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Overview

@ Fluid Kinematics deals with the motion of fluids without
necessarily considering the forces and moments which
create the motion.

® Items discussed:

@ Material derivative and its relationship to Lagrangian and
Eulerian descriptions of fluid flow.

® Flow visualization.
® Plotting flow data.

@® Fundamental kinematic properties of fluid motion and
deformation.

® Reynolds Transport Theorem



Systems and Control Volumes

@®System: a quantity of matter or a region in space chosen for study.
®Surroundings: the mass or region outside the system

@®Boundary: the real or imaginary surface that separates the system from its
surroundings.

@®The boundary of a system can be fixed or movable.
®Systems may be considered to be closed or open.

@®Closed system (Control mass): A fixed amount of mass, and no mass can
cross its boundary
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An open system (a control volume)
with one inlet and one exit.

® Open system (control volume):A properly selected
region in space.

@ It usually encloses a device that involves mass flow such as a
compressor, turbine, or nozzle.

@® Both mass and energy can cross the boundary of a control
volume.

® Control surface:The boundaries of a control volume. It
can be real or imaginary.

Imaginary Real boundary
boundary
\r- —
l Moving boundary
L CvV ‘ e
(a nozzle) |

CV

T T T T T T

—:—» Fixed boundary

o

e e e c——
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FIGURE 24

A control volume can involve fixed, moving, real, and imaginary
boundaries.



Properties of a System

Property: any characteristic of a
system.

o

©® Some familiar properties are pressure P,
temperature T, volumeV, and mass m.

PProperties are considered to be either
Intensive or extensive.
@ Intensive properties: those that are

independent of the mass of a system, such
as temperature, pressure, and density.

© Extensive properties: Those whose values
depend on the size, or extent, of the
system.

O Specific properties: Extensive properties
per unit mass.

(v = Vim) (e = E/m)

|
|

Extensive
properties

Intensive
properties

FIGURE 2-6

Criterion to differentiate intensive
and extensive properties.




Lagrangian Description

The two ways to describe motion are Lagrangian and Eulerian
description.

@® Lagrangian description of fluid flow tracks the position and
velocity of individual particles (eg. Billiard ball on a pooltable).

@ Motion is described based upon Newton's laws.

@ Difficult to use for practical flow analysis.

® Fluids are composed of billions of molecules.

® Interaction between molecules hard to describe/model.

® However, useful for specialized applications
@ Sprays, particles, bubble dynamics, rarefied gases.
® Coupled Eulerian-Lagrangian methods.

® Named after Italian mathematician Joseph Louis Lagrange
(1736-1813).



Eulerian Description

® Eulerian description of fluid flow: a flow domain or control
volume is defined by which fluid flows in and out.

® We define field variables which are functions of space and time.
@ Pressure field, P=P(x,y,z,t)

® Velocity field, V=V(x,y,zt)
V=u (x,y,z,t)f + v(x,y,z,t)]’ + w(x,y,z,t)/;

® Acceleration field, a= 67(?6,%2,1)

d=a, (x,y,z,t)z7 +a, (x,y,z,t)] +a_ (x,y,z,t)lg

® These (and other) field variables define the flow field.

® WWell suited for formulation of initial boundary-value problems (PDE's).
@ Named after Swiss mathematician Leonhard Euler (1707-1783).



Lagrangian vs. Eulerian

A fluid flow field can be thought of as being
comprised of a large number of finite sized
fluid particles which have mass, momentum,
internal energy, and other properties.
Mathematical laws can then be written for
each fluid particle. This is the Lagrangian
description of fluid motion.
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Another view of fluid motion is the
Eulerian description. In the Eulerian
description of fluid motion, we consider
how flow properties change at a fluid
element that is fixed in space and time
(x,Y,z,t), rather than following individual
fluid particles.
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Governing equations can be derived using each method and
converted to the other form.



A Steady Two-Dimensional Velocity Field

: : : 10 m/
© A steady, incompressible, two- Scale: —
dimensional velocity field is given by: .
5
V= (u,v) = (0.5 +08x) + (15— 0.8y)] - / l
4 —
1 K Sy
A stagnation point is defined as a 3 ] y
point in the flow field where the - v
velocity is identically zero. Y s PR SN
(a) Determine if there are any AN 4
stagnation points in this flow field ] % \
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m to 5 m; qualitatively describe the
flow field.
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Acceleration Field

® Consider a fluid particle and Newton's second law,

—

F =m a

particle particle™ particle

® The acceleration of the particle is the time derivative of the

particle's velocity. g

— particle

d . =
article
& dt

® However, particle velocity at a point at any instant in time t is
the same as the fluid velocity,

—

Vpam’cle — 17 (xparticle (t)’ Y particle (t)9 Zparticle (t ) ’t)
® To take the time derivative of, chain rule must be used.

C_i = aV dt 4 aV d‘xparticle 4 aV dy particle 4 aV dZ particle
F ot dt ox dt dy dt oz dt

Where 0 is the partial derivative operator and
d is the total derivative operator.



Acceleration Field

P Since xpam.cle _ u’ ypam-cle _ V’ Zparticle .
dt dt dt
q o I oV IV
a .
particle a t a X a b a =

® In vector form, the acceleration can be written as

v oV - o\
dt ot (V.V)V

@ First term is called the local acceleration and is nonzero only for unsteady
flows.

(x y,z, t)

® Second term is called the advective acceleration and accounts for the effect
of the fluid particle moving to a new location in the flow, where the velocity
is different.



If we move a parcel in time At

Using Taylor series expansion, assuming increments over At are small,
and ignoring Higher Order Terms

Higher
Af—afAt. fo: afAy: afAz+ Order

ax ay aZ Terms
Dividing by At and taking the small limit:

ar _ af afdx afdy df dz
dt ot Ox dt ay dt 0z dt

Dx Dy Dz
Introducing the convention of d( )/dt = D( )/Dt —=U,— =V,— =W

Dt " Dt " Dt

pf_af,  df af. df

Dt ot dx 0Jy 0z

Df _of
Dt ot FVAV)




Advection

@ In mathematics and continuum mechanics, including fluid
dynamics, the substantive derivative (sometimes the Lagrangian
derivative, material derivative), written D/Dt, is the rate of
change of some property of a small parcel of fluid.

@ Note that if the fluid is moving, the substantive derivative is the rate

of change of fluid within the small parcel, hence the other names like
fluid following derivative.

@ Advection is transport of a some conserved scalar quantity in a

vector field.
@ Advective acceleration is nonlinear: source of many phenomenon and
primary challenge in solving fluid flow problems.
@ Provides “transformation” between Lagrangian and Eulerian frames.

Jdf df df
TV, TV, TV YD)




Material Acceleration of a SteadyVeIouty

10 m/s?
" Scale:
Field _
I N X F ) %
Consider the same velocity field PR B VA \\/
of first example. (a) Calculate the -
material acceleration at the point 3= My N T
(x =2 m,y = 3 m). (b) Sketch the y 3
. . 24 «—t—=0 = > g
material acceleration vectors at -
the same array of x- and y values i BN SR S .
as in Example A. .
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= 0+ (0.5 + 0.8x)(0.8) + 215 — O.8y)(0\) + 0=(04 + 0.64x) m/s’

and
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a,=— T +v— +w——
Yot ax Jy 0z

/\.

= 0+ (0.5 + 0.8x)(0) + (1.5 — 0.8y)(—0.8) + 0 = (—1.2 + 0.64y) m/s’



Flow Visualization

® Flow visualization is the visual
examination of flow-field

features. While quantitative study of fluid
® Important for both physical dynamics requires advanced

experiments and numerical mathematics, much can be learned

(CFD) solutions. from flow visualization

® Numerous methods:
@® Streamlines and streamtubes
® Pathlines
@ Streaklines
® Timelines

® Refractive techniques

® Surface flow techniques



Streamlines

Streamline

Point (x + dx, y + dy)

_)
dr

V

® A Streamline is a curve that is
everywhere tangent to the
instantaneous local velocity
vector.

@ Consider an arc Iength

<ﬁ-dm+¢w+&k

© dr must be parallel to the local
velouty vector

I’Lu+w+wk

©® Geometric arguments results in
the equation for a streamline

dr _dv _dy_dz

V U V W



Streamlines in xy - analytical Solution

For the same velocity field of the example
A, plot several streamlines in the right half
of the flow (x > 0) and compare to the
velocity vectors.
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Streamlines

Airplane surface pressure

NASCAR surface pressure contours, volume streamlines,
contours and streamlines and surface streamlines




Streamtube

® A streamtube consists of a
bundle of streamlines (both
are instantaneous quantities).

© Fluid within a streamtube must
remain there and cannot cross
the boundary of the streamtube.

Streamlines

@ In an unsteady flow, the
streamline pattern may change
significantly with time

/;tremllttlw

® = the mass flow rate passing
through any cross-sectional slice

of a given streamtube must
remain the same



Pathlines

@ A Pathline is the actual path
traveled by an individual
fluid particle over some
time period.

Fluid particle at t = ¢

start

Pathline o
N e '\Q Rt ® Same as the fluid particle's
i material position vector

Fluid particle at 1 = 7, 4 (xpam'cle (t), Y particie (t ), Z particle (t ))
Fluid particle at some

intermediate time

@ Particle location at time t:
4

X=X+ | Vit

{

start



Pathlines

A modern experimental technique called particle image
velocimetry (PIV) utilizes (tracer) particle pathlines to

measure the velocity field over an entire plane in a flow
(Adrian, 1991).



Streaklines

l Dye or smoke

Injected fluid particle

Streakline

Object

® A Streakline is the locus

of fluid particles that
have passed sequentially
through a prescribed
point in the flow.

© Easy to generate in

experiments: dye in a
water flow, or smoke in
an airflow.



Streaklines

NAS Data Analysis Group




Streaklines

Karman Vortex street
Cylinder
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A smoke wire with mineral oil was heated to generate a rake of Streaklines



Comparisons

® For steady flow, streamlines, pathlines, and streaklines
are identical.

® For unsteady flow, they can be very different.
@ Streamlines are an instantaneous picture of the flow field

@® Pathlines and Streaklines are flow patterns that have a time
history associated with them.

® Streakline: instantaneous snapshot of a time-integrated flow
pattern.

@ Pathline: time-exposed flow path of an individual particle.



Comparisons

t NS
“3 \--__ =

-

y, V=(uv)= (05 +0.8x)i

+ (15 + 2.5 sin(wt) — 0.8y)]

-

o
NERNINRNT

|
—

lllllll llllllllllll

0 1 2 3 -+ 5
X

- Streamlinesatfr=28
PathlinesforO<r<2s
Streaklimes forO<r<2s




Timelines

® ATimeline is a set of
adjacent fluid particles
that were marked at the
same (earlier) instant in
time.

@ Timelines can be
generated using a
hydrogen bubble wire.

Timeline at 1 =1,



Timelines

Timelines produced by a hydrogen bubble wire are used to visualize
the boundary layer velocity profile shape.



Plots of Flow Data

® Flow data are the presentation of the flow properties
varying in time and/or space.

@ A Profile plot indicates how the value of a scalar

property varies along some desired direction in the
flow field.

@ AVector plot is an array of arrows indicating the
magnitude and direction of a vector property at an
instant in time.

® A Contour plot shows curves of constant values of a
scalar property for the magnitude of a vector property
at an instant in time.



Profile plot

@ K ®)

Profile plots of the horizontal component of velocity as
a function of vertical distance; flow in the boundary
layer growing along a horizontal flat plate.
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Contour plot
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Contour plots of the pressure field due to flow impinging on a block.



Kinematic Description

@ In fluid dynamics, an element may
undergo four fundamental types of
————— - motion:

17/ \\—L ® Translation
(b) Q 4 >3 ® Rotation

® Linear strain

® Shear strain

| | ® Because fluids are in constant
L | motion, motion and deformation
is best described in terms of rates

. @ velocity: rate of translation

/ / . .
(d) ¢ , / T @ angular velocity: rate of rotation
/

f s @ linear strain rate: rate of linear strain

7 — ® shear strain rate: rate of shear strain



Rate of Translation and Rotation

® To be useful, these rates must
be expressed in terms of
velocity and derivatives of
velocity

® The rate of translation vector
is described as the velocity
vector. In Cartesian
coordinates:

—

V =ui +vj + wk

]|
Il

 —- ]

—

Ay
{
) N

X

/
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B

Rule of thumb for rotation



Linear Strain Rate

® Linear Strain Rate is defined as the rate of
increase in length per unit length.

® In Cartesian coordinates:

~ du av _ a_w
T = ay oz

® Volumetric strain rate in Cartesian
coordinates

1 DV Ju Jdv ow
=¢_+& +&_= —

v Dr e e TR T T
y Z

€

® Since the volume of a fluid element is
constant for an incompressible flow, the
volumetric strain rate must be zero.



Rate of Translation and Rotation

® Rate of rotation at a point is Wy N
defined as the average
rotation rate of two initially Lol ! 7 N

perpendicular lines that

v
¢-
|
|

intersect at that point. The S Line @
rate of rotation vector in ‘ /1 ill:iigslfmem
Cartesian coordinates: —~ i @_i[a +%J_1(ﬁ_8_uj
N dt 2 2\ ox 9y
P \ |
“ \ a y
Line a L
Fluid element t
at time £, '

. 1{ow odv )} 1({du oJow)- 1({dv du |-
W= — [ + — Jj+ — k
2\ dy oz 2{ dz ox 2 ox dy



Shear Strain Rate

©® Shear Strain Rate at a point

is defined as half of the rate |
of decrease of the angle
between two initially

perpendicular lines that

Intersect at a point.

Fluid element
at time ,

© Shear strain rate can be
expressed in Cartesian

coordinates as: Line b
P

“ Linea w
Flu.ld element y ‘
1{du ov 1({ow Odu 1{dv ow
8x o 982x — € z
2l dy  ox 200x dz | © 2(0dz oy




Shear Strain Rate

We can combine linear strain rate and shear strain rate
into one symmetric second-order tensor called the strain-

rate tensor

a_u I1{du dv) 1(du ow

ox 2 aylax 2\ 9z o

_ Sxx Y Exz _ 1{dv du Q 1{dv ow

A I P X -y Jy 2| 9z
VT T 1 ow du) 10w oy ow
2{ox 0z ) 2| dy oz Jz

)\
J




Shear Strain Rate

@ Purpose of our discussion of fluid element kinematics:

® Better appreciation of the inherent complexity of fluid
dynamics

@® Mathematical sophistication required to fully describe fluid
motion

@ Strain-rate tensor is important for numerous reasons.
For example,

® Develop relationships between fluid stress and strain rate.



Vorticity and Rotationality

@ The vorticity vector is defined as the curl of the velocity
vector { =V xV , a measure of rotation of a fluid particle.

@ Vorticity is equal to twice the angular velocity of a fluid particle
Cartesian coordinates ({ =20

@ ow E)v - a_u_a_w av_au A
dy BZ dz Ox ox dy
Cylindrical coordinate

~ (10u, ou, \. (ou Ou ). (0(ruy) ou
C = Z — e.+| —/——=lg + ——L e
r 0 oz Jdz or or 00

® In regions where T = 0, the flow is called irrotational

® Elsewhere, the flow is called rotationa



Vorticity and Rotationality

Fluid particles not rotating

Irrotational outer flow region

Velocity profile

Rotational boundary layer region

Wall Fluid particles rotating



Contour plot of the vorticity field C,

Dark regions represent
arge negative vorticity, and
ight regions represent
arge positive vorticity.




Comparison of Two Circular Flows

Special case: consider two flows with circular streamlines

Flow A Ug A Flow B Uy A

@ S & o=
=i L
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o0
S’

u, =0,u, =0r u =0,

2
e[ 90m) ou, s =1 G )—o é. =208, - 1{0(u) du, ). _1((K) L _
4 or 00 4 or C =— €, =— 0 le, =0e,
r| or 00 r| or




Comparison

A merry-go-round or
roundabout

A Ferris wheel



Reynolds—Transport Theorem (RTT)

® A system is a quantity of
matter of fixed identity. No
mass can cross a system
boundary.

@ A control volume is a region
in space chosen for study.
Mass can cross a control
surface.

------ \
- y \
~ "~ Sprayed mass \

-
- -
-
-
- -
- Tea
-_—- -

System

-P-‘-v--- —

-

(a)

System Cv

deformable fixed,
nondeformable



Reynolds—Transport Theorem (RTT)

©® The fundamental conservation laws
(conservation of mass, energy, and
momentum) apply directly to systemes.

® However, in most fluid mechanics problems,
control volume analysis is preferred over
system analysis (for the same reason that
the Eulerian description is usually preferred
over the Lagrangian description).

©® Therefore, we need to transform the
conservation laws from a system to a
control volume. This is accomplished with
the Reynolds transport theorem (RTT).




Reynolds—Transport Theorem (RTT)

Let B represent any extensive property (such as mass, energy, or momentum), and let b=B/m
represent the corresponding intensive property. Noting that extensive properties are additive,
the extensive property B of the system at times t and t +At can be expressed as:

Control volume at time ¢ + Ar By = Bev (the system and CV concide at time ?)

(CV remains fixed in time)

System (material volume) Bsys, f+Ar BCV, t+Ar BI, t+ At + BH, t+ At

and control volume at time ¢
(shaded region)

System at time ¢ + At
(hatched region)

At At At At

Bsys,t-i—At o Bsys,t - BCV,H—At o BCV,t BI,t-i—Al‘ I BH,t+At

By iiar = bimy on = bip Vi ioa = bip VI AL A,
By i ar = bomy 16 = bapaVip ioar = bopa Vo AL A,

- . BI t+ At blplvl AtAl
B,, = B;= lim — = lim = b.o.V. A
Inflow during At ! At—0 At At—0 At 1P1Y1 A
Outtlow during Ar = : : . Buia . bypVy At A,
Bou=Bu=fiy = Al T T el

At time t: Sys = CV
Attime t +At: Sys=CV -1+11



Reynolds—Transport Theorem (RTT)

Control volume at time ¢ + At
(CV remains fixed in time)

System (material volume)
and control volume at time ¢
(shaded region)

System at time ¢ + At
(hatched region)

Inflow during At

Outflow during Ar —

At time t: Sys = CV
Attime t +At: Sys=CV -1+11

dB... dB . .
d — v Bin + B
dt dt

dBy: _ dBey
dt dt

The equation states that the time rate of change of the
property B of the system is equal to the time rate of
change of B of the control volume plus the net flux of B
out of the control volume by mass crossing the control
surface.

bp\VIA, + bp,V,A,

This is the desired relation since it relates the change of a
property of a system to the change of that property for a
control volume.

Note that it applies at any instant in time, where it is
assumed that the system and the control volume occupy
the same space at that particular instant in time.



Reynolds—Transport Theorem (RTT)

® In general, however, we may have Mass -
several inlet and outlet ports, and entering leaving
the velocity may not be normal to \, /
the control surface at the point of

entry. Also, the velocity may not be
Control volume

unlform..To gengrallze t.he process, ) ’,\\ !
we consider a differential surface = N g
outward T~ 4o _ \
area dA on the control surface and normal -
denote its unit outer normal
Mass
o _ o B .. _ ‘ / ) _. _ . - . ‘o i
~CS — - —
n Vv n
the differential is positive for mass flowing out of the control @t A N
volume, and negative for mass flowing into the control
volume, and its integral over the entire control surface gives
the rate of net outflow of the property B by mass. Outflow: Inflow:

0 < 90° 0 > 90°



Reynolds—Transport Theorem (RTT)

The properties within the control volume may vary with
position, in general. In such a case, the total amount of

property B within the control volume must be determined by

Integration:
-

BCV: pde

‘ov

Therefore, the system-to-control-volume transformation for a
fixed control volume:

‘1l;sys d |

pb dV + pb\_} - n dA

dt dt | o Jos



Reynolds—Transport Theorem (RTT)

@ Note that for a control volume that moves and/or deforms with time, the
time derivative must be applied after integration many practical systems such
as turbine and propeller blades involve nonfixed control volumes. Fortunately,
is also valid for moving and/or deforming control volumes provided that the
absolute fluid velocity in the last term is replaced by the relative velocity

-

V, = V- i;Cs

® General RTT, nonfixed CV (integral analysis):

(/B\'\'.\ ('/ i “ . —
: , /)/> d\/ + ‘ /)/>\"",‘ - n dA
, “CS

“CV S

stys 0
:J (pb)d\/—I-J pbV - n dA
CV'at CS

dt dt

Alternate RTT, nonfixed CV: 7



RTT Special Cases

For steady flow, the time derivative drops out,

0

dB El . .
b d%+jcsprr-ﬁdA: jCSprr-ﬁdA

SYs

dt Vgt

For control volumes with well-defined inlets and outlets

dB

dt _J. pbd%_l_Zpavg avg rang Zpavg avg rang

out



Reynolds—Transport Theorem (RTT)

@ Interpretation of the RTT:

® Time rate of change of the property B of the system is equal to
(Term |) + (Term 2)

@ Term [: the time rate of change of B of the control volume

® Term 2: the net flux of B out of the control volume by mass crossing
the control surface

dBb

SYs

dt

0
CV ot

—(pb)d¥

jcspbﬁ-ﬁdA

® We will apply RTT to conservation of mass, energy, linear
momentum, and angular momentum.

Angular
Mass | Momentum Energy S
momentum
B, Extensive properties m my E 3,
b, Intensive properties I Vv e (77><I7)




There is a direct analogy between the transformation from
Lagrangian to Eulerian descriptions (for differential analysis using
infinitesimally small fluid elements) and the transformation from

systems to control volumes (for integral analysis using large, finite
flow fields).

: | - | he material derivative is used
Lagrangian D Eulerian Y i
Tl ¢ . — B 2 s o transtorm from Lagrangian to
descnptuon Di description Eulerian descriptions for
$ : \ . differential analvsis
Differential analvsis
Integral analysis / |
: 4 | he Reynolds transport
Syt Control theorem is uscd to transform
. )'S e']] L3 o g . : 2
e » RTT > volume l‘lUII.l system 10 mnl‘m] volume
ulhll)'bls . lor integral analysis
analysis :




