HyPro: A C++ library of state set representations for hybrid systems reachability analysis

Stefan Schupp

May 11, 2022

Hybrid systems

"hybrid: [...] A thing made by combining two different elements." Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.

Hybrid systems

"hybrid: [...] A thing made by combining two different elements." Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior. They can be found in

- physical processes (bouncing ball, freezing water, ...)
- digital controllers for continuous systems (avionics, automotive, automated plants) \rightarrow cyber-physical systems

As they interact and possibly modify the surrounding environment they are often safety critical.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Testing

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Problem: In general undecidable.

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Here: bounded over-approximative reachability analysis for linear hybrid systems.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Here: bounded over-approximative reachability analysis for linear hybrid systems.

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)

The reachability problem is the problem to decide whether a state is reachable in a hybrid system from a set of initial states.

Here: bounded over-approximative reachability analysis for linear hybrid systems.

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

A finite set of locations Loc

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

A vector of variables x

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

Flow: $Loc \rightarrow Pred_{Var \cup Var}$

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

Invariant: $Loc \rightarrow Pred_{Var}$

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

Transitions: $Edge \subseteq Loc \times Pred_{Var} \times Pred_{Var \cup Var'} \times Loc$

Hybrid systems can be modeled by hybrid automata Here: linear hybrid automata

An initial set $Loc \rightarrow Pred_{Var}$

Hybrid automata - example

Simplified model of a thermostat¹:

¹https://www.digitalcity.wien/even-thermostats-have-a-heart/

Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states. **Output:** Set R of reachable states.

Algorithm:

$$\begin{array}{l} R^{\mathsf{new}} := \mathsf{lnit}; \\ R := \emptyset; \\ \mathsf{while} \ (R^{\mathsf{new}} \neq \emptyset) \{ \\ R & := R \cup R^{\mathsf{new}}; \\ R^{\mathsf{new}} & := \fbox{\mathsf{Reach}}(R^{\mathsf{new}}) \backslash R; \\ \} \end{array}$$

Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states. **Output:** Set R of reachable states.

Algorithm:

$$\begin{array}{ll} R^{\mathsf{new}} := \mathsf{lnit}; \\ R := \emptyset; \\ \mathsf{while} \ (R^{\mathsf{new}} \neq \emptyset) \{ \\ & R & := R \cup R^{\mathsf{new}}; \\ & R^{\mathsf{new}} & := \boxed{\mathsf{Reach}}(R^{\mathsf{new}}) \backslash R; \\ \} \end{array}$$

Question: How to compute Reach for (linear) hybrid systems?

Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states. **Output:** Set R of reachable states.

Algorithm:

$$\begin{array}{l} R^{\mathsf{new}} := \mathsf{lnit}; \\ R := \emptyset; \\ \mathsf{while} \ (R^{\mathsf{new}} \neq \emptyset) \{ \\ R \ := R \cup R^{\mathsf{new}}; \\ R^{\mathsf{new}} \ := \boxed{\mathsf{Reach}}(R^{\mathsf{new}}) \backslash R; \\ \} \end{array}$$

Question: How to compute Reach for (linear) hybrid systems? Answer: Alternatingly compute time- and jump-successor states.

• Assume initial set V_0 and flow $\dot{x} = Ax$

• Assume initial set V_0 and flow $\dot{x} = Ax$

• Assume initial set V_0 and flow $\dot{x} = Ax$

- Assume initial set V_0 and flow $\dot{x} = Ax$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i

- Assume initial set V_0 and flow $\dot{x} = Ax$
- \blacksquare Over-approximate flowpipe segment for time $[i\delta,(i+1)\delta]$ by P_i

- Assume initial set V_0 and flow $\dot{x} = Ax$
- \blacksquare Over-approximate flowpipe segment for time $[i\delta,(i+1)\delta]$ by P_i

- Assume initial set V_0 and flow $\dot{x} = Ax$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i

- Assume initial set V_0 and flow $\dot{x} = Ax$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i

- Assume initial set V_0 and flow $\dot{x} = Ax$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i

- Assume initial set V_0 and flow $\dot{x} = Ax$
- Over-approximate flowpipe segment for time $[i\delta, (i+1)\delta]$ by P_i

• Assume initial set V_0 and flow $\dot{x} = Ax$

 \blacksquare Over-approximate flowpipe segment for time $[i\delta,(i+1)\delta]$ by P_i

Linear hybrid automata: Discrete steps (jumps)

Linear hybrid automata: Discrete steps (jumps)

 $x \in [0.5, 0.6] \\ y \in [0.1, 0.2] \\ \downarrow \\ \hline \\ l_0 \\ \dot{x} = x + 4y \\ \dot{y} = -4x + y \\ x \ge 0 \\ \hline \\ \hline \\ \\ \end{pmatrix}$

Induced search tree

Induced search tree

The induced search tree depends on:

- The model itself
- Bounds (jump depth, time horizon)

Induced search tree

The induced search tree depends on:

- The model itself
- Bounds (jump depth, time horizon)
- Time step size
- State set representation
- Aggregation settings

The precision and running time depends on several parameters, e.g.,

Time step size δ

The precision and running time depends on several parameters, e.g.,

 $\blacksquare \text{ Time step size } \delta$

The precision and running time depends on several parameters, e.g.,

 $\blacksquare \text{ Time step size } \delta$

The precision and running time depends on several parameters, e.g.,

 $\blacksquare \ {\rm Time \ step \ size \ } \delta$

The precision and running time depends on several parameters, e.g.,

Time step size δ

The precision and running time depends on several parameters, e.g.,

- \blacksquare Time step size δ
- State set representation

 $\delta = 0.1$, support functions

The precision and running time depends on several parameters, e.g.,

- Time step size δ
- State set representation

 $\delta = 0.1$, boxes

The precision and running time depends on several parameters, e.g.,

- $\blacksquare \ {\rm Time \ step \ size \ } \delta$
- State set representation

 $\delta = 0.1$, boxes

The precision and running time depends on several parameters, e.g.,

- Time step size δ
- State set representation
- Clustering/aggregation
 - Default behavior
 - + No additional effort
 - No control of number of discrete successors

 $\delta=0.1,$ support functions, no aggregation

The precision and running time depends on several parameters, e.g.,

- Time step size δ
- State set representation
- Clustering/aggregation
 - Default behavior
 - + No additional effort
 - No control of number of discrete successors
 - Aggregation
 - Only one discrete successor
 - Additional over-approximation

 $\delta = 0.1 \text{, support functions,} \\ \textit{aggregation}$

Sets & required set operations

Required: State set representation.

Problem: There are several ways to represent sets (see next slides).

Sets & required set operations

Required: State set representation.

Problem: There are several ways to represent sets (see next slides).

Required operations on sets:

- linear transformation (time successors, reset functions)
- intersection (invariants, guards, bad states)
- union (first segment, clustering/aggregation)
- Minkowski sum (first segment, bloating)

Sets & required set operations

Required: State set representation.

Problem: There are several ways to represent sets (see next slides).

Required operations on sets:

- linear transformation (time successors, reset functions)
- intersection (invariants, guards, bad states)
- union (first segment, clustering/aggregation)
- Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.

HyPro²

²[SÁBMK17]

HyPro²

²[SÁBMK17]

Implemented state set representations

boxes [MKC09]

Implemented state set representations

- boxes [MKC09]
- convex polytopes [Zie95]

Implemented state set representations

- boxes [MKC09]
- convex polytopes [Zie95]
- zonotopes [Gir05]
- orthogonal polyhedra [BMP99]

Implemented state set representations

- boxes [MKC09]
- convex polytopes [Zie95]
- zonotopes [Gir05]
- orthogonal polyhedra [BMP99]
- support functions [LGG10]
- Taylor models [CÁS12]

Image: Xin Chen

Set operations:

- X.affineTransformation(matrix A, vector b)
- X.minkowskiSum(geometricObject Y)
- X.intersectHalfspaces(matrix A, vector b)
- X.satisfiesHalfspaces(matrix A, vector b)
- X.unite(geometricObject Y)

```
AX + b

X \oplus Y

X \cap \{y \mid Ay \le b\}

X \cap \{y \mid Ay \le b\} \ne \emptyset

cl(X \cup Y)
```


Set operations:

- X.affineTransformation(matrix A, vector b)
- X.minkowskiSum(geometricObject Y)
- X.intersectHalfspaces(matrix A, vector b) $X \cap \{y \mid Ay \leq b\}$
- X.satisfiesHalfspaces(matrix A, vector b)
- X.unite(geometricObject Y)

```
AX + b

X \oplus Y

X \cap \{y \mid Ay \le b\}

X \cap \{y \mid Ay \le b\} \ne \emptyset

cl(X \cup Y)
```

Recap: Minkowski sum (dilation)

 $A \oplus B = \{x \mid x = a + b, a \in A, b \in B\}$

Set operations:

- X.affineTransformation(matrix A, vector b)
- X.minkowskiSum(geometricObject Y)
- X.intersectHalfspaces(matrix A, vector b) $X \cap \{y \mid Ay \leq b\}$
- X.satisfiesHalfspaces(matrix A, vector b)
- X.unite(geometricObject Y)

```
AX + b

X \oplus Y

X \cap \{y \mid Ay \le b\}

X \cap \{y \mid Ay \le b\} \ne \emptyset

cl(X \cup Y)
```

Recap: Minkowski sum (dilation)

 $A \oplus B = \{x \mid x = a + b, a \in A, b \in B\}$

Set operations:

- X.affineTransformation(matrix A, vector b)
- X.minkowskiSum(geometricObject Y)
- X.intersectHalfspaces(matrix A, vector b) $X \cap \{y \mid Ay \leq b\}$
- X.satisfiesHalfspaces(matrix A, vector b)
- X.unite(geometricObject Y)

```
AX + b

X \oplus Y

X \cap \{y \mid Ay \le b\}

X \cap \{y \mid Ay \le b\} \ne \emptyset

cl(X \cup Y)
```

Recap: Minkowski sum (dilation)

 $A \oplus B = \{x \mid x = a + b, a \in A, b \in B\}$

Set operations:

- X.affineTransformation(matrix A, vector b)
- X.minkowskiSum(geometricObject Y)
- X.intersectHalfspaces(matrix A, vector b) $X \cap \{y \mid Ay \leq b\}$
- X.satisfiesHalfspaces(matrix A, vector b)
- X.unite(geometricObject Y)

Set utility functions:

```
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions
```

```
AX + b

X \oplus Y

X \cap \{y \mid Ay \le b\}

X \cap \{y \mid Ay \le b\} \ne \emptyset

cl(X \cup Y)
```


Operations – complexity

Computational effort required for the most commonly used operations for different representations:

	·U·	$\cdot \cap \cdot$	$\cdot \oplus \cdot$	$A(\cdot)$
Box			+	
$\mathcal H$ -polytope	-	+	-	-
$\mathcal V$ -polytope	+	-	+	+
Zonotope			+	+
Support function	+	-	+	+

Operations – complexity

Computational effort required for the most commonly used operations for different representations:

	·U·	$\cdot \cap \cdot$	$\cdot \oplus \cdot$	$A(\cdot)$
Box			+	
$\mathcal H$ -polytope	-	+	-	-
\mathcal{V} -polytope	+	-	+	+
Zonotope			+	+
Support function	+	-	+	+

 \rightarrow There is no "perfect" state set representation.

Operations – complexity

Computational effort required for the most commonly used operations for different representations:

	·U·	$ \cdot \cap \cdot$	$\cdot \oplus \cdot$	$A(\cdot)$
Box			+	
$\mathcal H$ -polytope	-	+	-	-
\mathcal{V} -polytope	+	-	+	+
Zonotope			+	+
Support function	+	-	+	+

 \rightarrow There is no "perfect" state set representation.

Boxes

Boxes are one of the simplest ways to represent a set:

Definition: box [MKC09]

A box $\ensuremath{\mathcal{B}}$ of dimension n is defined as an ordered vector of intervals

$$\mathcal{B} = (I_0, \dots, I_n), I_i \in \mathbb{I}$$

Where ${\rm I\!I}$ is the set of all real-valued intervals

$$I_i = \{ x \mid l \le x \le u \} \ l, u \in \mathbb{R},$$

we write $I_i = [l, u] \in \mathbb{I}$

Intersection:

$$\mathcal{B}_c = \mathcal{B}_a \cap \mathcal{B}_b = \{x \mid x \in \mathcal{B}_a \land x \in \mathcal{B}_b\}$$

Intersection:

$$\mathcal{B}_c = \mathcal{B}_a \cap \mathcal{B}_b = \{x \mid x \in \mathcal{B}_a \land x \in \mathcal{B}_b\}$$

For boxes:

$$\mathcal{B}_c = I_{a_0} \cap I_{b_0}, \dots, I_{a_n} \cap I_{b_n}$$

Intersection with a half-space (e.g. guards, invariants):

Recap: half-space

A half-space $\mathcal{H} \in \mathbb{R}^n$ contains all points

$$\mathcal{H} = \{ x \mid \vec{c}^T \cdot x \le d, \ \vec{c} \in \mathbb{R}^n, \ d \in \mathbb{R} \}$$

Example:

$$\mathcal{H} = \left\{ x \left| \begin{pmatrix} 1 \\ 1 \end{pmatrix}^T \cdot x \le 1.5 \right\} \right.$$

Binary operations (general case):

$$X \odot Y = \{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}$$

Example (Basic arithmetic operations)

Addition: [4,5] + [-1,2]

Binary operations (general case):

$$X \odot Y = \{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}$$

Example (Basic arithmetic operations)

Addition:	[4, 5]	+	[-1,2]	= [3,7]
Subtraction :	[4, 5]	_	[-1,2]	

Binary operations (general case):

$$X \odot Y = \{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}$$

Example (Basic arithmetic operations)

Addition:	[4, 5]	+	[-1,2]	= [3,7]
Subtraction :	[4, 5]	_	[-1,2]	= [2, 6]
Multiplication:	[4, 5]	•	[-1,2]	

Binary operations (general case):

$$X \odot Y = \{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}$$

Example (Basic arithmetic operations)

Addition:	[4, 5]	+	[-1,2]	= [3,7]
Subtraction :	[4, 5]	_	[-1,2]	= [2, 6]
Multiplication:	[4, 5]	•	[-1,2]	= [-5, 10]
Division:	[4, 5]	÷	[2, 3]	

Binary operations (general case):

$$X \odot Y = \{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}$$

Example (Basic arithmetic operations)

Addition:	[4, 5]	+	[-1,2]	= [3,7]
Subtraction :	[4, 5]	—	[-1,2]	= [2, 6]
Multiplication:	[4, 5]	•	[-1,2]	= [-5, 10]
Division:	[4, 5]	÷	[2, 3]	$= \left[\frac{4}{3}, \frac{5}{2}\right]$

Binary operations (general case):

$$X \odot Y = \{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}$$

Example (Basic arithmetic operations)

Addition:	[4, 5]	+	[-1,2]	= [3,7]
Subtraction :	[4, 5]	—	[-1,2]	= [2, 6]
Multiplication:	[4, 5]	•	[-1,2]	= [-5, 10]
Division:	[4, 5]	÷	[2, 3]	$= \left[\frac{4}{3}, \frac{5}{2}\right]$

Corner case: $X \div Y$ with $X, Y \in \mathbb{I}, 0 \in Y \rightarrow$ may cause a split.

Binary operations (general case):

$$X \odot Y = \{x \odot y \mid x \in X, y \in Y\}, X, Y \in \mathbb{I}$$

Example (Basic arithmetic operations)

Addition:	[4, 5]	+	[-1,2]	= [3,7]
Subtraction :	[4, 5]	—	[-1,2]	= [2, 6]
Multiplication:	[4, 5]	•	[-1,2]	= [-5, 10]
Division:	[4, 5]	÷	[2, 3]	$= \left[\frac{4}{3}, \frac{5}{2}\right]$

Corner case: $X \div Y$ with $X, Y \in \mathbb{I}, 0 \in Y \rightarrow$ may cause a split. Example: $[1,1] \div [-3,2]$

Interval constraint propagation (ICP):

- Often used in SMT as a theory solver
- In general incomplete
- Exploits interval arithmetic

Interval constraint propagation (ICP):

- Often used in SMT as a theory solver
- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_x, I_y \in \mathbb{I}$:

$$Sat(x+2 \cdot y \le 17) = I_x + 2 \cdot I_y \cap (-\infty, 17]$$

Interval constraint propagation (ICP):

- Often used in SMT as a theory solver
- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_x, I_y \in \mathbb{I}$:

$$Sat(x+2 \cdot y \le 17) = I_x + 2 \cdot I_y \cap (-\infty, 17]$$

Approach: Given $c: \sum a_i \cdot x_i \sim d$ with x_i interval-valued For each variable x_i with interval [a,b]:

Solve c for x_i (symbolically) to get c'

Interval constraint propagation (ICP):

- Often used in SMT as a theory solver
- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_x, I_y \in \mathbb{I}$:

$$Sat(x+2 \cdot y \le 17) = I_x + 2 \cdot I_y \cap (-\infty, 17]$$

Approach: Given $c: \sum a_i \cdot x_i \sim d$ with x_i interval-valued

- For each variable x_i with interval [a, b]:
 - Solve c for x_i (symbolically) to get c'
 - Substitute intervals for all $x_j, j \neq i$ in c', solve to get interval [a', b']

Interval constraint propagation (ICP):

- Often used in SMT as a theory solver
- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_x, I_y \in \mathbb{I}$:

$$Sat(x+2 \cdot y \le 17) = I_x + 2 \cdot I_y \cap (-\infty, 17]$$

Approach: Given $c: \sum a_i \cdot x_i \sim d$ with x_i interval-valued

- For each variable x_i with interval [a,b]:
 - Solve c for x_i (symbolically) to get c'
 - Substitute intervals for all $x_j, j \neq i$ in c', solve to get interval [a', b']
 - Update interval for $x_i \in [a, \check{b}] \cap [a', b']$

Interval constraint propagation (ICP):

- Often used in SMT as a theory solver
- In general incomplete
- Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x, y with intervals $I_x, I_y \in \mathbb{I}$:

$$Sat(x+2 \cdot y \le 17) = I_x + 2 \cdot I_y \cap (-\infty, 17]$$

Approach: Given $c: \sum a_i \cdot x_i \sim d$ with x_i interval-valued

- For each variable x_i with interval [a, b]:
 - Solve c for x_i (symbolically) to get c'
 - Substitute intervals for all $x_j, j \neq i$ in c', solve to get interval [a', b']
 - Update interval for $x_i \in [a, b] \cap [a', b']$

If one interval becomes empty, the constraint is not satisfiable.

Example

Assume $\mathcal{B} = [0,3] \times [0,2]$ and a constraint $c \colon x + 2 \cdot y \leq 2$.

Example

Assume $\mathcal{B} = [0,3] \times [0,2]$ and a constraint $c \colon x + 2 \cdot y \leq 2$. Contraction for x:

Example

Assume $\mathcal{B} = [0,3] \times [0,2]$ and a constraint $c \colon x + 2 \cdot y \leq 2$. Contraction for $x \colon x \leq 2 - 2 \cdot y \Leftrightarrow x \in [0,3] \cap (-\infty,2] - [0,4] \rightarrow x \in [0,2]$

Example

Assume $\mathcal{B} = [0,3] \times [0,2]$ and a constraint $c \colon x + 2 \cdot y \leq 2$. Contraction for $x \colon x \leq 2 - 2 \cdot y \Leftrightarrow x \in [0,3] \cap (-\infty,2] - [0,4] \rightarrow x \in [0,2]$ Contraction for y:

Example

Assume $\mathcal{B} = [0,3] \times [0,2]$ and a constraint $c: x + 2 \cdot y \leq 2$.

Contraction for $x: x \leq 2 - 2 \cdot y \Leftrightarrow x \in [0,3] \cap (-\infty,2] - [0,4] \rightarrow x \in [0,2]$

Contraction for y:

 $y \leq (1-x) \div 2 \Leftrightarrow y \in [0,2] \cap \left((-\infty,2] - [0,2] \right) \div 2 \rightarrow y \in [0,1]$

Example

Assume $\mathcal{B} = [0,3] \times [0,2]$ and a constraint $c \colon x + 2 \cdot y \leq 2$.

Contraction for $x: x \le 2 - 2 \cdot y \Leftrightarrow x \in [0,3] \cap (-\infty,2] - [0,4] \to x \in [0,2]$

Contraction for y: $y \le (1-x) \div 2 \Leftrightarrow y \in [0,2] \cap ((-\infty,2]-[0,2]) \div 2 \rightarrow y \in [0,1]$

Note: termination not guaranteed due to new intervals.

But: For single linear constraints, a single iteration suffices². ²See [Sch19] for a proof.

Union:

$$\mathcal{B}_c = \mathcal{B}_a \cup \mathcal{B}_b = \{x \mid x \in \mathcal{B}_a \lor x \in \mathcal{B}_b\}$$

Note: The union of two convex sets is not necessarily convex \rightarrow we use the closure (cl) of the union.

Union:

$$\mathcal{B}_c = \mathcal{B}_a \cup \mathcal{B}_b = \{x \mid x \in \mathcal{B}_a \lor x \in \mathcal{B}_b\}$$

Note: The union of two convex sets is not necessarily convex \rightarrow we use the closure (cl) of the union.

$$\mathcal{B}_{c} = cl(I_{a_{0}} \cup I_{b_{0}}), \dots, cl(I_{a_{n}} \cup I_{b_{n}}) = [\min(I_{a_{0_{l}}}, I_{b_{0_{l}}}), \max(I_{a_{0_{u}}}, I_{b_{0_{u}}})], \dots, [\min(I_{a_{n_{l}}}, I_{b_{n_{l}}}), \max(I_{a_{n_{u}}}, I_{b_{n_{u}}})]$$

Stefan Schupp

Minkowski-sum:

$$\mathcal{B}_c = \mathcal{B}_a \oplus \mathcal{B}_b = \{ x \mid x = x_a + x_b, x_a \in \mathcal{B}_a, x_b \in \mathcal{B}_b \}$$

Note: Minkowski's sum can be applied point-wise on convex sets.

Boxes - operations

Minkowski-sum:

$$\mathcal{B}_c = \mathcal{B}_a \oplus \mathcal{B}_b = \{x \mid x = x_a + x_b, x_a \in \mathcal{B}_a, x_b \in \mathcal{B}_b\}$$

Note: Minkowski's sum can be applied point-wise on convex sets.

$$\mathcal{B}_{c} = I_{a_{0}} \oplus I_{b_{0}}, \dots, I_{a_{n}} \oplus I_{b_{n}}$$

= $[I_{a_{0_{l}}} + I_{b_{0_{l}}}, I_{a_{0_{u}}} + I_{b_{0_{u}}}], \dots, [I_{a_{n_{l}}} + I_{b_{n_{l}}}, I_{a_{n_{u}}} + I_{b_{n_{u}}}]$

Boxes – operations

Linear transformation:

$$\mathcal{B}_c = A \cdot \mathcal{B}_a = \{ x \mid x = A \cdot x_a, x_a \in \mathcal{B}_a \}, A \in \mathbb{R}^{n \times n}$$

Boxes - operations

Linear transformation:

$$\mathcal{B}_c = A \cdot \mathcal{B}_a = \{ x \mid x = A \cdot x_a, x_a \in \mathcal{B}_a \}, A \in \mathbb{R}^{n \times n}$$

Approaches:

- Naive (conversion): apply A on all vertices, re-convert to box
- Utilize interval arithmetic

Support functions

Definition: support function

The support function ρ_Ω of a n-dimensional set $\Omega \in \mathbb{R}^n$ is defined as

$$\rho_{\Omega} : \mathbb{R}^{n} \to \mathbb{R} \cup \{-\infty, \infty\}$$
$$\rho_{\Omega}(l) = \sup_{x \in \Omega} l^{T} \cdot x$$

Support functions

Definition: support function

The support function ρ_Ω of a n-dimensional set $\Omega \in \mathbb{R}^n$ is defined as

$$\rho_{\Omega} : \mathbb{R}^{n} \to \mathbb{R} \cup \{-\infty, \infty\}$$
$$\rho_{\Omega}(l) = \sup_{x \in \Omega} l^{T} \cdot x$$

Properties:

- implemented as tree structure (see next slides)
- operations are cheap, reduced overhead
- scale well in higher dimensions
- well developed (see e.g. [LGG10, FKL13, FGD⁺11, LG09])

TU WIEN TECHNISC UNIVERSIT WIEN

Most commonly used operations during reachability analysis:

• Intersection: $\rho_c(l) = \min(\rho_a(l), \rho_b(l))$

Most commonly used operations during reachability analysis:

Intersection with a half-space $\mathcal{H} = c^T \cdot x \leq d$ (e.g. guards, invariants): $\rho_c(l) = \min(\rho_a(l), \mathcal{H}(l))$, where $\mathcal{H}(l) = \begin{cases} d & \text{when } l = c \\ \infty & \text{else} \end{cases}$

Most commonly used operations during reachability analysis:

• Union:
$$\rho_c(l) = \max(\rho_a(l), \rho_b(l))$$

Note: The union operation on a set of support functions returns the supporting hyperplane of the convex hull of the set of underlying sets.

Most commonly used operations during reachability analysis:

• Minkowski-sum: $\rho_c(l) = \rho_a(l) + \rho_b(l)$

Most commonly used operations during reachability analysis:

• Linear transformation: $\rho_c = \rho_a(\underbrace{A^T l}_{\mu})$

The tree structure in combination with our domain-specific knowledge allows for several optimizations:

collect sequences of linear transformations

The tree structure in combination with our domain-specific knowledge allows for several optimizations:

collect sequences of linear transformations

The tree structure in combination with our domain-specific knowledge allows for several optimizations:

- collect sequences of linear transformations
- remove intersections which have no effect

The tree structure in combination with our domain-specific knowledge allows for several optimizations:

- collect sequences of linear transformations
- remove intersections which have no effect
- reduce tree upon discrete jump (templated evaluation)

Demo

Thermostat¹

We model and analyze a thermostat according to the following specifications:

- Can either be *on* (initially) or *off*
- Temperature x changes accordingly: $\dot{x} = 50 x$ (on), $\dot{x} = 10 x$ (off)
- \blacksquare Switches from on to off when $x \in [20,25]$
- \blacksquare Switches off to on when $x \in [16, 18]$

¹https://www.digitalcity.wien/even-thermostats-have-a-heart

Applications

Extensions for reachability analysis based on HyPro:

- Syntactic decoupling subspace computations
- CEGAR-based reachability analysis

Parameters for reachability analysis

- \blacksquare Time step size δ
- State set representation
- Aggregation

...

Parameters for reachability analysis

- $\blacksquare \ {\rm Time \ step \ size \ } \delta$
- State set representation
- Aggregation

• • • •

Reachability analysis induces a search tree, however

- \blacksquare not all branches intersect with bad states \rightarrow coarse analysis
- \blacksquare avoid spurious counterexamples \rightarrow fine analysis

Parameters for reachability analysis

- Time step size δ
- State set representation
- Aggregation

• • • •

Reachability analysis induces a search tree, however

- \blacksquare not all branches intersect with bad states \rightarrow coarse analysis
- \blacksquare avoid spurious counterexamples \rightarrow fine analysis

Goal: Be as lazy as possible and as precise as necessary.

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:

- State set representation R_i
- Time step size δ_i

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:

- State set representation R_i
- Time step size δ_i

Strategy (ordered set of parameter settings):

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:

- State set representation R_i
- Time step size δ_i

Strategy (ordered set of parameter settings):

Depending on the application, order and choice of parameter settings matters!

Strategy:

А

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Strategy:

Search tree:

Extension: Parallelized search in different branches.

Example: Bouncing ball

Example: Bouncing ball

bouncing_ball₁₀

Example: Bouncing ball

Example: Bouncing ball

 $\mathsf{bouncing}_{\mathsf{b}}\mathsf{all}_{10}$

A free and open source library for hybrid systems reachability analysis

https://github.com/hypro/hypro

Bouncing ball, V-polytopes with conversion to H-polytopes for intersection, double glpk-only, T = 3, $\delta = 0.01$, 4 jumps

Bouncing ball, \mathcal{V} -polytopes with conversion to \mathcal{H} -polytopes for intersection, double glpk+SMT-RAT, T = 3, $\delta = 0.01$, 4 jumps

Rod reactor, box, double glpk-only, T = 17, $\delta = 0.01$, 2 jumps

5-D switching system, support function, double glpk-only, T=0.2, $\delta=0.001,$ 4 jumps

5-D switching system, boxes, double glpk-only, $T=0.2,\,\delta=0.001,\,4$ jumps

Filtered oscillator, support function, double glpk-only, $T=4,\,\delta=0.01,\,5$ jumps

