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Suffix trees are not always practical
Recall that the representation of the suffix tree is, in general, a 
tradeoff between space usage and time required for searching a 
pattern. In particular, we can guarantee that searching a pattern P 
can be done in O(|P|) time inly if (|Σ||T|) space is used to 
represent the tree (using arrays of size |Σ| to store the branches).

Depending on the size of the alphabet of the indexed text, the size 
of the suffix tree may be thus too large in practice, even for 
constant-size alphabets.

The suffix array is a data structure for text indexing that has been 
introduced to address this issue. 
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The Suffix Array
Reference: Chapter 7.14 of: Gusfield, D. 

Algorithms on Strings, Trees and Sequences.



The suffix array
Given a text T of length n, the suffix array of T is an array of length 
n, whose elements are exactly the integers in [1,n]. 

The suffix array specifies the lexicographic order of the suffixes of 
T: its i-th element is the starting position of the i-th 
lexicographically smallest suffix of T. 

The suffix array requires only n machine

words of space (assuming a word size of 

at least log(n) bits).

Consider string T=mississippi. 

SA(T) Lex order of suffixes

SA[6]=10 because T10 is the 6th 

lexicographically smallest suffix of T



Construction of the suffix array
SA[T] can be constructed in O(n) time by constructing a suffix tree 
of T such that the edges at each node are lexicographically 
ordered, and then performing a “lexical” DFS of T, in which the 
edges are traversed in lex order.

SA[T]



Pattern matching with suffix arrays
Key observation: since the suffixes of T are ordered, all the 
suffixes that start with an occurrence of P are are consecutive in 
the suffix array.

For example: “issi” occurs in T at positions 5 and 2, that are 
consecutive in the suffix array.

Pattern matching can thus be done by 

binary searching: if P is lex smaller than

SA[n/2], then search it in the first half of SA;

otherwise, search it in the second half…


Each iteration costs O(|P|) time. There

are at most log(|T|) iterations. Thus this

requires O(|P|log(|T|)) time in the worst case.

SA(T) Lex order of suffixes



Pattern matching with suffix arrays
To avoid reading the same characters of P over and over, we can 
make the following observation.

Let L and R be the left and right boundaries of an interval 
considered during binary search. During the search, we can keep 
track of the length l of the longest prefix of SA(L) and the length r 
of the longest prefix of SA(R) that match a 

prefix of P. Let mlr=min{l,r}: for any index i

between L and R, there is a common 

prefix of Ti and P of length at least mlr.

Then, when comparing P with TM, where 

M= (R-L)/2 , we can start comparing the 

characters from position mlr+1 of both 

P and TM. The worst-case time bound for

this method is still O(|P|log(|T|)), but in 

practice it runs in time O(|P|+log(|T|)).

⌈ ⌉

SA(T) Lex order of suffixes



Pattern matching with suffix arrays

Example from: R. Grossi and J.S. Vitter, 

COMPRESSED SUFFIX ARRAYS AND SUFFIX TREES WITH 


APPLICATIONS TO TEXT INDEXING AND STRING MATCHING



Seminumerical String Matching
Reference: Chapter 4 of: Gusfield, D. Algorithms 

on Strings, Trees and Sequences.



The shift-and method
All the methods we have seen so far are comparison-based: the 
main primitive operation they do is the comparison of two 
characters. Not all existing strategies are of this type.

The shift-and method is based on bit-level operations, and is 
extremely fast for relatively short patterns (e.g., words in a natural 
language) that fit into a machine word.

Let M be a |P|x|T| binary matrix, such that M[i,j]=1 if and only if the 
first i characters of P match exactly the i characters of T ending at 
position j. Otherwise M[i,j]=0.

For example, for T=california and P=for, M[1,5]=M[2,6]=M[3,7]=1; 
all the other entries are 0.

In other words, the 1-entries of row i of M encode all the positions 
in T where an occurrence of P[1..i] ends, and the 1-entries of 
column j encode all the prefixes of P that end at position j of T.

Then M[|P|,j]=1 if and only if an occurrence of P ends at position j.



The shift-and method
The goal is thus to compute the last row of M. To do so, we use    
|Σ| auxiliary binary arrays of length |P|.

For each character x of Σ, U(x)[i]=1 if and only if P[i]=x: e.g., if  
P=abcdaba, U(a)=1000101.

Let bit-shift(j) the operation consisting of shifting column j of M 
down by one position, putting a 1 in the first position. E.g, a 
column 0010010100 would become 1001001010.




The shift-and method: computing M
To construct M, we start from the first column, that is initialised to 
all zeros if P[1] T[1]; and otherwise the first entry is a 1 and the 
others are all zeros. Then we construct M column-by-column.

For j>1, column j is obtained from column j-1 and U(T[j]) by doing 
the bit-level operation U(T[j]) AND bit-shift(j-1).

This is correct because, for any i>1, M[i,j] should be 1 if and only if 
the first i-1 chars of P match the i-1 chars of T ending at j-1, and 
additionally P[i]=T[j]. The first condition is true when M[i-1,j-1] is a 
1; the second condition is true when U(T[j])[i]=1. Thus shifting 
column j-1 allows to compare entries M[i-1,j-1] with the entry i of 
U(T[j]): and column j has a 1 in position i only if they are both 1.

≠



The shift-and method: complexity
In the worst case, the shift-and algorithm requires (|P||T|) bit 
operations. Nevertheless, if |P| is within one machine word, the 
bit-shift operation and the AND operation for the columns are 
single-word operations, that are very fast (constant-time). This is 
true also if |P| fits within a small number of machine words. In 
these cases, the shift-and method requires (|T|) time in practice.

As for the space, there is no need to keep the whole matrix M in 
memory: at iteration j, it suffices to keep in memory only columns 
j-1 and j, that consist of |P| bits each. 


Θ
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The shift-and method with errors
The shift-and method can be easily extended to solve the            
k-difference pattern matching problem with O(k|P||T|) bit 
operations. This algorithm is known as “agrep” and is extremely 
efficient, in practice, again for relatively short patterns.

Let us first see how it can be extended to solve the k-mismatches 
pattern matching problem. We generalise matrix M to encode 
partial occurrences of P in T with up to k mismatches.

For any h from 1 to k, Mh is a |P|x|T| binary matrix, such that 
Mh[i,j]=1 if and only if the first i characters of P match the i 
characters of T ending at position j with at most h mismatches. 
Otherwise Mh[i,j]=0.

If Mk[|P|,j]=1 then there is an occurrence of P ending at position j 
in T with up to k mismatches.



The shift-and method with errors
We compute all matrixes Mh column-by-column, for h increasing 
from 1 to k. We compute column j of all the matrixes before 
computing column j+1 in any of them.

After initialising the first column of all matrixes to all zeros or to a 
one followed by all zeros, depending on h and on whether 
P[1]=T[1], we compute the j-th column of Mh from the (j-1)-th 
column of Mh and Mh-1 and from the j-th column of Mh-1 as follows.

Mh[:,j] = Mh-1[:,j] OR {bit-shift(Mh[:,j-1]) AND U(T[j])} OR Mh-1[:,j-1]

P[1..i] matches i 

chars up to T[j] with


up to h-1 mismatches

P[1..i-1] matches i-1 chars 

up to T[j-1] with up to h 

mismatches and P[i]=T[j]

P[1..i-1] matches i-1 

chars up to T[j-1] with

up to h-1 mismatches


