
Acidi Carbossilici e Derivati

Gruppo carbossilico

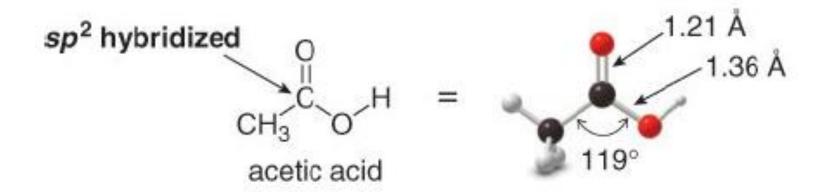
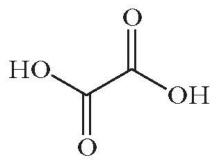


TABELLA 14.1 Alcuni acidi carbossilici alifatici e i loro nomi comuni

Struttura	Nome IUPAC	Nome comune	Derivazione	
НСООН	acido metanoico	acido formico	Latino: formica, formica	
CH ₃ COOH	acido etanoico	acido acetico	Latino: acetum, aceto	
CH ₃ CH ₂ COOH	acido propanoico	acido propionico	Greco: propion, primo grasso	
CH ₃ (CH ₂) ₂ COOH	acido butanoico	acido butirrico	Latino: butyrum, burro	
CH ₃ (CH ₂) ₃ COOH	acido pentanoico	acido valerianico	Latino: valere, esser forte	
CH ₃ (CH ₂) ₄ COOH	acido esanoico	acido caproico	Latino: caper, capra	
CH ₃ (CH ₂) ₆ COOH	acido ottanoico	acido caprilico	Latino: caper, capra	
CH ₃ (CH ₂) ₈ COOH	acido decanoico	acido caprico	Latino: caper, capra	
$CH_3(CH_2)_{10}COOH$	acido dodecanoico	acido laurico	Latino: laurus, lauro	
$CH_3(CH_2)_{12}COOH$	acido tetradecanoico	acido miristico	Greco: myristikos, fragrante	
$CH_3(CH_2)_{14}COOH$	acido esadecanoico	acido palmitico	Latino: palma, albero di palma	
$CH_3(CH_2)_{16}COOH$	acido ottadecanoico	acido stearico	Greco: stear, grasso solido	
$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{18}\mathrm{COOH}$	acido eicosanoico	acido arachidico	Greco: arachis, arachide	

Nomenclatura degli acidi carbossilici



Acido 4,5-dimetilesanoico

Acido 3-pentenoico

Acido 3-bromobenzoico

Acidi dicarbossilici

Acido etandioico (acido ossalico)

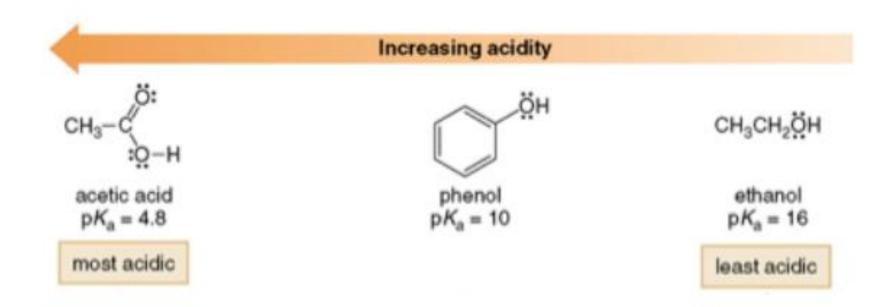
Acido propandioico (acido malonico)

Acido butandioico (acido succinico)

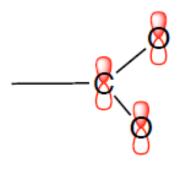
Acido pentandioico (acido glutarico)

Acido esandioico (acido adipico)

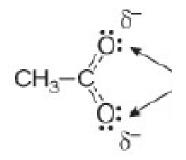
Proprietà fisiche degli acidi carbossilici

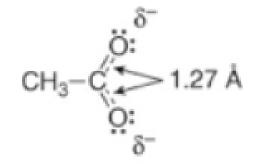

TABELLA 14.2 Punti di ebollizione e solubilità in acqua di alcuni acidi carbossilici, alcoli e aldeidi di peso molecolare paragonabile

Struttura	Nome	Peso molecolare	Punto di ebollizione(°C)	Solubilità (g/ 100 mL H ₂ O)
CH ₃ COOH	acido acetico	60.5	118	infinita
CH ₃ CH ₂ CH ₂ OH	1-propanolo	60.1	97	infinita
$\mathrm{CH_{3}CH_{2}CHO}$	propanale	58.1	48	16
CH ₃ (CH ₂) ₂ COOH	acido butanoico	88.1	163	infinita
CH ₃ (CH ₂) ₃ CH ₂ OH	1-pentanolo	88.1	137	2.3
$\mathrm{CH_{3}}(\mathrm{CH_{2}})_{3}\mathrm{CHO}$	pentanale	86.1	103	bassa
CH ₃ (CH ₂) ₄ COOH	acido esanoico	116.2	205	1.0
CH ₃ (CH ₂) ₅ CH ₂ OH	1-eptanolo	116.2	176	0.2
CH ₃ (CH ₂) ₅ CHO	eptanale	114.1	153	0.1

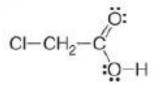

Proprietà fisiche

Gli acidi carbossilici si associano in dimeri tramite legami idrogeno intermolecolari


Acidità degli acidi carbossilici


Struttura dell'anione carbossilato

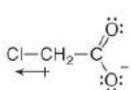
4 elettroni π delocalizzati in 3 orbitali 2p


La carica negativa è delocalizzata sui due ossigeni

Ibrido di risonanza

Acidi carbossilici sostituiti

Increasing acidity



2-chloroacetic acid $pK_a = 2.8$

acetic acid
$$pK_a = 4.8$$

2,2-dimethylpropanoic acid $pK_a = 5.1$

most acidic

|:B

most stable

Atomi elettronegativi stabilizzano l'anione carbossilato e di conseguenza l'acidità dell'acido aumenta

Increasing stability of the conjugate base

Acidi carbossilici sostituiti

$$CICH_2$$
- $COOH$
 $pK_a = 2.8$

$$CI_2CH-COOH$$

 $pK_a = 1.3$

$$CI_3C-COOH$$

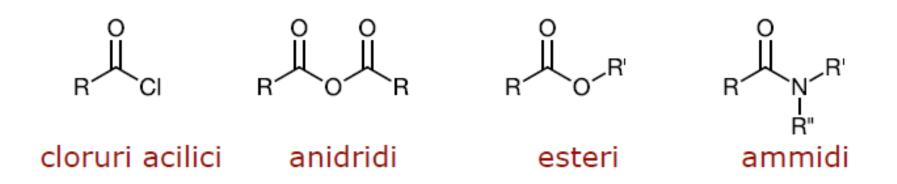
 $pK_a = 0.9$

CICH₂CH₂CH₂COOH
4-chlorobutanoic acid
$$pK_a = 4.5$$

CI
$$CH_3CHCH_2COOH$$
3-chlorobutanoic acid
$$pK_a = 4.1$$

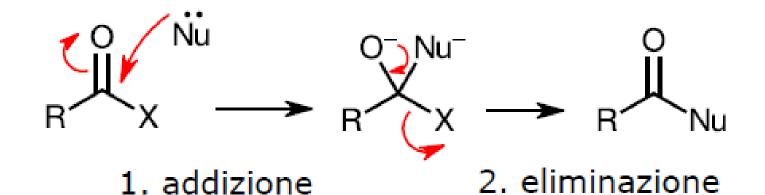
CI
$$CH_3CH_2CHCOOH$$
2-chlorobutanoic acid
$$pK_a = 2.9$$

Esteri e anidridi dell'acido fosforico H₃PO₄


Le due anidridi che si ottengono sono estremamente importanti in biochimica, infatti sono capaci di **trasferire energia** essendo il legame **P-O-P** un legame definito ad "alta energia".

Esteri e anidridi dell'acido fosforico

REAZIONI CON BASI

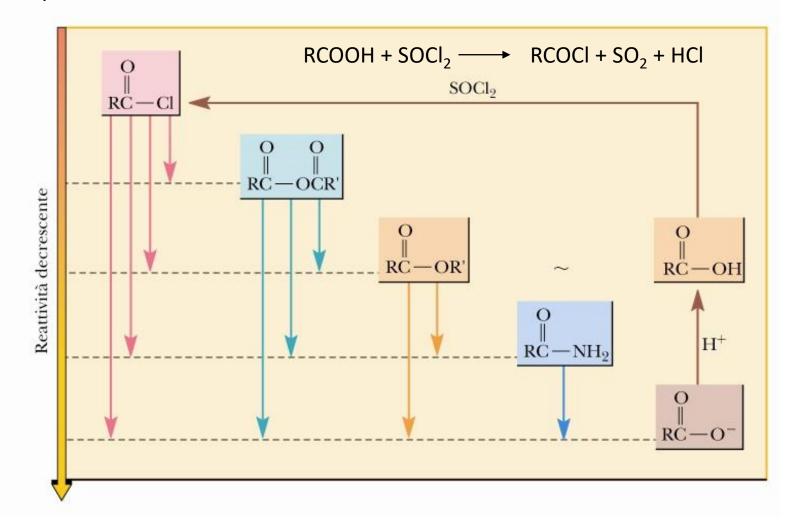

• Gli acidi carbossilici reagiscono irreversibilmente con le basi per dare i corrispondenti sali

DERIVATI DEGLI ACIDI CARBOSSILICI

comuni reagenti non presenti in natura importanti in natura

REAZIONI DI ACIDI CARBOSSILICI E DERIVATI: SOSTITUZIONE NUCLEOFILA ACILICA

X = CI, OCOR, OR', NHR'


nucleofila al

carbonile

Con quale nucleofilo converto il cloruro acilico in anidride? In estere? In ammide ? In acido? Con quale nucleofilo converto l'anidride in estere? In ammide ? In acido? Con quale nucleofilo converto l'estere in ammide ? In acido? Con quale nucleofilo converto l'ammide in acido?

Figura 15.1

Reattività relative dei derivati degli acidi carbossilici verso la sostituzione nucleofila acilica. Un derivato più reattivo può essere convertito in uno meno reattivo per trattamento con un appropriato reagente. Il trattamento di un acido carbossilico con il cloruro di tionile lo converte nel più reattivo cloruro acilico. Gli acidi carbossilici sono reattivi circa quanto gli esteri in condizioni acide, ma vengono trasformati nei non reattivi anioni carbossilato in ambiente basico.

REAZIONI DI ACIDI CARBOSSILICI E DERIVATI: IDROLISI

$$\begin{array}{c|c}
 & H_2O \\
\hline
 & H_2O \\
\hline
 & H_2O \\
\hline
 & RCOOH
\end{array}$$

$$\begin{array}{c}
 & H_2O \\
\hline
 & RCOOH
\end{array}$$

$$\begin{array}{c}
 & H_2O \\
\hline
 & RCOOH
\end{array}$$

$$\begin{array}{c}
 & H_2O \\
\hline
 & RCOOH
\end{array}$$

SINTESI DI ESTERI E AMMIDI

Nomenclatura degli esteri

$$R \xrightarrow{Q} X + HO^{R'} \longrightarrow R \xrightarrow{Q} O^{R'}$$

Etil acetato

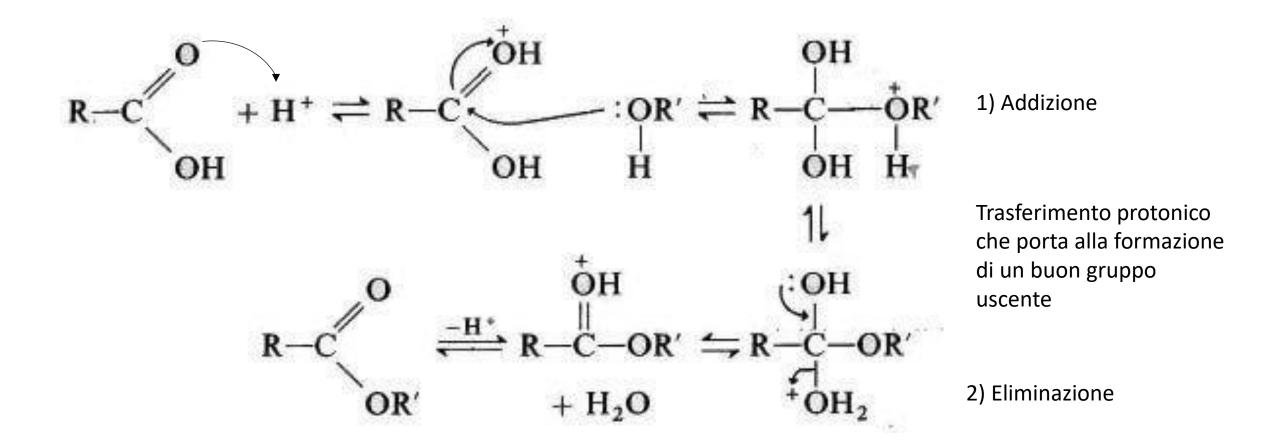
Metil benzoato

Isopropil ciclopentancarbossilato

Lattoni

I lattoni sono esteri ciclici

$$\alpha \overset{\circ}{\underset{\beta}{\longleftarrow}} \overset{\circ}{\underset{\gamma}{\longleftarrow}} \longrightarrow \overset{\circ}{\underset{\alpha}{\longleftarrow}} \overset{\circ}{\underset{\alpha}{\longleftarrow}} \overset{\circ}{\underset{\gamma}{\longrightarrow}} \circ \mathsf{h}$$
 γ -lattoni


$$\alpha \downarrow \beta \\
\beta \downarrow \delta \Rightarrow \phi \downarrow \alpha \downarrow \delta \\
\delta - \text{lattoni}$$

Esterificazione di FISCHER

È una reazione di equilibrio che può essere spostata a destra usando un eccesso di alcol o rimuovendo l'acqua che si forma

$$CH_3$$
 CH_3 CH_3 CH_2 CH_3 CH_3

Meccanismo della esterificazione di Fischer

Sintesi di esteri

da anidridi (sintesi della aspirina della Bayer):

da cloruri acilici:

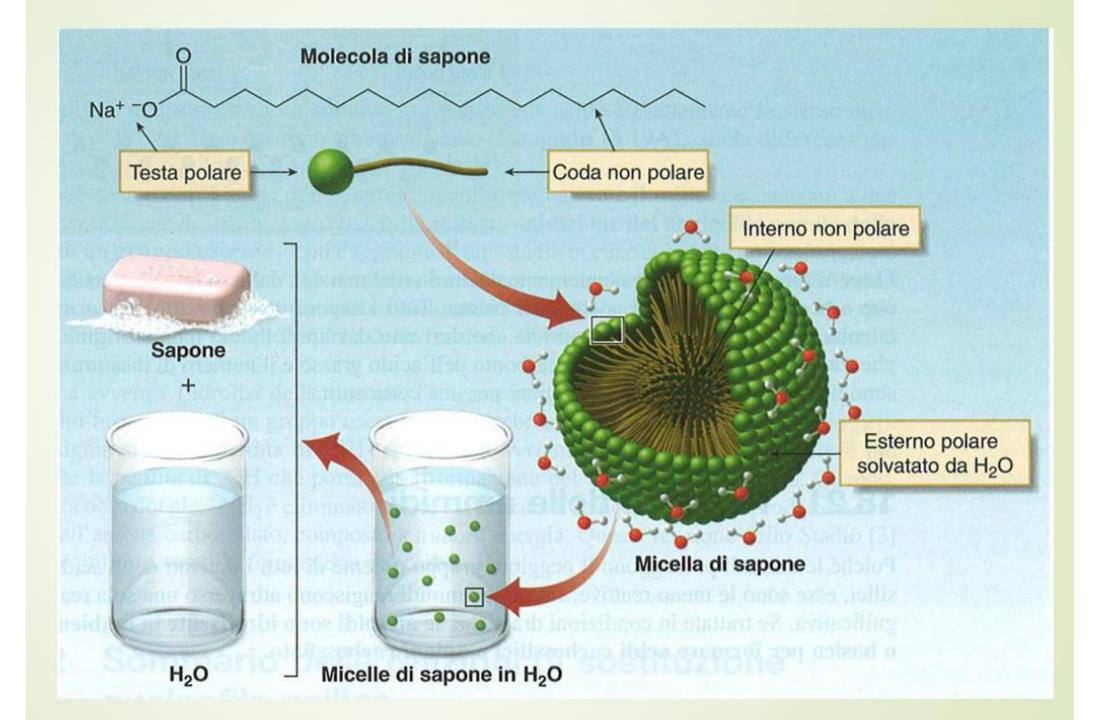
Idrolisi di esteri

Completare con le opportune frecce

Acido catalizzata:

Idrolisi basica (saponificazione):

Ultimo passaggio irreversibile

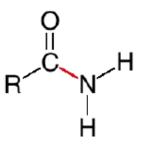

Trigliceridi o triacilgliceroli

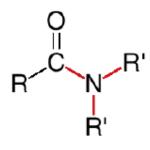
Triesteri del glicerolo con 3 acidi grassi

Saponificazione dei trigliceridi

$$\begin{array}{c} O \\ CH_2O-C-R \\ H-C-O-COR' \\ CH_2O-C-R'' \\ O \\ \end{array} \begin{array}{c} NaOH,\ H_2O \\ HC-OH \\ CH_2OH \\ \end{array} \begin{array}{c} + RCOONa + R'COONa + R'COONa \\ \end{array} \\ + RCOOH + R'COOH \\ \end{array}$$

Saponificazione: idrolisi basica dei trigliceridi


Riduzione di alogenuri acilici, anidridi e esteri


 Gli alogenuri acilici, le anidridi e gli esteri vengono ridotti ad alcoli primari con Litio alluminio idruro (LiAlH₄)

Riduzione di alogenuri acilici, anidridi e esteri

 Gli alogenuri acilici, le anidridi e gli esteri vengono ridotti ad alcoli primari con Litio alluminio idruro (LiAlH₄)

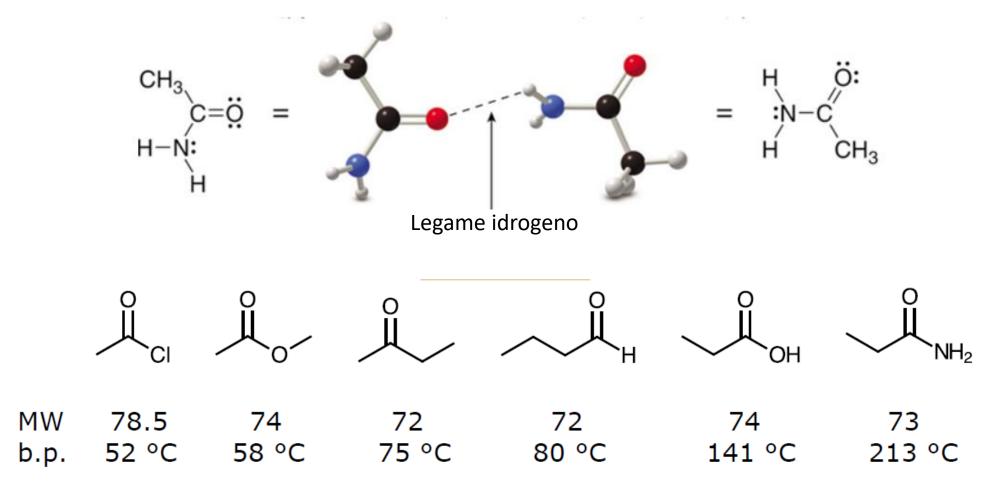
Ammidi

Ammide primaria 1 legame N-C Ammide secondaria 2 legami N-C Ammide terziaria 3 legami N-C

Lattami: ammidi cicliche

$$\alpha$$
 β carbon

$$\alpha$$
 $N-CH_3$
 β
 γ carbon

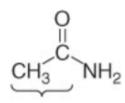

Benzil penicillina

 β -lattame

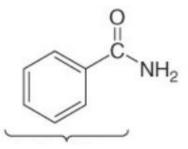
 γ -lattame

Ammidi: proprietà fisiche

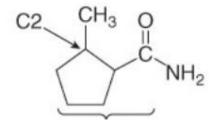
• Interazioni dipolo-dipolo e legami idrogeno



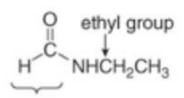
Ammidi: struttura


Non c'è libera rotazione attorno al legame N-CO

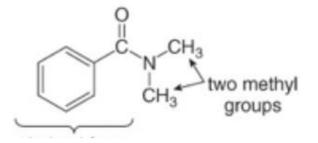
E' preferita la configurazione con i gruppi R e R' in *trans* Le ammidi **non** sono basiche


Nomenclatura ammidi primarie

acetammide
Deriva
dall'acido acetico

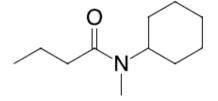


benzammideDeriva dall'acido benzoico



2-metilciclopentancarbossammideDeriva dall'acido 2metilciclopentancarbossilico

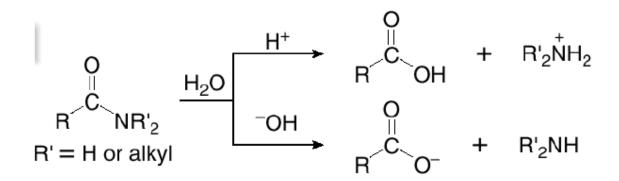
Nomenclatura ammidi secondarie e terziarie



N-etilformammideDeriva dall'acido formico

N,N-dimetilbenzammide

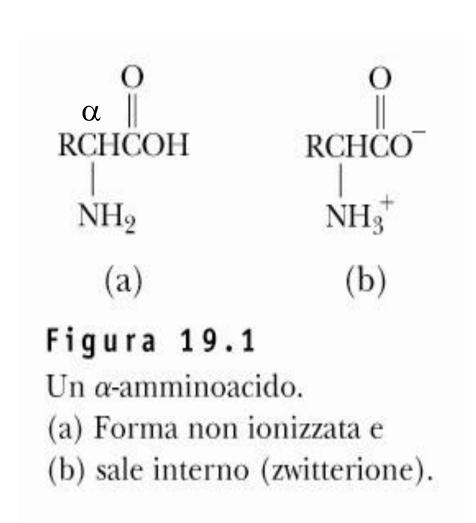
Deriva dall'acido benzoico

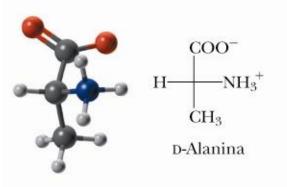


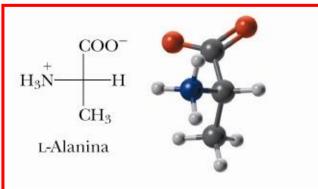
N-cicloesil-*N*-metilbutanammide

Deriva dallìacido butanoico

Reazioni

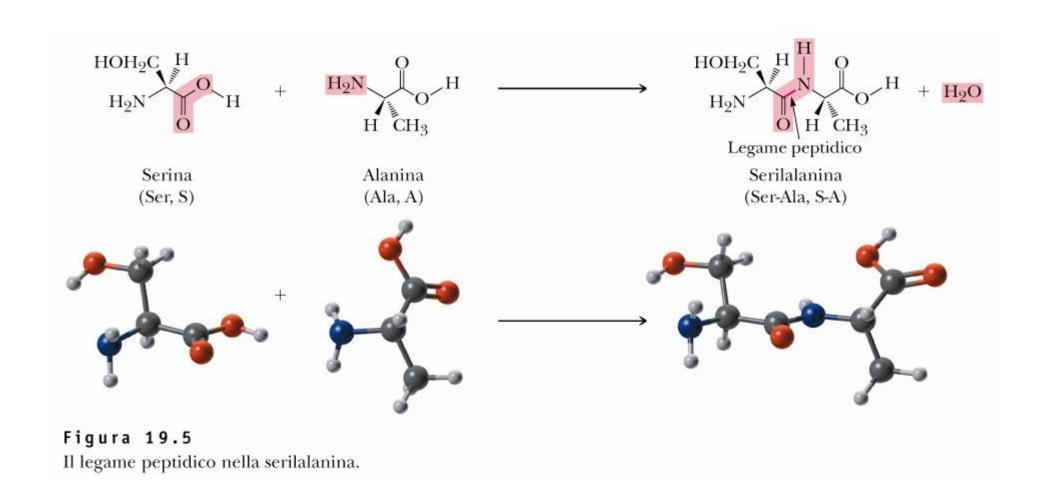

• Le ammidi sono le meno reattive di tutti i derivati degli acidi carbossilici


Idrolisi acida e basica difficile e necessita di riscaldamento

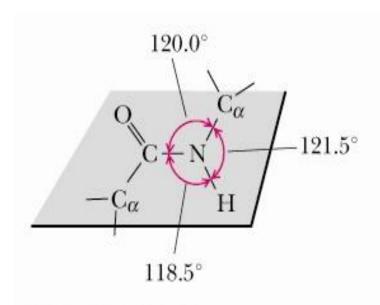

α-Amminoacidi:

al carbonio in alfa al carbossile è legato un gruppo amminico

α -Amminoacidi


Figura 19.2

Gli enantiomeri dell'alanina. La stragrande maggioranza degli α -amminoacidi presenti nel mondo biologico ha configurazione L al carbonio α .


TABELLA 19.1 I 20 amminoacidi comunemente presenti nelle proteine Catene laterali non polari _COO COO Fenilalanina Alanina (Ala, A) (Phe, F) NH3+ Glicina (Gly, G) Prolina (Pro, P) NH3+ COO-Isoleucina (Ile, I) Triptofano NH₃⁺ (Trp, W) COO-Leucina (Leu, L) Metionina (Met, M) COO Valina (Val, V) COO NH₃⁺ NH3+ Catene laterali polari COO HO Serina (Ser, S) Asparagina (Asn, N) NH3+ NH3+ OH COO-COO-Treonina (Thr, T) Glutammina (Gln, Q) NH₃⁺ NH3+ Catene laterali acide Catene laterali basiche Acido aspartico (Asp, D) COO - Arginina (Arg, R) ö NH₃⁺ NH3+ Acido glutammico (Glu, E) ,COO-NH₃⁺ Istidina (His, H) NH3+ Cisteina (Cys, C) HS' NH₃⁺ .COO-H₃N. COO-Tirosina (Tyr, Y) Lisina (Lys, K) NH3+ NH3+

Nota: Ciascuna funzione ionizzabile è mostrata nella forma presente in concentrazione maggiore a pH 7.0 in soluzione acquosa.

Legame peptidico

Legame peptidico

Figura 19.9

Planarità del legame peptidico. Gli angoli di legame attorno al carbonio carbonilico e all'azoto ammidico sono approssimativamente di 120°.

Tripeptide