More Pattern Matching Techniques Giulia Bernardini giulia.bernardini@units.it

Fundamentals of algorithms a.y. 2021/2022

Suffix trees are not always practical

Recall that the representation of the suffix tree is, in general, a tradeoff between space usage and time required for searching a pattern. In particular, we can guarantee that searching a pattern P can be done in O(|P|) time inly if $\Theta(|\Sigma||T|)$ space is used to represent the tree (using arrays of size $|\Sigma|$ to store the branches).

Depending on the size of the alphabet of the indexed text, the size of the suffix tree may be thus too large in practice, even for constant-size alphabets.

The suffix array is a data structure for text indexing that has been introduced to address this issue.

The Suffix Array

Reference: Chapter 7.14 of: Gusfield, D. *Algorithms on Strings, Trees and Sequences.*

The suffix array

Given a text T of length n, the suffix array of T is an array of length n, whose elements are exactly the integers in [1,n].

The suffix array specifies the lexicographic order of the suffixes of T: its i-th element is the starting position of the i-th lexicographically smallest suffix of T.

The suffix array requires only n machine words of space (assuming a word size of at least log(n) bits).

Consider string T=mississippi.

SA[6]=10 because T₁₀ is the 6th lexicographically smallest suffix of T

SA(T)	Lex order of suffixes		
11:	i		
8:	ippi		
5:	issippi		
2:	ississippi		
1:	mississippi		
<u>-10:</u>	pi		
9:	ppi		
7:	sippi		
4:	sisippi		
б:	ssippi		
3:	ssissippi		

Construction of the suffix array

SA[T] can be constructed in O(n) time by constructing a suffix tree of T such that the edges at each node are lexicographically ordered, and then performing a "lexical" DFS of T, in which the edges are traversed in lex order.

Pattern matching with suffix arrays

Key observation: since the suffixes of T are ordered, all the suffixes that start with an occurrence of P are are consecutive in the suffix array.

For example: "issi" occurs in T at positions 5 and 2, that are consecutive in the suffix array.

Pattern matching can thus be done by binary searching: if P is lex smaller than SA[n/2], then search it in the first half of SA; otherwise, search it in the second half...

Each iteration costs O(|P|) time. There are at most log(|T|) iterations. Thus this requires O(|P|log(|T|)) time in the worst case.

SA(T)		Lex order of suffixes	
11:		i	
	8:	ippi	
	5:	issippi	
	2:	ississippi	
	1:	mississippi	
10: 9:		pi	
		ppi	
	7:	sippi	
4: 6: 3:		sisippi	
		ssippi	
		ssissippi	

Pattern matching with suffix arrays

To avoid reading the same characters of P over and over, we can make the following observation.

Let L and R be the left and right boundaries of an interval considered during binary search. During the search, we can keep track of the length I of the longest prefix of SA(L) and the length r of the longest prefix of SA(R) that match a prefix of P. Let mlr=min{I,r}: for any index i between L and R, there is a common prefix of T_i and P of length at least mlr. 5:

Then, when comparing P with T_M , where M=[(R-L)/2], we can start comparing the characters from position mlr+1 of both P and T_M . The worst-case time bound for this method is still O(|P|log(|T|)), but in practice it runs in time O(|P|+log(|T|)).

SA(I)		Lex order of suffixes	
11:		i	
	8:	ippi	
	5:	issippi	
	2:	ississippi	
1	1:	mississippi	
	L0:	pi	
	9:	ppi	
	7:	sippi	
	4:	sisippi	
б:		ssippi	
	3:	ssissippi	

Pattern matching with suffix arrays

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 T: a b b a b b a b b a b b a b a a a b a b a b b a b b a b b a b a a # SA : 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25

	1	15	aaabababbabbabba#	
	2	16	aabababbabbabba#	
	3	31	a#	
	4	13	abaaabababbabbabba#	
	5	17	abababbabbabba#	
	6	19	ababbabbabba#	
	7	28	abba#	
	8 [10	abbabaaabababbabbabba#	
	9	7	abbabbabaaabababbabbabba#	
	10 [4	abbabbabbabaaabababbabbabba#	
	11 [1	abbabbabbabbabaaabababbabbabba	a#
	12 [21	abbabbabba#	
	13 [24	abbbabba#	
	14 [32	#	
	15 [14	baaabababbabbabba#	
	16 [30	ba#	
	17	12	babaaabababbabbabba#	
	18 [18	bababbabbabba#	
	19 [27	babba#	
	20 [9	babbabaaabababbabbabba#	
	21 [6	babbabbabaaabababbabbabba#	
	22 [3	babbabbabbabaaababbabbabbabba#	
	23 [20	babbabbabba#	
	24 [23	babbbabba#	
	: [:	:	Example from: R. Grossi and J.S. Vitter,
				COMPRESSED SUFFIX ARRAYS AND SUFFIX TREES WITH
,	32	25	bbbabba#	APPLICATIONS TO TEXT INDEXING AND STRING MATCHING

Seminumerical String Matching

Reference: Chapter 4 of: Gusfield, D. Algorithms on Strings, Trees and Sequences.

The shift-and method

All the methods we have seen so far are comparison-based: the main primitive operation they do is the comparison of two characters. Not all existing strategies are of this type.

The shift-and method is based on bit-level operations, and is extremely fast for relatively short patterns (e.g., words in a natural language) that fit into a machine word.

Let M be a |P|x|T| binary matrix, such that M[i,j]=1 if and only if the first i characters of P match exactly the i characters of T ending at position j. Otherwise M[i,j]=0.

For example, for T=california and P=for, M[1,5]=M[2,6]=M[3,7]=1; all the other entries are 0.

In other words, the 1-entries of row i of M encode all the positions in T where an occurrence of P[1..i] ends, and the 1-entries of column j encode all the prefixes of P that end at position j of T. Then M[|P|,j]=1 if and only if an occurrence of P ends at position j.

The shift-and method

- The goal is thus to compute the last row of M. To do so, we use $|\Sigma|$ auxiliary binary arrays of length |P|.
- For each character x of Σ , U(x)[i]=1 if and only if P[i]=x: e.g., if P=abcdaba, U(a)=1000101.
- Let **bit-shift(j)** the operation consisting of shifting column j of M down by one position, putting a 1 in the first position. E.g, a column 0010010100 would become 1001001010.

The shift-and method: computing M

To construct M, we start from the first column, that is initialised to all zeros if $P[1]\neq T[1]$; and otherwise the first entry is a 1 and the others are all zeros. Then we construct M column-by-column.

For j>1, column j is obtained from column j-1 and U(T[j]) by doing the bit-level operation U(T[j]) AND bit-shift(j-1).

This is correct because, for any i>1, M[i,j] should be 1 if and only if the first i-1 chars of P match the i-1 chars of T ending at j-1, and additionally P[i]=T[j]. The first condition is true when M[i-1,j-1] is a 1; the second condition is true when U(T[j])[i]=1. Thus shifting column j-1 allows to compare entries M[i-1,j-1] with the entry i of U(T[j]): and column j has a 1 in position i only if they are both 1.

The shift-and method: complexity

In the worst case, the shift-and algorithm requires $\Theta(|\mathbf{P}||\mathbf{T}|)$ bit operations. Nevertheless, if $|\mathbf{P}|$ is within one machine word, the bit-shift operation and the AND operation for the columns are single-word operations, that are very fast (constant-time). This is true also if $|\mathbf{P}|$ fits within a small number of machine words. In these cases, the shift-and method requires $\Theta(|\mathbf{T}|)$ time in practice.

As for the space, there is no need to keep the whole matrix M in memory: at iteration j, it suffices to keep in memory only columns j-1 and j, that consist of |P| bits each.

The shift-and method with errors

The shift-and method can be easily extended to solve the k-difference pattern matching problem with O(k|P||T|) bit operations. This algorithm is known as "agrep" and is extremely efficient, in practice, again for relatively short patterns.

- Let us first see how it can be extended to solve the k-mismatches pattern matching problem. We generalise matrix M to encode partial occurrences of P in T with up to k mismatches.
- For any h from 1 to k, M^h is a |P|x|T| binary matrix, such that $M^h[i,j]=1$ if and only if the first i characters of P match the i characters of T ending at position j with at most h mismatches. Otherwise $M^h[i,j]=0$.
- If $M^{k}[|P|,j]=1$ then there is an occurrence of P ending at position j in T with up to k mismatches.

The shift-and method with errors

We compute all matrixes M^h column-by-column, for h increasing from 1 to k. We compute column j of all the matrixes before computing column j+1 in any of them.

After initialising the first column of all matrixes to all zeros or to a one followed by all zeros, depending on h and on whether P[1]=T[1], we compute the j-th column of M^h from the (j-1)-th column of M^h and M^{h-1} and from the j-th column of M^{h-1} as follows.

M^h[:,j] = M^{h-1}[:,j] OR {bit-shift(M^h[:,j-1]) AND U(T[j])} OR M^{h-1}[:,j-1]

P[1..i] matches i chars up to T[j] with up to h-1 mismatches

P[1..i-1] matches i-1 chars up to T[j-1] with up to h mismatches and P[i]=T[j] P[1..i-1] matches i-1 chars up to T[j-1] with up to h-1 mismatches