
HyPro: A C++ library of state set representations
for hybrid systems reachability analysis

Stefan Schupp

TU Wien, Vienna, Austria

May 11, 2022

Hybrid systems

“hybrid: [...] A thing made by combining two different elements.”
Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.

They can be found in
physical processes (bouncing ball, freezing water, . . .)
digital controllers for continuous systems (avionics, automotive,
automated plants) → cyber-physical systems

As they interact and possibly modify the surrounding environment they
are often safety critical.

Stefan Schupp

Hybrid systems

“hybrid: [...] A thing made by combining two different elements.”
Oxford dictionary

Hybrid systems are systems combining discrete and continuous behavior.
They can be found in

physical processes (bouncing ball, freezing water, . . .)
digital controllers for continuous systems (avionics, automotive,
automated plants) → cyber-physical systems

As they interact and possibly modify the surrounding environment they
are often safety critical.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Problem: In general undecidable.

Here: bounded over-approximative
reachability analysis for linear hybrid systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid systems reachability analysis

Reachability problem (for hybrid systems)
The reachability problem is the problem to decide whether a state is
reachable in a hybrid system from a set of initial states.

I

Testing

Reachability analysis

�

�

Here: bounded over-approximative reachability analysis for linear hybrid
systems.

Stefan Schupp

Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

l0
ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
ẋ = A1 · x + B1 · u

c1(x)

c01(x)

x := A01 · x

c10(x)

x := A10 · x

A finite set of locations Loc

Stefan Schupp

Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

l0
ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
ẋ = A1 · x + B1 · u

c1(x)

c01(x)

x := A01 · x

c10(x)

x := A10 · x

A vector of variables x

Stefan Schupp

Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

l0
ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
ẋ = A1 · x + B1 · u

c1(x)

c01(x)

x := A01 · x

c10(x)

x := A10 · x

Flow: Loc → PredVar∪ ˙Var

Stefan Schupp

Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

l0
ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
ẋ = A1 · x + B1 · u

c1(x)

c01(x)

x := A01 · x

c10(x)

x := A10 · x

Invariant: Loc → PredVar

Stefan Schupp

Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

l0
ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
ẋ = A1 · x + B1 · u

c1(x)

c01(x)

x := A01 · x

c10(x)

x := A10 · x

Transitions: Edge ⊆ Loc × PredVar × PredVar∪Var ′ × Loc

Stefan Schupp

Hybrid automata

Hybrid systems can be modeled by hybrid automata
Here: linear hybrid automata

l0
ẋ = A0 · x + B0 · u

c0(x)
cI(x)

l1
ẋ = A1 · x + B1 · u

c1(x)

c01(x)

x := A01 · x

c10(x)

x := A10 · x

An initial set Loc → PredVar

Stefan Schupp

Hybrid automata – example

Simplified model of a thermostat1:

x ∈ [20,21]
t = 0

on
ẋ = 0.1 · (35 − x)

ṫ = 1
x ∈ [16,25]

off
ẋ = 0.1 · (10 − x)

ṫ = 1
x ∈ [16,25]

x ≥ 21

x ≤ 18

1https://www.digitalcity.wien/even-thermostats-have-a-heart/

Stefan Schupp

https://www.digitalcity.wien/even-thermostats-have-a-heart/

Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.
Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪ Rnew;
Rnew := Reach (Rnew)\R;

}

Question: How to compute Reach for (linear) hybrid systems?
Answer: Alternatingly compute time- and jump-successor states.

Stefan Schupp

Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.
Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪ Rnew;
Rnew := Reach (Rnew)\R;

}

Question: How to compute Reach for (linear) hybrid systems?

Answer: Alternatingly compute time- and jump-successor states.

Stefan Schupp

Reachability analysis algorithm

Basic iterative reachability analysis approach

Input: Set Init of initial states.
Output: Set R of reachable states.
Algorithm:

Rnew := Init;
R := ∅;
while (Rnew 6= ∅){

R := R ∪ Rnew;
Rnew := Reach (Rnew)\R;

}

Question: How to compute Reach for (linear) hybrid systems?
Answer: Alternatingly compute time- and jump-successor states.

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

time [0,δ]

time [δ,2δ]

time [2δ,3δ]

P0

P1

P2

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

time [0,δ]

time [δ,2δ]

time [2δ,3δ]

P0

P1

P2

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

time [0,δ]

time [δ,2δ]

time [2δ,3δ]

P0

P1

P2

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax
Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

time [0,δ]

time [δ,2δ]

time [2δ,3δ]

P0

P1

P2

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Time evolution

Assume initial set V0 and flow ẋ = Ax

Over-approximate flowpipe segment for time [iδ, (i + 1)δ] by Pi

t0 δ 2δ

V0

eAδV0

cl(V0, eAδV0)

P0 = cl(V0, eAδV0 ⊕ VA)

Stefan Schupp

Linear hybrid automata: Discrete steps (jumps)

P0

P1

P2

P3

Stefan Schupp

Linear hybrid automata: Discrete steps (jumps)

P0

P1

P2

P3

Stefan Schupp

Linear hybrid automata: Discrete steps (jumps)

P0

P1

P2

P3

Stefan Schupp

Linear hybrid automata: Discrete steps (jumps)

P0

P1

P2

P3

Stefan Schupp

Linear hybrid automata: Discrete steps (jumps)

P0

P1

P2

P3

Stefan Schupp

Linear hybrid automata: Discrete steps (jumps)

P0

P1

P2

P3

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0

ẋ = x + 4y
ẏ = −4x + y

x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y

x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0

linear transformation: eδA · I

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y

x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0

union

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y

x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0

Minkowski sum

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y

x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.5 0.52 0.54 0.56 0.58 0.6 0.62

I

Ω0

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y

x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y
x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

intersection: Inv(l0) ∩ Ωi

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y
x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

linear transformation: Ωi+1 = eδA · Ωi

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y
x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

linear transformation: Ωi+1 = eδA · Ωi

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y
x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3

y := 0.9y + 0.3
x := x − 0.1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

intersection: guard ∩ Ωi

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y
x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

linear transformation: I ′ := reset(Ωi)

Stefan Schupp

Example - linear hybrid automata

x ∈ [0.5,0.6]
y ∈ [0.1,0.2]

l0
ẋ = x + 4y

ẏ = −4x + y
x ≥ 0

x ≥ 0.25 ∧ x ≤ 0.3
y := 0.9y + 0.3

x := x − 0.1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

linear transformation: Ωi+1 = eδA · Ωi

Stefan Schupp

Induced search tree

The induced search tree depends on:

The model itself
Bounds (jump depth, time horizon)
Time step size
State set representation
Aggregation settings

Depth 0

Depth 1

root

Stefan Schupp

Induced search tree

The induced search tree depends on:
The model itself
Bounds (jump depth, time horizon)

Time step size
State set representation
Aggregation settings

Depth 0

Depth 1

root

Stefan Schupp

Induced search tree

The induced search tree depends on:
The model itself
Bounds (jump depth, time horizon)
Time step size
State set representation
Aggregation settings

Depth 0

Depth 1

root

Stefan Schupp

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

−50

0

50

100

0 1 2 3 4 5 6 7 8

δ = 5

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

−4

−2

0

2

4

0 1 2 3 4 5 6 7 8

δ = 2

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8

δ = 1

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8

δ = 0.1

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8

δ = 0.01

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation

Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8

δ = 0.1, support functions

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation

Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

−100

−50

0

50

100

0 1 2 3 4 5 6 7 8

δ = 0.1, boxes

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation

Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1 1.2

δ = 0.1, boxes

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors

Aggregation
+ Only one discrete

successor
− Additional

over-approximation

Stefan Schupp

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5

δ = 0.1, support functions, no
aggregation

Analysis parameters – examples

The precision and running time depends on several parameters, e.g.,
Time step size δ

State set representation
Clustering/aggregation

Default behavior
+ No additional effort
− No control of number of

discrete successors
Aggregation

+ Only one discrete
successor

− Additional
over-approximation

Stefan Schupp

−1

−0.5

0

0.5

1

1.5

0 1 2 3 4 5

δ = 0.1, support functions,
aggregation

Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Required operations on sets:
linear transformation (time successors, reset functions)
intersection (invariants, guards, bad states)
union (first segment, clustering/aggregation)
Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.

Stefan Schupp

Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Required operations on sets:
linear transformation (time successors, reset functions)
intersection (invariants, guards, bad states)
union (first segment, clustering/aggregation)
Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.

Stefan Schupp

Sets & required set operations

Required: State set representation.
Problem: There are several ways to represent sets (see next slides).

Required operations on sets:
linear transformation (time successors, reset functions)
intersection (invariants, guards, bad states)
union (first segment, clustering/aggregation)
Minkowski sum (first segment, bloating)

Goal: Unify available state set representations with a common interface.

Stefan Schupp

HyPro2

da
ta

st
ru

ct
ur

es

linear optimization

util

RA algorithms

re
pr

es
en

ta
tio

nsBox
HPolytope
VPolytope
PPL-Polytope
Zonotope
SupportFunction

Star set
Orthogonal polyhedra
Taylor model

GeometricObject
<Interface>

H
yb

rid
au

to
m

at
on

Po
in

t
H

al
f-

sp
ac

e
Se

ar
ch

tr
ee

Converter

Parser
Plotter
Tree

plotter
Logger

Statistics

LHA I & RA

LHA II

LHA II CEGAR

Subspace analysis

Optimizer

glpk SMT-RAT z3 SoPlex

2[SÁBMK17]

Stefan Schupp

HyPro2

da
ta

st
ru

ct
ur

es

linear optimization

util

RA algorithms

re
pr

es
en

ta
tio

nsBox
HPolytope
VPolytope
PPL-Polytope
Zonotope
SupportFunction

Star set
Orthogonal polyhedra
Taylor model

GeometricObject
<Interface>

H
yb

rid
au

to
m

at
on

Po
in

t
H

al
f-

sp
ac

e
Se

ar
ch

tr
ee

Converter

Parser
Plotter
Tree

plotter
Logger

Statistics

LHA I & RA

LHA II

LHA II CEGAR

Subspace analysis

Optimizer

glpk SMT-RAT z3 SoPlex

2[SÁBMK17]

Stefan Schupp

Implemented state set representations

boxes [MKC09]

convex polytopes [Zie95]
zonotopes [Gir05]
orthogonal polyhedra [BMP99]
support functions [LGG10]
Taylor models [CÁS12]

x

y

Ix

Iy

x

y

min

max

Stefan Schupp

Implemented state set representations

boxes [MKC09]
convex polytopes [Zie95]

zonotopes [Gir05]
orthogonal polyhedra [BMP99]
support functions [LGG10]
Taylor models [CÁS12]

x

y

x

y

Stefan Schupp

Implemented state set representations

boxes [MKC09]
convex polytopes [Zie95]
zonotopes [Gir05]
orthogonal polyhedra [BMP99]

support functions [LGG10]
Taylor models [CÁS12]

x

y

c

g0

g1

x

y

Stefan Schupp

Implemented state set representations

boxes [MKC09]
convex polytopes [Zie95]
zonotopes [Gir05]
orthogonal polyhedra [BMP99]
support functions [LGG10]
Taylor models [CÁS12]

x

y

Image: Xin Chen

Stefan Schupp

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX + b
X.minkowskiSum(geometricObject Y) X ⊕ Y
X.intersectHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b}
X.satisfiesHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b} 6= ∅
X.unite(geometricObject Y) cl(X ∪ Y)

Set utility functions:
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions

Stefan Schupp

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX + b
X.minkowskiSum(geometricObject Y) X ⊕ Y
X.intersectHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b}
X.satisfiesHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b} 6= ∅
X.unite(geometricObject Y) cl(X ∪ Y)

Recap: Minkowski sum (dilation)
A ⊕ B = {x | x = a + b,a ∈ A,b ∈ B}

Set utility functions:
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions

Stefan Schupp

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX + b
X.minkowskiSum(geometricObject Y) X ⊕ Y
X.intersectHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b}
X.satisfiesHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b} 6= ∅
X.unite(geometricObject Y) cl(X ∪ Y)

Recap: Minkowski sum (dilation)
A ⊕ B = {x | x = a + b,a ∈ A,b ∈ B}

Set utility functions:
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions

Stefan Schupp

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX + b
X.minkowskiSum(geometricObject Y) X ⊕ Y
X.intersectHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b}
X.satisfiesHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b} 6= ∅
X.unite(geometricObject Y) cl(X ∪ Y)

Recap: Minkowski sum (dilation)
A ⊕ B = {x | x = a + b,a ∈ A,b ∈ B}

Set utility functions:
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions

Stefan Schupp

GeometricObjectBase interface

Set operations:
X.affineTransformation(matrix A, vector b) AX + b
X.minkowskiSum(geometricObject Y) X ⊕ Y
X.intersectHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b}
X.satisfiesHalfspaces(matrix A, vector b) X ∩ {y | Ay ≤ b} 6= ∅
X.unite(geometricObject Y) cl(X ∪ Y)

Set utility functions:
dimension()
empty()
vertices()
project(vector<dimensions> d)
contains(point p)
conversion operations
reduction functions

Stefan Schupp

Operations – complexity

Computational effort required for the most commonly used operations for
different representations:

·
⋃

· ·
⋂

· · ⊕ · A(·)
Box +
H-polytope - + - -
V-polytope + - + +
Zonotope + +
Support function + - + +

→ There is no "perfect" state set representation.

Stefan Schupp

Operations – complexity

Computational effort required for the most commonly used operations for
different representations:

·
⋃

· ·
⋂

· · ⊕ · A(·)
Box +
H-polytope - + - -
V-polytope + - + +
Zonotope + +
Support function + - + +

→ There is no "perfect" state set representation.

Stefan Schupp

Operations – complexity

Computational effort required for the most commonly used operations for
different representations:

·
⋃

· ·
⋂

· · ⊕ · A(·)
Box +
H-polytope - + - -
V-polytope + - + +
Zonotope + +
Support function + - + +

→ There is no "perfect" state set representation.

Stefan Schupp

Boxes

Boxes are one of the simplest ways to represent a set:

Definition: box [MKC09]
A box B of dimension n is defined as an ordered vector of intervals

x

y

Ix

Iy

B = (I0, . . . ,In),Ii ∈ I

Where I is the set of all real-valued intervals

Ii = {x | l ≤ x ≤ u} l,u ∈ R,

we write Ii = [l,u] ∈ I

Stefan Schupp

Boxes – operations

Intersection:

Bc = Ba ∩ Bb = {x | x ∈ Ba ∧ x ∈ Bb}

For boxes:

Bc = Ia0 ∩ Ib0 , . . . ,Ian ∩ Ibn

Stefan Schupp

Boxes – operations

Intersection:

Bc = Ba ∩ Bb = {x | x ∈ Ba ∧ x ∈ Bb}

For boxes:

Bc = Ia0 ∩ Ib0 , . . . ,Ian ∩ Ibn

Stefan Schupp

Boxes – operations

Intersection with a half-space (e.g. guards, invariants):

Recap: half-space
A half-space H ∈ Rn contains all points

H = {x | ~cT · x ≤ d, ~c ∈ Rn, d ∈ R}

Example:

H =

x

∣∣∣∣∣∣
(

1
1

)T

· x ≤ 1.5

Stefan Schupp

Excursion: Interval Arithmetic1

Binary operations (general case):
X � Y = {x � y | x ∈ X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2]

= [3,7]
Subtraction : [4,5] − [−1,2] = [2,6]
Multiplication: [4,5] · [−1,2] = [−5,10]
Division: [4,5] ÷ [2,3] = [4

3 , 5
2]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.
Example: [1,1] ÷ [−3,2]

0

1See e.g., [MKC09] for details.

Stefan Schupp

Excursion: Interval Arithmetic1

Binary operations (general case):
X � Y = {x � y | x ∈ X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2] = [3,7]
Subtraction : [4,5] − [−1,2]

= [2,6]
Multiplication: [4,5] · [−1,2] = [−5,10]
Division: [4,5] ÷ [2,3] = [4

3 , 5
2]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.
Example: [1,1] ÷ [−3,2]

0

1See e.g., [MKC09] for details.

Stefan Schupp

Excursion: Interval Arithmetic1

Binary operations (general case):
X � Y = {x � y | x ∈ X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2] = [3,7]
Subtraction : [4,5] − [−1,2] = [2,6]
Multiplication: [4,5] · [−1,2]

= [−5,10]
Division: [4,5] ÷ [2,3] = [4

3 , 5
2]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.
Example: [1,1] ÷ [−3,2]

0

1See e.g., [MKC09] for details.

Stefan Schupp

Excursion: Interval Arithmetic1

Binary operations (general case):
X � Y = {x � y | x ∈ X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2] = [3,7]
Subtraction : [4,5] − [−1,2] = [2,6]
Multiplication: [4,5] · [−1,2] = [−5,10]
Division: [4,5] ÷ [2,3]

= [4
3 , 5

2]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.
Example: [1,1] ÷ [−3,2]

0

1See e.g., [MKC09] for details.

Stefan Schupp

Excursion: Interval Arithmetic1

Binary operations (general case):
X � Y = {x � y | x ∈ X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2] = [3,7]
Subtraction : [4,5] − [−1,2] = [2,6]
Multiplication: [4,5] · [−1,2] = [−5,10]
Division: [4,5] ÷ [2,3] = [4

3 , 5
2]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.
Example: [1,1] ÷ [−3,2]

0

1See e.g., [MKC09] for details.

Stefan Schupp

Excursion: Interval Arithmetic1

Binary operations (general case):
X � Y = {x � y | x ∈ X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2] = [3,7]
Subtraction : [4,5] − [−1,2] = [2,6]
Multiplication: [4,5] · [−1,2] = [−5,10]
Division: [4,5] ÷ [2,3] = [4

3 , 5
2]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.

Example: [1,1] ÷ [−3,2]

0

1See e.g., [MKC09] for details.

Stefan Schupp

Excursion: Interval Arithmetic1

Binary operations (general case):
X � Y = {x � y | x ∈ X,y ∈ Y },X,Y ∈ I

Example (Basic arithmetic operations)
Addition: [4,5] + [−1,2] = [3,7]
Subtraction : [4,5] − [−1,2] = [2,6]
Multiplication: [4,5] · [−1,2] = [−5,10]
Division: [4,5] ÷ [2,3] = [4

3 , 5
2]

Corner case: X ÷ Y with X,Y ∈ I,0 ∈ Y → may cause a split.
Example: [1,1] ÷ [−3,2]

0

1See e.g., [MKC09] for details.

Stefan Schupp

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
Often used in SMT as a theory solver
In general incomplete
Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals Ix,Iy ∈ I:

Sat(x + 2 · y ≤ 17) = Ix + 2 · Iy ∩ (−∞,17]

Approach: Given c :
∑

ai · xi ∼ d with xi interval-valued
For each variable xi with interval [a,b]:

Solve c for xi (symbolically) to get c′

Substitute intervals for all xj ,j 6= i in c′, solve to get interval [a′,b′]
Update interval for xi ∈ [a,b] ∩ [a′,b′]

If one interval becomes empty, the constraint is not satisfiable.

Stefan Schupp

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
Often used in SMT as a theory solver
In general incomplete
Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals Ix,Iy ∈ I:

Sat(x + 2 · y ≤ 17) = Ix + 2 · Iy ∩ (−∞,17]

Approach: Given c :
∑

ai · xi ∼ d with xi interval-valued
For each variable xi with interval [a,b]:

Solve c for xi (symbolically) to get c′

Substitute intervals for all xj ,j 6= i in c′, solve to get interval [a′,b′]
Update interval for xi ∈ [a,b] ∩ [a′,b′]

If one interval becomes empty, the constraint is not satisfiable.

Stefan Schupp

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
Often used in SMT as a theory solver
In general incomplete
Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals Ix,Iy ∈ I:

Sat(x + 2 · y ≤ 17) = Ix + 2 · Iy ∩ (−∞,17]

Approach: Given c :
∑

ai · xi ∼ d with xi interval-valued
For each variable xi with interval [a,b]:

Solve c for xi (symbolically) to get c′

Substitute intervals for all xj ,j 6= i in c′, solve to get interval [a′,b′]
Update interval for xi ∈ [a,b] ∩ [a′,b′]

If one interval becomes empty, the constraint is not satisfiable.

Stefan Schupp

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
Often used in SMT as a theory solver
In general incomplete
Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals Ix,Iy ∈ I:

Sat(x + 2 · y ≤ 17) = Ix + 2 · Iy ∩ (−∞,17]

Approach: Given c :
∑

ai · xi ∼ d with xi interval-valued
For each variable xi with interval [a,b]:

Solve c for xi (symbolically) to get c′

Substitute intervals for all xj ,j 6= i in c′, solve to get interval [a′,b′]

Update interval for xi ∈ [a,b] ∩ [a′,b′]

If one interval becomes empty, the constraint is not satisfiable.

Stefan Schupp

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
Often used in SMT as a theory solver
In general incomplete
Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals Ix,Iy ∈ I:

Sat(x + 2 · y ≤ 17) = Ix + 2 · Iy ∩ (−∞,17]

Approach: Given c :
∑

ai · xi ∼ d with xi interval-valued
For each variable xi with interval [a,b]:

Solve c for xi (symbolically) to get c′

Substitute intervals for all xj ,j 6= i in c′, solve to get interval [a′,b′]
Update interval for xi ∈ [a,b] ∩ [a′,b′]

If one interval becomes empty, the constraint is not satisfiable.

Stefan Schupp

ICP-style Half-space Intersection

Interval constraint propagation (ICP):
Often used in SMT as a theory solver
In general incomplete
Exploits interval arithmetic

Example: Encoding of inequalities for interval-valued variables x,y with
intervals Ix,Iy ∈ I:

Sat(x + 2 · y ≤ 17) = Ix + 2 · Iy ∩ (−∞,17]

Approach: Given c :
∑

ai · xi ∼ d with xi interval-valued
For each variable xi with interval [a,b]:

Solve c for xi (symbolically) to get c′

Substitute intervals for all xj ,j 6= i in c′, solve to get interval [a′,b′]
Update interval for xi ∈ [a,b] ∩ [a′,b′]

If one interval becomes empty, the constraint is not satisfiable.

Stefan Schupp

ICP-style Half-space Intersection: Example

Example
Assume B = [0,3] × [0,2] and a constraint c : x + 2 · y ≤ 2.

Contraction for x:

x ≤ 2 − 2 · y ⇔ x ∈ [0,3]∩ (−∞,2]− [0,4] → x ∈ [0,2]

Contraction for y:

y ≤ (1 − x) ÷ 2 ⇔ y ∈ [0,2] ∩ ((−∞,2] − [0,2]) ÷ 2 → y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices2.

2See [Sch19] for a proof.

Stefan Schupp

ICP-style Half-space Intersection: Example

Example
Assume B = [0,3] × [0,2] and a constraint c : x + 2 · y ≤ 2.
Contraction for x:

x ≤ 2 − 2 · y ⇔ x ∈ [0,3]∩ (−∞,2]− [0,4] → x ∈ [0,2]

Contraction for y:

y ≤ (1 − x) ÷ 2 ⇔ y ∈ [0,2] ∩ ((−∞,2] − [0,2]) ÷ 2 → y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices2.

2See [Sch19] for a proof.

Stefan Schupp

ICP-style Half-space Intersection: Example

Example
Assume B = [0,3] × [0,2] and a constraint c : x + 2 · y ≤ 2.
Contraction for x: x ≤ 2 − 2 · y ⇔ x ∈ [0,3]∩ (−∞,2]− [0,4] → x ∈ [0,2]

Contraction for y:

y ≤ (1 − x) ÷ 2 ⇔ y ∈ [0,2] ∩ ((−∞,2] − [0,2]) ÷ 2 → y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices2.

2See [Sch19] for a proof.

Stefan Schupp

ICP-style Half-space Intersection: Example

Example
Assume B = [0,3] × [0,2] and a constraint c : x + 2 · y ≤ 2.
Contraction for x: x ≤ 2 − 2 · y ⇔ x ∈ [0,3]∩ (−∞,2]− [0,4] → x ∈ [0,2]
Contraction for y:

y ≤ (1 − x) ÷ 2 ⇔ y ∈ [0,2] ∩ ((−∞,2] − [0,2]) ÷ 2 → y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices2.

2See [Sch19] for a proof.

Stefan Schupp

ICP-style Half-space Intersection: Example

Example
Assume B = [0,3] × [0,2] and a constraint c : x + 2 · y ≤ 2.
Contraction for x: x ≤ 2 − 2 · y ⇔ x ∈ [0,3]∩ (−∞,2]− [0,4] → x ∈ [0,2]
Contraction for y:
y ≤ (1 − x) ÷ 2 ⇔ y ∈ [0,2] ∩ ((−∞,2] − [0,2]) ÷ 2 → y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices2.

2See [Sch19] for a proof.

Stefan Schupp

ICP-style Half-space Intersection: Example

Example
Assume B = [0,3] × [0,2] and a constraint c : x + 2 · y ≤ 2.
Contraction for x: x ≤ 2 − 2 · y ⇔ x ∈ [0,3]∩ (−∞,2]− [0,4] → x ∈ [0,2]
Contraction for y:
y ≤ (1 − x) ÷ 2 ⇔ y ∈ [0,2] ∩ ((−∞,2] − [0,2]) ÷ 2 → y ∈ [0,1]

x

y

Note: termination not guaranteed due to new intervals.
But: For single linear constraints, a single iteration suffices2.

2See [Sch19] for a proof.

Stefan Schupp

Boxes – operations

Union:
Bc = Ba ∪ Bb = {x | x ∈ Ba ∨ x ∈ Bb}

Note: The union of two convex sets is not necessarily convex → we use
the closure (cl) of the union.

Bc = cl(Ia0 ∪ Ib0), . . . ,cl(Ian ∪ Ibn)

= [min(Ia0l
,Ib0l

),max(Ia0u
,Ib0u

)], . . . , [min(Ianl
,Ibnl

),max(Ianu
,Ibnu

)]

Ba

Bb

Ia0 Ib0

Ia1

Ib1

Ba

Bb

Ia0 Ib0

Ia1

Ib1

Stefan Schupp

Boxes – operations

Union:
Bc = Ba ∪ Bb = {x | x ∈ Ba ∨ x ∈ Bb}

Note: The union of two convex sets is not necessarily convex → we use
the closure (cl) of the union.
Bc = cl(Ia0 ∪ Ib0), . . . ,cl(Ian ∪ Ibn)

= [min(Ia0l
,Ib0l

),max(Ia0u
,Ib0u

)], . . . , [min(Ianl
,Ibnl

),max(Ianu
,Ibnu

)]

Ba

Bb

Ia0 Ib0

Ia1

Ib1

Ba

Bb

Ia0 Ib0

Ia1

Ib1

Stefan Schupp

Boxes – operations

Minkowski-sum:

Bc = Ba ⊕ Bb = {x | x = xa + xb,xa ∈ Ba,xb ∈ Bb}

Note: Minkowski’s sum can be applied point-wise on convex sets.

Bc = Ia0 ⊕ Ib0 , . . . ,Ian ⊕ Ibn

= [Ia0l
+ Ib0l

,Ia0u
+ Ib0u

], . . . , [Ianl
+ Ibnl

,Ianu
+ Ibnu

]

Stefan Schupp

Boxes – operations

Minkowski-sum:

Bc = Ba ⊕ Bb = {x | x = xa + xb,xa ∈ Ba,xb ∈ Bb}

Note: Minkowski’s sum can be applied point-wise on convex sets.

Bc = Ia0 ⊕ Ib0 , . . . ,Ian ⊕ Ibn

= [Ia0l
+ Ib0l

,Ia0u
+ Ib0u

], . . . , [Ianl
+ Ibnl

,Ianu
+ Ibnu

]

Stefan Schupp

Boxes – operations

Linear transformation:

Bc = A · Ba = {x | x = A · xa,xa ∈ Ba},A ∈ Rn×n

Approaches:
Naive (conversion): apply A on all vertices, re-convert to box
Utilize interval arithmetic

·A

Stefan Schupp

Boxes – operations

Linear transformation:

Bc = A · Ba = {x | x = A · xa,xa ∈ Ba},A ∈ Rn×n

Approaches:
Naive (conversion): apply A on all vertices, re-convert to box
Utilize interval arithmetic

·A

Stefan Schupp

Support functions

Definition: support function

x

y

The support function ρΩ of a n-dimensional set
Ω ∈ Rn is defined as

ρΩ : Rn → R ∪ {−∞,∞}
ρΩ(l) = sup

x∈Ω
lT · x

Properties:
implemented as tree structure (see next slides)
operations are cheap, reduced overhead
scale well in higher dimensions
well developed (see e.g. [LGG10, FKL13, FGD+11, LG09])

Stefan Schupp

Support functions

Definition: support function

x

y

The support function ρΩ of a n-dimensional set
Ω ∈ Rn is defined as

ρΩ : Rn → R ∪ {−∞,∞}
ρΩ(l) = sup

x∈Ω
lT · x

Properties:
implemented as tree structure (see next slides)
operations are cheap, reduced overhead
scale well in higher dimensions
well developed (see e.g. [LGG10, FKL13, FGD+11, LG09])

Stefan Schupp

Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Intersection: ρc(l) = min(ρa(l),ρb(l))

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
min(ρa(l),ρb(l))

l

l
l

Stefan Schupp

Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Intersection with a half-space H = cT · x ≤ d (e.g. guards,
invariants): ρc(l) = min(ρa(l),H(l)),

where H(l) =

{
d when l = c

∞ else

H

l

c

Stefan Schupp

Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Union: ρc(l) = max(ρa(l),ρb(l))

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
max(ρa(l),ρb(l))

Note: The union operation on a set of support functions returns the
supporting hyperplane of the convex hull of the set of underlying
sets.

Stefan Schupp

Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Minkowski-sum: ρc(l) = ρa(l) + ρb(l)

ρc

ρa ρb

l

ρa(l)
l

ρb(l)

l
ρa(l) + ρb(l)

Stefan Schupp

Support functions – operations [LGG10]

Most commonly used operations during reachability analysis:
Linear transformation: ρc = ρa(A

T l︸︷︷︸
l′

)

ρc

ρa

AT l ρa(AT l)

l
ρa(AT l)

·A

l

l′

Stefan Schupp

Support functions – optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

collect sequences of linear transformations

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

ll5 = AT ll4 = AT l5l3 = AT l4l2 = AT l3l1 = AT l2

ρ0(l1) ρ1(l2) ρ2(l3) ρ3(l4) ρ4(l5) ρ5(l)

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

·A2

·A4

ll5 = AT l
l4 = (A4)T l5

ρ0(l4)
ρ4(l5) ρ5(l)

remove intersections which have no effect

reduce tree upon discrete jump (templated evaluation)

Stefan Schupp

Support functions – optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

collect sequences of linear transformations

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

ll5 = AT ll4 = AT l5l3 = AT l4l2 = AT l3l1 = AT l2

ρ0(l1) ρ1(l2) ρ2(l3) ρ3(l4) ρ4(l5) ρ5(l)

ρ0 ρ1 ρ2 ρ3 ρ4 ρ5

·A2

·A4

ll5 = AT l
l4 = (A4)T l5

ρ0(l4)
ρ4(l5) ρ5(l)

remove intersections which have no effect
reduce tree upon discrete jump (templated evaluation)

Stefan Schupp

Support functions – optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

collect sequences of linear transformations
remove intersections which have no effect

reduce tree upon discrete jump (templated evaluation)

Stefan Schupp

Support functions – optimization

The tree structure in combination with our domain-specific knowledge
allows for several optimizations:

collect sequences of linear transformations
remove intersections which have no effect
reduce tree upon discrete jump (templated evaluation)

Stefan Schupp

Demo

Stefan Schupp

Thermostat1

We model and analyze a thermostat according to the following
specifications:

Can either be on (initially) or off
Temperature x changes accordingly: ẋ = 50 − x (on), ẋ = 10 − x
(off)
Switches from on to off when x ∈ [20,25]
Switches off to on when x ∈ [16,18]

1https://www.digitalcity.wien/even-thermostats-have-a-heart

Stefan Schupp

Applications

Extensions for reachability analysis based on HyPro:
Syntactic decoupling - subspace computations
CEGAR-based reachability analysis

Stefan Schupp

CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis
Time step size δ

State set representation
Aggregation
. . .

Reachability analysis induces a search tree, however
not all branches intersect with bad states → coarse analysis
avoid spurious counterexamples → fine analysis

Goal: Be as lazy as possible and as precise as necessary.

Stefan Schupp

CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis
Time step size δ

State set representation
Aggregation
. . .

Reachability analysis induces a search tree, however
not all branches intersect with bad states → coarse analysis
avoid spurious counterexamples → fine analysis

Goal: Be as lazy as possible and as precise as necessary.

Stefan Schupp

CEGAR-based reachability analysis and parallelization

Parameters for reachability analysis
Time step size δ

State set representation
Aggregation
. . .

Reachability analysis induces a search tree, however
not all branches intersect with bad states → coarse analysis
avoid spurious counterexamples → fine analysis

Goal: Be as lazy as possible and as precise as necessary.

Stefan Schupp

CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
State set representation Ri

Time step size δi

Strategy (ordered set of parameter settings):

R0,
δ0

start
R1,
δ1

R2,
δ2

Depending on the application, order and choice of parameter settings
matters!

Stefan Schupp

CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
State set representation Ri

Time step size δi

Strategy (ordered set of parameter settings):

R0,
δ0

start
R1,
δ1

R2,
δ2

Depending on the application, order and choice of parameter settings
matters!

Stefan Schupp

CEGAR-based reachability analysis and parallelization

Goal: Be as lazy as possible and as precise as necessary.

A parameter setting collects a full set of relevant parameters, i.e.:
State set representation Ri

Time step size δi

Strategy (ordered set of parameter settings):

R0,
δ0

start
R1,
δ1

R2,
δ2

Depending on the application, order and choice of parameter settings
matters!

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

E F

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

E F

G

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

E F

G

X

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

E F

G

X

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

E F

XG

X

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

E F

XG

X

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

E F

XG

X

Extension: Parallelized search in different branches.

Stefan Schupp

CEGAR-based reachability analysis - Example

Strategy:
S1: box,
δ = 0.1

S2: support f.,
δ = 0.01

S3: polytope,
δ = 0.01

Search tree:
A

B C

D

X

E F

XG

X
Extension: Parallelized search in different branches.

Stefan Schupp

Example: Bouncing ball
@0x22bbb20

@0x22bd670

0 1

 [0, 0]
[0, 0]

@0x7fa37400ee10

0 1

 [1.42, 1.45]
[1.426, 1.444]

@0x7fa374031bb0

0

 [2.136, 2.17]

@0x7fa3740179c0

0

 [1.56, 1.67]

@0x7fa3740384d0

0

 [1.09, 1.34]

Stefan Schupp

Example: Bouncing ball

 0

 2

 4

 6

 8

 10

-15 -10 -5 0 5 10

bouncingball10

Stefan Schupp

Example: Bouncing ball
@0x18d7b20

@0x18d9670

0 1 2

 [0, 0]
[0, 0]
[0, 0]

@0x7f4c3400ee10

0 1 2

 [1.42, 1.45]
[1.42, 1.43]

[1.426, 1.444]

@0x7f4c34014b30

 D 1 D

]-INF, INF[
[1.43, 1.44]
]-INF, INF[

@0x7f4c340150a0

 D 1 D

]-INF, INF[
[1.44, 1.45]
]-INF, INF[

@0x7f4c3402bc60

0

 [2.13, 2.14]

@0x7f4c340dc150

0

 [2.12, 2.13]

@0x7f4c340d2d30

0

 [2.14, 2.15]

@0x7f4c340b6220

0

 [2.15, 2.16]

@0x7f4c3414d650

0

 [1.57, 1.63]

@0x7f4c34158810

0

 [1.13, 1.27]

@0x7f4c3412ed50

0

 [1.56, 1.61]

@0x7f4c3413a7f0

0

 [1.13, 1.25]

@0x7f4c34068330

0

 [1.59, 1.64]

@0x7f4c3411c6e0

0

 [1.15, 1.27]

@0x7f4c34039080

0

 [1.6, 1.66]

@0x7f4c34056050

0

 [1.15, 1.29]

@0x7f4c3402cdb0

0

 [2.13, 2.14]

@0x7f4c3402d760

0

 [2.14, 2.15]

@0x7f4c3402de20

0

 [2.15, 2.16]

@0x7f4c3402e520

0

 [2.16, 2.17]

@0x7f4c340c9680

0

 [1.56, 1.62]

@0x7f4c340d4b00

0

 [1.12, 1.26]

@0x7f4c340abae0

0

 [1.57, 1.63]

@0x7f4c340b7c20

0

 [1.13, 1.27]

@0x7f4c3408e190

0

 [1.59, 1.65]

@0x7f4c34099be0

0

 [1.15, 1.29]

@0x7f4c340394c0

0

 [1.6, 1.66]

@0x7f4c3407bd50

0

 [1.15, 1.29]

Stefan Schupp

Example: Bouncing ball

 0

 2

 4

 6

 8

 10

-15 -10 -5 0 5 10

bouncingball10

Stefan Schupp

A free and open source library for hybrid systems reachability analysis

https://github.com/hypro/hypro

https://github.com/hypro/hypro

Examples

 0

 2

 4

 6

 8

 10

-15 -10 -5 0 5 10

Bouncing ball, V-polytopes with conversion to H-polytopes for intersection,
double glpk-only, T = 3, δ = 0.01, 4 jumps

Stefan Schupp

Examples

 0

 2

 4

 6

 8

 10

-15 -10 -5 0 5 10

Bouncing ball, V-polytopes with conversion to H-polytopes for intersection,
double glpk+SMT-RAT, T = 3, δ = 0.01, 4 jumps

Stefan Schupp

Examples

 0

 10

 20

 30

 40

 50

 60

 510 515 520 525 530 535 540 545 550

Rod reactor, box, double glpk-only, T = 17, δ = 0.01, 2 jumps

Stefan Schupp

Examples

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-1 0 1 2 3 4

5-D switching system, support function, double glpk-only, T = 0.2,
δ = 0.001, 4 jumps

Stefan Schupp

Examples

-2

 0

 2

 4

 6

 8

-10 -8 -6 -4 -2 0 2 4

5-D switching system, boxes, double glpk-only, T = 0.2, δ = 0.001, 4
jumps

Stefan Schupp

Examples

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Filtered oscillator, support function, double glpk-only, T = 4, δ = 0.01, 5
jumps

Stefan Schupp

