vertical) cells from the 
main diagonal are candidate solutions.

≤

≤ ≤

The k-difference global alignment problem



To find any k-difference global alignment, it suffices to fill in a 
stripe of the DP table consisting of 2k+1 cells in each row, 
centered on the main diagonal. The stripe contains O(k|S|)=O(k|T|) 
values.

The k-difference global alignment problem

0

0

1

2

2

3

3

3

3

Main diagonal

Stripe for k=2



If the bottom-right cell of the table contains a value d>k, then 
there does not exists a k-difference alignment: in this case, d is 
not necessarily the edit distance between S and T. If d k, then d 
is the correct edit distance between S and T, that gives a k-
difference alignment.

≤

The k-difference global alignment problem

0

0

1

2

2

3

3

3

3

Main diagonal

Stripe for k=2



Suppose that the edit distance between S and T is d, which is 
clearly unknown a priori. The same idea used for the k-difference 
alignment problem can be used to compute d in O(d|T|) time.

Indeed, one can fill in the DP table by progressively enlarging the 
considered strip around the main diagonal. The idea is to run the 
k-difference alignment algorithm starting with k=1, then k=2, then 
k=4…progressively doubling the parameter k, until the bottom-
right cell contains a value smaller than the current k - which then 
will be equal to the edit distance d.

Theorem 1. The edit distance d between S and T, with |S| |T|, 
can be computed in O(d|T|) time and space.

Proof. Let k’ be the largest value considered in the procedure 
described above: clearly, k’ 2d. So the total work of the method 
is O(k’|T|+k’|T|/2+k’|T|/4+…+|T|)=O(k’|T|)=O(d|T|).

≤

≤

A parameterised solution to edit distance 



Pattern matching 
under edit distance

Reference: Chapter 12.2.4 of: Gusfield, D. 
Algorithms on Strings, Trees and Sequences.



Consider the problem of searching for the all occurrences of a 
pattern P in a text T with edit distance at most k, for some fixed 
1<k<|P|.

This problem is more difficult than both the k-mismatch problem, 
for which we have an O(k|T|) solution using the suffix tree, and the 
k-difference global alignment problem, which can be solved in 
O(k|T|) time using dynamic programming.

Nevertheless, the k-difference pattern matching problem can be 
solved combining the suffix tree with dynamic programming.

Theorem 2. The k-difference pattern matching problem can be 
solved in O(k|T|) time after an O(|T|+|P|)-time preprocessing.

k-difference pattern matching



Let the main diagonal of the DP table be diagonal number 0. The 
diagonals above the main diagonal are numbered 1 through |T|: 
the diagonal starting in cell (0,i) is diagonal i. The diagonals below 
the main one are numbered -1 through -|P|: the diagonal starting 
at (j,0) is diagonal -j.


k-difference pattern matching

T

P



We initialise each cell in the first row of the DP table (row zero) to 
zero. This allows the pattern not to match the text up to the end, 
without paying for the remaining characters of T.

A d-path in the DP table is a path that starts at row zero and does 
exactly d edit errors. 

A d-path is farthest-reaching in diagonal i if it is a d-path that ends 
in diagonal i, and the index of it’s ending column (on diagonal i) is 

 than the ending column of any other d-path ending in diagonal i.

The main idea of the O(k|T|)-time solution is to do k steps, each 
taking O(|T|) time, considering only d diagonals above and d 
diagonals below the main diagonal at each step 1 d k.

≥

≤ ≤

k-difference pattern matching



At each step, a farthest-reaching d-path is found for each of the 
considered diagonals h, starting from the farthest-reaching 

(d-1)-paths on diagonals h-1, h and h+1.

Any farthest-reaching d-path reaching the last row at column c 
corresponds to an occurrence of P with edit distance exactly d 
ending at position c in T. The farthest reaching d-path on diagonal h 
is one of the three:

R1: consists of the farthest reaching (d−1)-path on diagonal h+1, 
followed by a vertical edge to diagonal h, and then by the LCE along 
diagonal h. This path represents a deletion in T.

R2: consists of the farthest reaching (d − 1)-path on diagonal h−1, 
followed by a horizontal edge to diagonal h, and then by the LCE 
along diagonal h. This path represents an insertion in T.

R3: consists of the farthest reaching (d − 1)-path on diagonal h 
followed by a diagonal edge, and then by the LCE along diagonal h. 
This path represents a character replacement.

k-difference pattern matching



R1: consists of the farthest reaching (d−1)-path on diagonal h+1, 
followed by a vertical edge to diagonal h, and then by the LCE 
along diagonal h. This path represents a deletion in T.


k-difference pattern matching



kDiff(T,P,k) 
FRP+ zeroes(|T|+1); \\stores the column of the farthest-reaching path on pos diagonals

FRP- zeroes(|P|); \\stores the column of the farthest-reaching path on negative diagonals


sol ;

for i=1…|T|


ext LCET,P(i,1);

FRP+[i] ext; 


for d=0…k

for i=-d…|T|


if i<0

FRP-[i] max_col{R1i,R2i,R3i};

if FRP-[i]+i=|P| \\if the path on diagonal -i reaches the last row


sol.append{FRP-[i]};

else 

FRP+[i] max_col{R1i,R2i,R3i};

if FRP+[i]-i=|P| \\if the path on diagonal i reaches the last row


sol.append{FRP+[i]};

←
←

← ∅

←
←

←

←

k-difference pattern matching


