HyPro: A C++ library of state set representations for hybrid systems reachability analysis

Stefan Schupp
WIEN WIEN
TU Wien, Vienna, Austria

May 11, 2022

Hybrid systems

"hybrid: [...] A thing made by combining two different elements." Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.

Hybrid systems

"hybrid: [...] A thing made by combining two different elements." Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.
They can be found in
■ physical processes (bouncing ball, freezing water, ...)

- digital controllers for continuous systems (avionics, automotive, automated plants) \rightarrow cyber-physical systems

As they interact and possibly modify the surrounding environment they are often safety critical.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Testing

4

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Testing

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Testing

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Problem: In general undecidable.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Here: bounded over-approximative reachability analysis for linear hybrid systems.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Here: bounded over-approximative reachability analysis for linear hybrid systems.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Here: bounded over-approximative reachability analysis for linear hybrid systems.

Hybrid automata

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

A finite set of locations Loc

Hybrid automata

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

A vector of variables x

Hybrid automata

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

Flow: Loc \rightarrow Pred $_{\text {Var } \cup \text { Var }}$

Hybrid automata

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

Invariant: Loc \rightarrow Pred $_{\text {Var }}$

Hybrid automata

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

Transitions: $E d g e \subseteq$ Loc \times Pred $_{\text {Var }} \times \operatorname{Pred}_{\text {Var } \cup V a r^{\prime}} \times L o c$

Hybrid automata

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

An initial set $L o c \rightarrow$ Pred $_{\text {Var }}$

Hybrid automata - example

Simplified model of a thermostat ${ }^{1}$:

$1_{\text {https://www.digitalcity.wien/even-thermostats-have-a-heart/ }}$

Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.

Algorithm:

```
\(R^{\text {new }}:=\) Init;
\(R:=\emptyset ;\)
while \(\left(R^{\text {new }} \neq \emptyset\right)\{\)
    \(R \quad:=R \cup R^{\text {new }} ;\)
    \(R^{\text {new }}:=\) Reach \(\left(R^{\text {new }}\right) \backslash R\);
\}
```


Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.

Algorithm:

```
\(R^{\text {new }}:=\) Init;
\(R:=\emptyset\);
while \(\left(R^{\text {new }} \neq \emptyset\right)\{\)
                                    \(R \quad:=R \cup R^{\text {new }} ;\)
\(R^{\text {new }}:=\) Reach \(\left(R^{\text {new }}\right) \backslash R\);
\}
```

Question: How to compute Reach for (linear) hybrid systems?

Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.

Algorithm:

```
\(R^{\text {new }}:=\) Init;
\(R:=\emptyset\);
while \(\left(R^{\text {new }} \neq \emptyset\right)\{\)
                                    \(R \quad:=R \cup R^{\text {new }} ;\)
\(R^{\text {new }}:=\) Reach \(\left(R^{\text {new }}\right) \backslash R\);
\}
```

Question: How to compute Reach for (linear) hybrid systems? Answer: Alternatingly compute time- and jump-successor states.

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

■ Over-approximate flowpipe segment for time $[i \delta,(i+1) \delta]$ by P_{i}

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

■ Over-approximate flowpipe segment for time $[i \delta,(i+1) \delta]$ by P_{i}

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$
- Over-approximate flowpipe segment for time $[i \delta,(i+1) \delta]$ by P_{i}

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

■ Over-approximate flowpipe segment for time $[i \delta,(i+1) \delta]$ by P_{i}

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

■ Over-approximate flowpipe segment for time $[i \delta,(i+1) \delta]$ by P_{i}

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

■ Over-approximate flowpipe segment for time $[i \delta,(i+1) \delta]$ by P_{i}

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

■ Over-approximate flowpipe segment for time $[i \delta,(i+1) \delta]$ by P_{i}

Linear hybrid automata: Time evolution

- Assume initial set V_{0} and flow $\dot{x}=A x$

■ Over-approximate flowpipe segment for time $[i \delta,(i+1) \delta]$ by P_{i}

Linear hybrid automata: Discrete steps (jumps)

Example - linear hybrid automata

Example - linear hybrid automata

Example - linear hybrid automata

Example - linear hybrid automata

Example - linear hybrid automata

Example - linear hybrid automata

Example - linear hybrid automata

Example - linear hybrid automata

linear transformation: $\Omega_{i+1}=e^{\delta A} \cdot \Omega_{i}$

Example - linear hybrid automata

linear transformation: $\Omega_{i+1}=e^{\delta A} \cdot \Omega_{i}$

Example - linear hybrid automata

Example - linear hybrid automata

linear transformation: $I^{\prime}:=\operatorname{reset}\left(\Omega_{i}\right)$

Example - linear hybrid automata

linear transformation: $\Omega_{i+1}=e^{\delta A} \cdot \Omega_{i}$

Induced search tree

Induced search tree

The induced search tree depends on:

- The model itself

■ Bounds (jump depth, time horizon)

Induced search tree

The induced search tree depends on:

- The model itself

■ Bounds (jump depth, time horizon)

- Time step size
- State set representation
- Aggregation settings

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ

$\delta=2$

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ
- State set representation

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ
- State set representation

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ
- State set representation

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ
- State set representation

■ Clustering/aggregation

- Default behavior
+ No additional effort
- No control of number of discrete successors

$\delta=0.1$, support functions, no aggregation

Analysis parameters - examples

The precision and running time depends on several parameters, e.g.,

- Time step size δ
- State set representation

■ Clustering/aggregation

- Default behavior
+ No additional effort
- No control of number of discrete successors
- Aggregation
+ Only one discrete successor
- Additional over-approximation

$\delta=0.1$, support functions, aggregation

Sets \& required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Sets \& required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).
Required operations on sets:

- linear transformation (time successors, reset functions)
- intersection (invariants, guards, bad states)
- union (first segment, clustering/aggregation)

■ Minkowski sum (first segment, bloating)

Sets \& required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).
Required operations on sets:

- linear transformation (time successors, reset functions)
- intersection (invariants, guards, bad states)
- union (first segment, clustering/aggregation)

■ Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.

${ }^{2}$ [SÁBMK17]

${ }^{2}$ [SÁBMK17]

Implemented state set representations

- boxes [MKC09]

I_{y}					
		I_{x}		x	

Implemented state set representations

- boxes [MKC09]
- convex polytopes [Zie95]

Implemented state set representations

- boxes [MKC09]
- convex polytopes [Zie95]
- zonotopes [Gir05]

■ orthogonal polyhedra [BMP99]

Implemented state set representations

- boxes [MKC09]
- convex polytopes [Zie95]
- zonotopes [Gir05]
- orthogonal polyhedra [BMP99]
- support functions [LGG10]
- Taylor models [CÁS12]

Image: Xin Chen

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) $A X+b$
X.minkowskiSum (geometricObject Y)
X.intersectHalfspaces(matrix A, vector b) $X \cap\{y \mid A y \leq b\}$
X.satisfiesHalfspaces(matrix A, vector b) $X \cap\{y \mid A y \leq b\} \neq \emptyset$ X.unite(geometricObject Y)
$X \oplus Y$
$c l(X \cup Y)$

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) $A X+b$
X.minkowskiSum (geometricObject Y)
$X \oplus Y$
X.intersectHalfspaces(matrix A, vector b)
$X \cap\{y \mid A y \leq b\}$
X.satisfiesHalfspaces(matrix A, vector b) $\quad X \cap\{y \mid A y \leq b\} \neq \emptyset$
X.unite(geometricObject Y)

Recap: Minkowski sum (dilation)

$A \oplus B=\{x \mid x=a+b, a \in A, b \in B\}$

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) $A X+b$
X.minkowskiSum(geometricObject Y)
$X \oplus Y$
X.intersectHalfspaces (matrix A, vector b)
$X \cap\{y \mid A y \leq b\}$
X.satisfiesHalfspaces(matrix A, vector b) $\quad X \cap\{y \mid A y \leq b\} \neq \emptyset$
X. unite (geometricObject Y)

Recap: Minkowski sum (dilation)

$A \oplus B=\{x \mid x=a+b, a \in A, b \in B\}$

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) $A X+b$
X.minkowskiSum(geometricObject Y)
$X \oplus Y$
X.intersectHalfspaces (matrix A, vector b)
$X \cap\{y \mid A y \leq b\}$
X.satisfiesHalfspaces(matrix A, vector b) $\quad X \cap\{y \mid A y \leq b\} \neq \emptyset$
X. unite (geometricObject Y)

Recap: Minkowski sum (dilation)

$A \oplus B=\{x \mid x=a+b, a \in A, b \in B\}$

GeometricObjectBase interface

Set operations:

```
X.affineTransformation(matrix A, vector b) }AX+
X.minkowskiSum(geometricObject Y)
X.intersectHalfspaces(matrix A, vector b) }X\cap{y|Ay\leqb
X.satisfiesHalfspaces(matrix A, vector b) }X\cap{y|Ay\leqb}\not=
X.unite(geometricObject Y)
cl(X\cupY)
```

Set utility functions:
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains (point p)
conversion operations
reduction functions

Operations - complexity

Computational effort required for the most commonly used operations for different representations:

	$\cdot \cup \cdot$	$\cdot \cap$	$\cdot \oplus \cdot$	$A(\cdot)$
Box			+	
\mathcal{H}-polytope	-	+	-	-
\mathcal{V}-polytope	+	-	+	+
Zonotope			+	+
Support function	+	-	+	+

Operations - complexity

Computational effort required for the most commonly used operations for different representations:

	$\cdot \cup \cdot$	$\cdot \bigcap \cdot$	$\cdot \oplus \cdot$	$A(\cdot)$
Box			+	
\mathcal{H}-polytope	-	+	-	-
\mathcal{V}-polytope	+	-	+	+
Zonotope			+	+
Support function	+	-	+	+

\rightarrow There is no "perfect" state set representation.

Operations - complexity

Computational effort required for the most commonly used operations for different representations:

	$\cdot \cup \cdot$	$\cdot \bigcap \cdot$	$\cdot \oplus \cdot$	$A(\cdot)$
Box			+	
\mathcal{H}-polytope	-	+	-	-
\mathcal{V}-polytope	+	-	+	+
Zonotope			+	+
Support function	+	-	+	+

\rightarrow There is no "perfect" state set representation.

Boxes

Boxes are one of the simplest ways to represent a set:

Definition: box [MKC09]

A box \mathcal{B} of dimension n is defined as an ordered vector of intervals

$$
\mathcal{B}=\left(I_{0}, \ldots, I_{n}\right), I_{i} \in \mathbb{I}
$$

Where \mathbb{I} is the set of all real-valued intervals

$$
I_{i}=\{x \mid l \leq x \leq u\} l, u \in \mathbb{R}
$$

we write $I_{i}=[l, u] \in \mathbb{I}$

Boxes - operations

Intersection:

$$
\mathcal{B}_{c}=\mathcal{B}_{a} \cap \mathcal{B}_{b}=\left\{x \mid x \in \mathcal{B}_{a} \wedge x \in \mathcal{B}_{b}\right\}
$$

Boxes - operations

Intersection:

$$
\mathcal{B}_{c}=\mathcal{B}_{a} \cap \mathcal{B}_{b}=\left\{x \mid x \in \mathcal{B}_{a} \wedge x \in \mathcal{B}_{b}\right\}
$$

For boxes:

$$
\mathcal{B}_{c}=I_{a_{0}} \cap I_{b_{0}}, \ldots, I_{a_{n}} \cap I_{b_{n}}
$$

Boxes - operations

Intersection with a half-space (e.g. guards, invariants):

Recap: half-space

A half-space $\mathcal{H} \in \mathbb{R}^{n}$ contains all points

$$
\mathcal{H}=\left\{x \mid \vec{c}^{T} \cdot x \leq d, \vec{c} \in \mathbb{R}^{n}, d \in \mathbb{R}\right\}
$$

Example:

$$
\mathcal{H}=\left\{x \left\lvert\,\binom{ 1}{1}^{T} \cdot x \leq 1.5\right.\right\}
$$

Excursion: Interval Arithmetic ${ }^{1}$

Binary operations (general case):

$$
X \odot Y=\{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}
$$

Example (Basic arithmetic operations)

Addition: $[4,5]+[-1,2]$
${ }^{1}$ See e.g., [MKC09] for details.

Excursion: Interval Arithmetic ${ }^{1}$

Binary operations (general case):

$$
X \odot Y=\{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}
$$

Example (Basic arithmetic operations)

Addition:	$[4,5]$
Subtraction:	$[4,5]-[-1,2]=[3,7]$
$[-1,2]$	

Excursion: Interval Arithmetic ${ }^{1}$

Binary operations (general case):

$$
X \odot Y=\{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}
$$

Example (Basic arithmetic operations)

Addition:	$[4,5]$	+	$[-1,2]$	$=[3,7]$
Subtraction:	$[4,5]$	-	$[-1,2]$	$=[2,6]$
Multiplication:	$[4,5]$		$[-1,2]$	

Excursion: Interval Arithmetic ${ }^{1}$

Binary operations (general case):

$$
X \odot Y=\{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}
$$

Example (Basic arithmetic operations)

Addition:	$[4,5]$	+	$[-1,2]$
Subtraction:	$[4,5]$	-	$[-1,2]$
Sul	$=[2,6]$		
Multiplication:	$[4,5]$	\cdot	$[-1,2]$
Division:	$[4,5]$	\div	$=[2,3]$

Excursion: Interval Arithmetic ${ }^{1}$

Binary operations (general case):

$$
X \odot Y=\{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}
$$

Example (Basic arithmetic operations)

Addition:	[4,5]	+	$[-1,2]$	$=[3,7]$
Subtraction	[4,5]	-	$[-1,2]$	$=[2,6]$
Multiplication:	[4,5]		$[-1,2]$	$=[-5,10$
Division:	[4,5]	\div	[2,3]	$=\left[\frac{4}{3}, \frac{5}{2}\right]$

Excursion: Interval Arithmetic ${ }^{1}$

Binary operations (general case):

$$
X \odot Y=\{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}
$$

Example (Basic arithmetic operations)

Addition:	[4, 5]	+	$[-1,2]$	$=[3,7]$
Subtraction	$[4,5]$	-	$[-1,2]$	$=[2,6]$
Multiplication:	$[4,5]$		$[-1,2]$	$=[-5,10$
Division:	$[4,5]$	\div	[2,3]	$=\left[\frac{4}{3}, \frac{5}{2}\right]$

Corner case: $X \div Y$ with $X, Y \in \mathbb{I}, 0 \in Y \rightarrow$ may cause a split.

Excursion: Interval Arithmetic ${ }^{1}$

Binary operations (general case):

$$
X \odot Y=\{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}
$$

Example (Basic arithmetic operations)

Addition:	[4,5]	$+$	$[-1,2]$	$=[3,7]$
Subtraction	[4,5]	-	$[-1,2]$	$=[2,6]$
Multiplication:	[4,5]		$[-1,2]$	$=[-5,10]$
Division:	[4,5]	\div	[2,3]	$=\left[\frac{4}{3}, \frac{5}{2}\right]$

Corner case: $X \div Y$ with $X, Y \in \mathbb{I}, 0 \in Y \rightarrow$ may cause a split. Example: $[1,1] \div[-3,2]$

${ }^{1}$ See e.g., $[\mathrm{MKC09]}$ for details.

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
■ Often used in SMT as a theory solver

- In general incomplete
- Exploits interval arithmetic

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
■ Often used in SMT as a theory solver

- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_{x}, I_{y} \in \mathbb{I}$:

$$
\operatorname{Sat}(x+2 \cdot y \leq 17)=I_{x}+2 \cdot I_{y} \cap(-\infty, 17]
$$

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
■ Often used in SMT as a theory solver

- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_{x}, I_{y} \in \mathbb{I}$:

$$
\operatorname{Sat}(x+2 \cdot y \leq 17)=I_{x}+2 \cdot I_{y} \cap(-\infty, 17]
$$

Approach: Given $c: \sum a_{i} \cdot x_{i} \sim d$ with x_{i} interval-valued
■ For each variable x_{i} with interval $[a, b]$:

- Solve c for x_{i} (symbolically) to get c^{\prime}

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
■ Often used in SMT as a theory solver

- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_{x}, I_{y} \in \mathbb{I}$:

$$
\operatorname{Sat}(x+2 \cdot y \leq 17)=I_{x}+2 \cdot I_{y} \cap(-\infty, 17]
$$

Approach: Given $c: \sum a_{i} \cdot x_{i} \sim d$ with x_{i} interval-valued

- For each variable x_{i} with interval $[a, b]$:
- Solve c for x_{i} (symbolically) to get c^{\prime}
- Substitute intervals for all $x_{j}, j \neq i$ in c^{\prime}, solve to get interval $\left[a^{\prime}, b^{\prime}\right]$

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
■ Often used in SMT as a theory solver

- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_{x}, I_{y} \in \mathbb{I}$:

$$
\operatorname{Sat}(x+2 \cdot y \leq 17)=I_{x}+2 \cdot I_{y} \cap(-\infty, 17]
$$

Approach: Given $c: \sum a_{i} \cdot x_{i} \sim d$ with x_{i} interval-valued

- For each variable x_{i} with interval $[a, b]$:
- Solve c for x_{i} (symbolically) to get c^{\prime}
- Substitute intervals for all $x_{j}, j \neq i$ in c^{\prime}, solve to get interval $\left[a^{\prime}, b^{\prime}\right]$
- Update interval for $x_{i} \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]$

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
■ Often used in SMT as a theory solver

- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_{x}, I_{y} \in \mathbb{I}$:

$$
\operatorname{Sat}(x+2 \cdot y \leq 17)=I_{x}+2 \cdot I_{y} \cap(-\infty, 17]
$$

Approach: Given $c: \sum a_{i} \cdot x_{i} \sim d$ with x_{i} interval-valued
\square For each variable x_{i} with interval $[a, b]$:

- Solve c for x_{i} (symbolically) to get c^{\prime}
- Substitute intervals for all $x_{j}, j \neq i$ in c^{\prime}, solve to get interval $\left[a^{\prime}, b^{\prime}\right]$
- Update interval for $x_{i} \in[a, b] \cap\left[a^{\prime}, b^{\prime}\right]$

If one interval becomes empty, the constraint is not satisfiable.

ICP-style Half-space Intersection: Example

Example
 Assume $\mathcal{B}=[0,3] \times[0,2]$ and a constraint $c: x+2 \cdot y \leq 2$.

${ }^{2}$ See [Sch19] for a proof.

ICP-style Half-space Intersection: Example

Example

Assume $\mathcal{B}=[0,3] \times[0,2]$ and a constraint $c: x+2 \cdot y \leq 2$.
Contraction for x :

${ }^{2}$ See [Sch19] for a proof.

ICP-style Half-space Intersection: Example

Example

Assume $\mathcal{B}=[0,3] \times[0,2]$ and a constraint $c: x+2 \cdot y \leq 2$.
Contraction for $x: x \leq 2-2 \cdot y \Leftrightarrow x \in[0,3] \cap(-\infty, 2]-[0,4] \rightarrow x \in[0,2]$

${ }^{2}$ See [Sch19] for a proof.

ICP-style Half-space Intersection: Example

Example

Assume $\mathcal{B}=[0,3] \times[0,2]$ and a constraint $c: x+2 \cdot y \leq 2$.
Contraction for $x: x \leq 2-2 \cdot y \Leftrightarrow x \in[0,3] \cap(-\infty, 2]-[0,4] \rightarrow x \in[0,2]$
Contraction for y :

${ }^{2}$ See [Sch19] for a proof.

ICP-style Half-space Intersection: Example

Example

Assume $\mathcal{B}=[0,3] \times[0,2]$ and a constraint $c: x+2 \cdot y \leq 2$.
Contraction for $x: x \leq 2-2 \cdot y \Leftrightarrow x \in[0,3] \cap(-\infty, 2]-[0,4] \rightarrow x \in[0,2]$
Contraction for y :
$y \leq(1-x) \div 2 \Leftrightarrow y \in[0,2] \cap((-\infty, 2]-[0,2]) \div 2 \rightarrow y \in[0,1]$

${ }^{2}$ See [Sch19] for a proof.

ICP-style Half-space Intersection: Example

Example

Assume $\mathcal{B}=[0,3] \times[0,2]$ and a constraint $c: x+2 \cdot y \leq 2$.
Contraction for $x: x \leq 2-2 \cdot y \Leftrightarrow x \in[0,3] \cap(-\infty, 2]-[0,4] \rightarrow x \in[0,2]$
Contraction for y :
$y \leq(1-x) \div 2 \Leftrightarrow y \in[0,2] \cap((-\infty, 2]-[0,2]) \div 2 \rightarrow y \in[0,1]$

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices ${ }^{2}$. ${ }^{2}$ See [Sch19] for a proof.

Boxes - operations

Union:

$$
\mathcal{B}_{c}=\mathcal{B}_{a} \cup \mathcal{B}_{b}=\left\{x \mid x \in \mathcal{B}_{a} \vee x \in \mathcal{B}_{b}\right\}
$$

Note: The union of two convex sets is not necessarily convex \rightarrow we use the closure ($c l$) of the union.

Boxes - operations

Union:

$$
\mathcal{B}_{c}=\mathcal{B}_{a} \cup \mathcal{B}_{b}=\left\{x \mid x \in \mathcal{B}_{a} \vee x \in \mathcal{B}_{b}\right\}
$$

Note: The union of two convex sets is not necessarily convex \rightarrow we use the closure ($c l$) of the union.

$$
\begin{aligned}
\mathcal{B}_{c} & =\operatorname{cl}\left(I_{a_{0}} \cup I_{b_{0}}\right), \ldots, \operatorname{cl}\left(I_{a_{n}} \cup I_{b_{n}}\right) \\
& =\left[\min \left(I_{a_{0_{l}}}, I_{b_{0_{l}}}\right), \max \left(I_{a_{0_{u}}}, I_{b_{0_{u}}}\right)\right], \ldots,\left[\min \left(I_{a_{n_{l}}}, I_{b_{n_{l}}}\right), \max \left(I_{a_{n_{u}}}, I_{b_{n_{u}}}\right)\right]
\end{aligned}
$$

Boxes - operations

Minkowski-sum:

$$
\mathcal{B}_{c}=\mathcal{B}_{a} \oplus \mathcal{B}_{b}=\left\{x \mid x=x_{a}+x_{b}, x_{a} \in \mathcal{B}_{a}, x_{b} \in \mathcal{B}_{b}\right\}
$$

Note: Minkowski's sum can be applied point-wise on convex sets.

Boxes - operations

Minkowski-sum:

$$
\mathcal{B}_{c}=\mathcal{B}_{a} \oplus \mathcal{B}_{b}=\left\{x \mid x=x_{a}+x_{b}, x_{a} \in \mathcal{B}_{a}, x_{b} \in \mathcal{B}_{b}\right\}
$$

Note: Minkowski's sum can be applied point-wise on convex sets.

$$
\begin{aligned}
\mathcal{B}_{c} & =I_{a_{0}} \oplus I_{b_{0}}, \ldots, I_{a_{n}} \oplus I_{b_{n}} \\
& =\left[I_{a_{0_{l}}}+I_{b_{0_{l}}}, I_{a_{0_{u}}}+I_{b_{0_{u}}}\right], \ldots,\left[I_{a_{n_{l}}}+I_{b_{n_{l}}}, I_{a_{n_{u}}}+I_{b_{n_{u}}}\right]
\end{aligned}
$$

Boxes - operations

Linear transformation:

$$
\mathcal{B}_{c}=A \cdot \mathcal{B}_{a}=\left\{x \mid x=A \cdot x_{a}, x_{a} \in \mathcal{B}_{a}\right\}, A \in \mathbb{R}^{n \times n}
$$

Boxes - operations

Linear transformation:

$$
\mathcal{B}_{c}=A \cdot \mathcal{B}_{a}=\left\{x \mid x=A \cdot x_{a}, x_{a} \in \mathcal{B}_{a}\right\}, A \in \mathbb{R}^{n \times n}
$$

Approaches:
■ Naive (conversion): apply A on all vertices, re-convert to box
■ Utilize interval arithmetic

Support functions

Definition: support function

The support function ρ_{Ω} of a n-dimensional set $\Omega \in \mathbb{R}^{n}$ is defined as

$$
\begin{array}{r}
\rho_{\Omega}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{-\infty, \infty\} \\
\rho_{\Omega}(l)=\sup _{x \in \Omega} l^{T} \cdot x
\end{array}
$$

Support functions

Definition: support function

The support function ρ_{Ω} of a n-dimensional set $\Omega \in \mathbb{R}^{n}$ is defined as

$$
\begin{array}{r}
\rho_{\Omega}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{-\infty, \infty\} \\
\rho_{\Omega}(l)=\sup _{x \in \Omega} l^{T} \cdot x
\end{array}
$$

Properties:

- implemented as tree structure (see next slides)

■ operations are cheap, reduced overhead

- scale well in higher dimensions

■ well developed (see e.g. [LGG10, FKL13, FGD ${ }^{+}$11, LG09])

Support functions - operations [LGG10]

Most commonly used operations during reachability analysis:
■ Intersection: $\rho_{c}(l)=\min \left(\rho_{a}(l), \rho_{b}(l)\right)$

Support functions - operations [LGG10]

Most commonly used operations during reachability analysis:
■ Intersection with a half-space $\mathcal{H}=c^{T} \cdot x \leq d$ (e.g. guards, invariants): $\rho_{c}(l)=\min \left(\rho_{a}(l), \mathcal{H}(l)\right)$,
where $\mathcal{H}(l)= \begin{cases}d & \text { when } l=c \\ \infty & \text { else }\end{cases}$

Support functions - operations [LGG10]

Most commonly used operations during reachability analysis:
■ Union: $\rho_{c}(l)=\max \left(\rho_{a}(l), \rho_{b}(l)\right)$

Note: The union operation on a set of support functions returns the supporting hyperplane of the convex hull of the set of underlying sets.

Support functions - operations [LGG10]

Most commonly used operations during reachability analysis:
■ Minkowski-sum: $\rho_{c}(l)=\rho_{a}(l)+\rho_{b}(l)$

Support functions - operations [LGG10]

Most commonly used operations during reachability analysis:

- Linear transformation: $\rho_{c}=\rho_{a}(\underbrace{A^{T} l}_{l^{\prime}})$

Support functions - optimization

The tree structure in combination with our domain-specific knowledge allows for several optimizations:

- collect sequences of linear transformations

Support functions - optimization

The tree structure in combination with our domain-specific knowledge allows for several optimizations:

- collect sequences of linear transformations

Support functions - optimization

The tree structure in combination with our domain-specific knowledge allows for several optimizations:

- collect sequences of linear transformations

■ remove intersections which have no effect

Support functions - optimization

The tree structure in combination with our domain-specific knowledge allows for several optimizations:

- collect sequences of linear transformations

■ remove intersections which have no effect

- reduce tree upon discrete jump (templated evaluation)

Demo

Thermostat ${ }^{1}$

We model and analyze a thermostat according to the following specifications:

- Can either be on (initially) or off
- Temperature x changes accordingly: $\dot{x}=50-x$ (on), $\dot{x}=10-x$ (off)
- Switches from on to off when $x \in[20,25]$
- Switches off to on when $x \in[16,18]$

[^0]
Applications

Extensions for reachability analysis based on HyPro:
■ Syntactic decoupling - subspace computations

- CEGAR-based reachability analysis

CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis

- Time step size δ
- State set representation
- Aggregation

CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis

- Time step size δ
- State set representation
- Aggregation

■ . . .

Reachability analysis induces a search tree, however

- not all branches intersect with bad states \rightarrow coarse analysis

■ avoid spurious counterexamples \rightarrow fine analysis

CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis

- Time step size δ
- State set representation
- Aggregation

■ . . .

Reachability analysis induces a search tree, however

- not all branches intersect with bad states \rightarrow coarse analysis
- avoid spurious counterexamples \rightarrow fine analysis

Goal: Be as lazy as possible and as precise as necessary.

CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
■ State set representation R_{i}
■ Time step size δ_{i}

CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
$■$ State set representation R_{i}
■ Time step size δ_{i}
Strategy (ordered set of parameter settings):

CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
$■$ State set representation R_{i}

- Time step size δ_{i}

Strategy (ordered set of parameter settings):

> Depending on the application, order and choice of parameter settings matters!

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

A

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

CEGAR-based reachability analysis - Example

Strategy:

Search tree:

Extension: Parallelized search in different branches.

Example: Bouncing ball

Example: Bouncing ball

Stefan Schupp

Example: Bouncing ball

Example: Bouncing ball

Stefan Schupp

A free and open source library for hybrid systems reachability analysis
https://github.com/hypro/hypro

Examples

Bouncing ball, \mathcal{V}-polytopes with conversion to \mathcal{H}-polytopes for intersection, double glpk-only, $T=3, \delta=0.01$, 4 jumps

Examples

Bouncing ball, \mathcal{V}-polytopes with conversion to \mathcal{H}-polytopes for intersection, double glpk+SMT-RAT, $T=3, \delta=0.01,4$ jumps

Examples

Rod reactor, box, double glpk-only, $T=17, \delta=0.01,2$ jumps

Examples

5-D switching system, support function, double glpk-only, $T=0.2$, $\delta=0.001$, 4 jumps

Examples

5-D switching system, boxes, double glpk-only, $T=0.2, \delta=0.001,4$ jumps

Examples

Filtered oscillator, support function, double glpk-only, $T=4, \delta=0.01,5$ jumps

[^0]: ${ }^{1}$ https://www.digitalcity.wien/even-thermostats-have-a-heart

