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Objectives

®Understand how the differential equations of
mass and momentum conservation are derived.

@ Calculate the stream function and pressure field,
and plot streamlines for a known velocity field.

® Obtain analytical solutions of the equations of
motion for simple flows.



Introduction

® Control volume (CV) versions of the laws of conservation of mass and
energy

© CV version of the conservation of momentum

OCYV, or integral, forms of equations are useful for determining
overall effects

©® However, we cannot obtain detailed knowledge about the flow
field inside the CV = motivation for differential analysis

© differential equations of fluid motion to any and every point
in the flow field over a region called the flow domain
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Introduction

@Example: incompressible Navier-Stokes equations

—

DV N
—_VP+ps+ uVy
P pg+ U

V-V =0
®We will learn:

@ Physical meaning of each term
® How to derive

® How to solve



Introduction

@®For example, how to solve!?

Step Analytical Fluid Dynamics Computational Fluid Dynamics

I Setup Problem and geometry, identify all dimensions and parameters

List all assumptions, approximations, simplifications, boundary

2 conditions
3 Simplify PDE’s Build grid / discretize PDFE’s
4 Integrate equations

Solve algebraic system of

5 Apply I.Cs and B.C's to solve for | equations including I.C’s and B.C’s
constants of integration

6 Verify and plot results Verify and plot results




Conservation of Mass

®Recall CV form from Reynolds Transport
Theorem (RTT)

O—LvapdV+Lsp(V-ﬁ> dA

OWe'll examine two methods to derive
differential form of conservation of mass

® Divergence (Gauss’s) Theorem

® Differential CV and Taylor series expansions



Conservation of Mass - Divergence Theorem

@Divergence theorem allows us to transform a
volume integral of the divergence of a vector
into an area integral over the surface that
defines the volume.

/v-é’dvz G- -ndA
)% A



Conservation of Mass - Divergence Theorem

@Rewrite conservation of mass

/8pdv+]{ )dA:O

®Using divergence theorem, replace area integral with
volume integral and collect terms

%, - 0 =
/ ’OdV—i—/V-deV:O —> /v[a—iJrV-(pV)] dV =0
@ Integral holds for ANY CV, therefore:

%—FV (V):o




Conservation of Mass -
Differential CV and Taylor series

«——>

D First, define an infinitesimal
control volume dx - dy - dz
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® Next, we approximate the '

mass flow rate into or out of
each of the 6 faces using | 7 1 _____
Taylor series expansions A g s

around the center point, e.g,, .

at the right face

dx

Ilgnore terms higher than order dx
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Conservation of Mass -
Differential CV and Taylor series
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Conservation of Mass -
Differential CV and Taylor series

PNow, sum up the mass flow rates into and out of the 6
faces of the CV

Net mass flow rate into CV:

. 0 (pu) dz ~ 0(pv) dy ~ 0(pw) dz
ZmN (pu o 2) dydz—l—(pv 9y 2 dr dz + | pw Y dx dy

Net mass flow rate out of CV:

. 0 (pu) dz 0 (pv) dy 0 (pw) dx
Zm~<pu—|— o 2>dydz—|-<pv—|— 9y 2 drdz + | pw + 97 2 dx dy

DPlug into integral conservation of mass equation

. 8t dV Zm Zm

out



Conservation of Mass -
Differential CV and Taylor series

@ After substitution,

ap d(pu) d(pv) d(pw)
—dxdydz = —dx dy dz —dx dy dz — dx dvy dz
ol 0x dy 0Z

®Dividing through by volume dxdydz

dp dlpu) d(pv) d(pw) 0
! ! ! — L
ol 0X 0y 027

Or, if we apply the definition of the divergence of a vector

70 ()




Conservation of Mass - Alternative form

@Use product rule on divergence term
et — AL
. : N

| -
= FV - Vp+pV -V =0
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Conservation of Mass - Special Cases

®Steady compressible flow

Cartesian

Cylindrical

A

1

r

2.9 ()~
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Conservation of Mass - Special Cases

@Incompressible flow

@ — () and p = constant
ot
V-V =0
du Jdv  ow ,f
Cartesian - f - f - = ()
oxX Y 07
19(rU,) | 10(Up) , 0(U.)

Cylindrical |

r Or  r 00 0z




Conservation of Mass

@In general, continuity equation cannot be used
by itself to solve for flow field, however it can be
used to

® Determine if velocity field is incompressible

® Find missing velocity component



Finding a Missing Velocity Component

©® Two velocity components of a steady, incompressible, three-
dimensional flow field are known, namely, u = ax2 + by2 + cz2
and w = axz + byz?, where a, b, and c are constants.The y
velocity component is missing. Generate an expression for v as
a function of x,y,and z.

S O I U t| on.

Condition for incompressibility:

ov ou  ow ov
— = = - —  — = —3ax — 2byz
dy ox  0Z dy

2ax ax + 2byz

@ Therefore,
v = —3axy — by“z + f(x,2)



2D Incompressible Vortical Flow

® Consider a two-dimensional, incompressible flow in cylindrical
coordinates; the tangential velocity component is ug = K/r,

where K is a constant. This represents a class of vortical flows.
Generate an expression for the other velocity component, u,.

®Solution: The incompressible continuity equation for this two
dimensional case simplifies to

| d(ru,) | duy u,
- F—— +

— —
r (:)’ 2 (')9 )7 a1l (')(')
N —
0(2-D)
a(ru,) 5 J(0, 1)
= () — i, :f((') ) = Il,. —

dr J



2D Incompressible Vortical Flow

N
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A spiraling line vortex/sink flow Line Vortex



The Stream Function

DConsider the continuity equation for an incompressible
2D flow

ou | ov
|

0Xx A)

DSubstituting the clever transformation

_ oY 0y

{

Oy oz

U

82¢ 82¢ — 0 This is true for any smooth
8.738:1} 8:(/833 — function P(x,y)




The Stream Function

®Why do this!?

® Single variable Y replaces (u,v). Once Y is known,
(u,v) can be computed.

® Physical significance
@ Curves of constant P are streamlines of the flow

® Difference in ) between streamlines is equal to volume
flow rate between streamlines

® The value of P increases to the left of the direction of
flow in the xy-plane, “left-side convention.”



The Stream Function - Physical Significance

Recall that along a
streamline

d_y_ > —vdxr +udy =0

| ()
L dr
Ty_ftreamlines @

xPoint (x+dx,y+dy) R 8_¢ dm | 8¢
ox - Oy

dip = 0

dy =0

Streamline

y Point (x, y) . Change in y along
L, streamline is zero




The Stream Function - Physical Significance

Difference in P between
streamlines is equal to
volume flow rate between
streamlines

Streamline 2

VB= VA

A VA:VB:¢2_¢1

%

=1, |

Streamline 1 X



Stream Function in Cylindrical Coordinates

® Incompressible, planar stream
function in cylindrical

coordinates:
| dis dis
U, =———- and Uy = ——
I do J1
@For incompressible
axisymmetric flow, the
continuity equation is
[ d(ru,) d(u,)
- F—— =0
rooor dZ
| ds
= o, = —— and

I . -
I' 07
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Stream Function in Cylindrical Coordinates

® Consider a line vortex,
defined as steady, planar,
incompressible flow in which
the velocity components are
u, = 0 and ug = K/r, where K

is a constant. Derive an
expression for the stream
function Y (r, 0), and prove
that the streamlines are
circles.

Line Vortex



Stream Function in Cylindrical Coordinates

®Solution:
]_
oAl K
—_— _uO e —
ar : 0.5 —
Y= —Klnr + f(0) i
oy 1 y 0
u,—rag—rf.w) :
(0) =0 _ 05 -
f) =C o
= Y=—Klnr+C
Equation for streamlines: - :
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Conservation of Linear Momentum

®Recall CV form

.................................................................................................

\ R e A Y e
o
Body Surface
Force Force
g; = stress tensor

®Using the divergence theorem to convert area integrals



Conservation of Linear Momentum

OSubstituting volume integrals gives,

/CV :%( ‘7)+V-(p1717)_p§’_v,0ij- dV =0

®Recognizing that this holds for any CV, the integral
may be dropped

C(o7) + V- (pVV) = pg+V -

This is Cauchy’s Equation

That can also be derived using infinitesimal CV and Newton’s 2nd Law



Conservation of Linear Momentum

®Alternate form of the Cauchy Equation can be derived
by introducing

0 (pV) B oV - dp (Chain Rule)
=p -V —
ot ot ot

v-(pf/'f/’) :Vv-(px?)+p(x7-v)x7

Olnserting these into Cauchy Equation and rearranging
gives

p—%‘j | (VV)V— =pg+V -0y

DV
E:PQ‘FV‘UU



Conservation of Linear Momentum

®Unfortunately, this equation is not very useful
® 10 unknowns
® Stress tensor, 0, : 6 independent components
® Density p
® Velocity, V : 3 independent components
@ 4 equations (continuity + momentum)

® 6 more equations required to close problem!



Stress Tensor

@®The stress (force per unit area) at a point in a fluid needs nine components to be
completely specified, since each component of the stress must be defined not only by the
direction in which it acts but also the orientation of the surface upon which it is acting. The
first index i specifies the direction in which the stress component acts, and the second
index | identifies the orientation of the surface upon which it is acting. Therefore, the ith
component of the force acting on a surface whose outward normal points in the jth

direction is Gj
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Stress Tensor

@For a fluid at rest, according to Pascal’s law, regardless of the
orientation the stress reduces to:

| B
Ox Oy Oy —P 0 0 Z 3 g
_ _ . E—
o;,=|0oy o, o, |=] 0 P 0 o | e
y :
. S
Ox Oz O 0 0 P / : | %

@®Hydrostatic pressure is the same as the thermodynamic
pressure from study of thermodynamics. P is related to
temperature and density through some type of equation of
state (e.g., the ideal gas law).

@This further complicates a compressible fluid flow analysis
because we introduce yet another unknown, namely,
temperature T.

@®This new unknown requires another equation—the
differential form of the energy equation.



Stress Tensor

OFirst step is to separate G into pressure and

ii

VISCOUS stresses
(

XX Xy Xz
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Yy
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zzZ

\

®Situation not yet improved
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T T T
yXx Yy Yz
\ sz sz TZZ )
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Viscous (Deviatoric)
Stress Tensor

® 6 unknowns in 6; = 6 unknowns in T;+ 1 in p, which

means that we’ve added 1!



Constitutive equation - Newtonian

~ Bingham
plastic
(toothpaste)

" Shear stress

Shear

thinning

Yield (paint)

Newtonian

Shear

thickening
(quicksand)

Shear strain rate

®Reduction in the number
of variables is achieved by
relating shear stress to
strain-rate tensor.

®For Newtonian fluid with
constant properties

Tij — 2#62'3'
Newtonian closure is
analogous

Newtonian fluid includes most common : ,
to Hooke’s Law for elastic

fluids: air, other gases, water, gasoline

solids



Stresses to Strains to Velocities

OSubstituting Newtonian closure into stress
tensor gives

c,=—Po +2ue,

®Using the definition of g;

p o o\ [ 2% (%8 +9Y) n(%
o= 0 —P 0]F N(%‘; | %Z) 215y “(%_‘;Jr
_ OW | oU oW | BV
0 0 P \'u(&z | 8z) /”L(c'?y | 82:) 2'“




Navier-Stokes Equation

@ Substituting o into Cauchy’s equation gives the
Navier-Stokes equation(s):
DV B,
Py = ~VP+ pg+ uvVwy

Incompressible NSE
written in vector

VV:O form

® With Continuity Equation, this results in a closed system
of equations!

® 4 equations (continuity and momentum equations)
@ 4 unknowns (U,V,W, P)



Navier-Stokes Equation

@In addition to vector form, incompressible N-S
equation can be written in several other forms:

® Cartesian coordinates
® Cylindrical coordinates

® Tensor notation



Navier-Stokes Equation - Cartesian

ou oV oW
dxr Oy 0Oz

Continuity =0

X-momentum
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(8U oU oU 8U) oOP (82(] 0°U 32U)
+U——+ PYzx

ot ox oy 9z - Oz T
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Navier-Stokes Equation - Tensor and Vector

Tensor and Vector notation offer a more compact form of the equations.

Continuity
Tensor notation Vector notation
oU; -
=0 V- V=0

8.’137; N

Conservation of Momentum

Tensor notation Vector notation
Ui | ;00) = 0P s+ 2Y DV Vp+pg+uvy
P\ 0t " 710x;) ~ oz T\ 00, Py =TV PETH

Repeated indices are summed over |
(X] =X, X2 =Y, X3 =2, UI: U, UZ:‘/,U_?:W)



