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Objectives

Understand how the differential equations of 
mass and momentum conservation are derived.

Calculate the stream function and pressure field, 
and plot streamlines for a known velocity field.

Obtain analytical solutions of the equations of 
motion for simple flows.
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Introduction
Recall

Control volume (CV) versions of the laws of conservation of mass and 
energy
CV version of the conservation of momentum

CV, or integral, forms of equations are useful for determining 
overall effects
However, we cannot obtain detailed knowledge about the flow 
field inside the CV ⇒ motivation for differential analysis

differential equations of fluid motion to any and every point 
in the flow field over a region called the flow domain 

Conservation of mass for a CV:

(9–1)

Recall that Eq. 9–1 is valid for both fixed and moving control volumes, pro-
vided that the velocity vector is the absolute velocity (as seen by a fixed
observer). When there are well-defined inlets and outlets, Eq. 9–1 can be
rewritten as

(9–2)

In words, the net rate of change of mass within the control volume is equal
to the rate at which mass flows into the control volume minus the rate at
which mass flows out of the control volume. Equation 9–2 applies to any
control volume, regardless of its size. To generate a differential equation for
conservation of mass, we imagine the control volume shrinking to infinites-
imal size, with dimensions dx, dy, and dz (Fig. 9–2). In the limit, the entire
control volume shrinks to a point in the flow.

Derivation Using the Divergence Theorem
The quickest and most straightforward way to derive the differential form of
conservation of mass is to apply the divergence theorem to Eq. 9–1. The
divergence theorem is also called Gauss’s theorem, named after the Ger-
man mathematician Johann Carl Friedrich Gauss (1777–1855). The diver-
gence theorem allows us to transform a volume integral of the divergence of
a vector into an area integral over the surface that defines the volume. For
any vector G

→
, the divergence of G

→
is defined as !

→
· G

→
, and the divergence

theorem can be written as

Divergence theorem: (9–3)

The circle on the area integral is used to emphasize that the integral must be
evaluated around the entire closed area A that surrounds volume V. Note
that the control surface of Eq. 9–1 is a closed area, even though we do not
always add the circle to the integral symbol. Equation 9–3 applies to any vol-
ume, so we choose the control volume of Eq. 9–1. We also let G

→
" rV

→

since G
→

can be any vector. Substitution of Eq. 9–3 into Eq. 9–1 converts the
area integral into a volume integral,

We now combine the two volume integrals into one,

(9–4)

Finally, we argue that Eq. 9–4 must hold for any control volume regardless
of its size or shape. This is possible only if the integrand (the terms within
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To derive a differential conservation

equation, we imagine shrinking a
control volume to infinitesimal size.
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Introduction

Example:  incompressible Navier-Stokes equations

We will learn:
Physical meaning of each term

How to derive

How to solve

ρ D
!
V
Dt

= −∇P + ρ !g + µ∇2 !V

∇⋅
!
V = 0
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Introduction

For example, how to solve?

Step Analytical Fluid Dynamics Computational Fluid Dynamics

1 Setup Problem and geometry, identify all dimensions and parameters

2 List all assumptions, approximations, simplifications, boundary 
conditions

3 Simplify PDE’s Build grid / discretize PDE’s

4 Integrate equations
Solve algebraic system of 

equations including I.C.’s and B.C’s5 Apply I.C.’s and B.C.’s to solve for 
constants of integration

6 Verify and plot results Verify and plot results
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Conservation of Mass

Recall CV form from Reynolds Transport 
Theorem (RTT)

We’ll examine two methods to derive 
differential form of conservation of mass

Divergence (Gauss’s) Theorem

Differential CV and Taylor series expansions
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Conservation of Mass - Divergence Theorem

Divergence theorem allows us to transform a 
volume integral of the divergence of a vector 
into an area integral over the surface that 
defines the volume.
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Rewrite conservation of mass

Using divergence theorem, replace area integral with 
volume integral and collect terms

Integral holds for ANY CV, therefore:

Conservation of Mass - Divergence Theorem
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Conservation of Mass -  
Differential CV and Taylor series

First, define an infinitesimal 
control volume dx·dy·dz

Next, we approximate the 
mass flow rate into or out of 
each of the 6 faces  using 
Taylor series expansions 
around the center point, e.g., 
at the right face

Ignore terms higher than order dx
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Infinitesimal control volume  
of dimensions dx, dy, dz Area of right 

face = dy dz

Mass flow rate through 
the right face of the  
control volume

Conservation of Mass -  
Differential CV and Taylor series
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Now, sum up the mass flow rates into and out of the 6 
faces of the CV

Plug into integral conservation of mass equation

Net mass flow rate into CV:

Net mass flow rate out of CV:

Conservation of Mass -  
Differential CV and Taylor series
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After substitution,

Dividing through by volume dxdydz

Or, if we apply the definition of the divergence of a vector

Conservation of Mass -  
Differential CV and Taylor series
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Conservation of Mass - Alternative form

Use product rule on divergence term
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Conservation of Mass - Special Cases

Steady compressible flow

Cartesian

Cylindrical



ì

Incompressible flow

Cartesian

Cylindrical

and ρ = constant 

Conservation of Mass - Special Cases
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Conservation of Mass

In general, continuity equation cannot be used 
by itself to solve for flow field, however it can be 
used to 

Determine if velocity field is incompressible

Find missing velocity component
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Finding a Missing Velocity Component

Two velocity components of a steady, incompressible, three-
dimensional flow field are known, namely, u = ax2 + by2 + cz2 
and w = axz + byz2, where a, b, and c are constants. The y 
velocity component is missing. Generate an expression for v as 
a function of x, y, and z.

Solution:

Therefore,
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2D Incompressible Vortical Flow

Consider a two-dimensional, incompressible flow in cylindrical 
coordinates; the tangential velocity component is uθ = K/r, 
where K is a constant. This represents a class of vortical flows. 
Generate an expression for the other velocity component, ur.

Solution: The incompressible continuity equation for this two 
dimensional case simplifies to

⇒
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Line VortexA spiraling line vortex/sink flow

2D Incompressible Vortical Flow
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The Stream Function

Consider the continuity equation for  an incompressible 
2D flow

Substituting the clever transformation

Gives This is true for any smooth 
function ψ(x,y)
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The Stream Function

Why do this?
Single variable ψ replaces (u,v).  Once ψ is known, 
(u,v) can be computed.

Physical significance

Curves of constant ψ are streamlines of the flow

Difference in ψ between streamlines is equal to volume 
flow rate between streamlines

The value of ψ increases to the left of the direction of 
flow in the xy-plane, “left-side convention.”
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The Stream Function - Physical Significance

Recall that along a 
streamline

∴ Change in ψ along 
streamline is zero
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Difference in ψ between 
streamlines is equal to 
volume flow rate between 
streamlines 

The Stream Function - Physical Significance
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Stream Function in Cylindrical Coordinates

Incompressible, planar stream 
function in cylindrical 
coordinates:

For incompressible 
axisymmetric flow, the 
continuity equation is

⇒
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Consider a line vortex, 
defined as steady, planar, 
incompressible flow in which 
the velocity components are 
ur = 0 and uθ = K/r, where K 
is a constant. Derive an 
expression for the stream 
function ψ (r, θ), and prove 
that the streamlines are 
circles.

Line Vortex

Stream Function in Cylindrical Coordinates
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Solution:

⇒

Stream Function in Cylindrical Coordinates
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Conservation of Linear Momentum

Recall CV form

Using the divergence theorem to convert area integrals

Body 
Force

Surface 
Force

σij = stress tensor
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Conservation of Linear Momentum

Substituting volume integrals gives,

Recognizing that this holds for any CV, the integral 
may be dropped

This is Cauchy’s Equation
That can also be derived using infinitesimal CV and Newton’s 2nd Law
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Conservation of Linear Momentum

Alternate form of the Cauchy Equation can be derived 
by introducing

Inserting these into Cauchy Equation and rearranging 
gives

(Chain Rule)
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Conservation of Linear Momentum

Unfortunately, this equation is not very useful
10 unknowns

Stress tensor, σij : 6 independent components

Density ρ
Velocity, V : 3 independent components

4 equations (continuity + momentum)

6 more equations required to close problem!
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Stress Tensor
The stress (force per unit area) at a point in a fluid needs nine components to be 
completely specified, since each component of the stress must be defined not only by the 
direction in which it acts but also the orientation of the surface upon which it is acting.  The 
first index i specifies the direction in which the stress component acts, and the second 
index j identifies the orientation of the surface upon which it is acting. Therefore, the ith 
component of the force acting on a surface whose outward normal points in the jth 
direction is σij. 

T ( n ) = niT
(i) = niTj

(i)x̂ j = niσ ij x̂ j
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Stress Tensor

For a fluid at rest, according to Pascal’s law, regardless of the 
orientation the stress reduces to:

Hydrostatic pressure is the same as the thermodynamic 
pressure from study of thermodynamics. P is related to 
temperature and density through some type of equation of 
state (e.g., the ideal gas law). 

This further complicates a compressible fluid flow analysis 
because we introduce yet another unknown, namely, 
temperature T. 
This new unknown requires another equation—the 
differential form of the energy equation.

We must be very careful when expanding the last term of Eq. 9–50, which
is the divergence of a second-order tensor. In Cartesian coordinates, the
three components of Cauchy’s equation are

x-component: (9–51a)

y-component: (9–51b)

z-component: (9–51c)

We conclude this section by noting that we cannot solve any fluid
mechanics problems using Cauchy’s equation by itself (even when com-
bined with continuity). The problem is that the stress tensor sij needs to be
expressed in terms of the primary unknowns in the problem, namely, den-
sity, pressure, and velocity. This is done for the most common type of fluid
in Section 9–5.

9–5 ■ THE NAVIER–STOKES EQUATION

Introduction
Cauchy’s equation (Eq. 9–37 or its alternative form Eq. 9–48) is not very
useful to us as is, because the stress tensor sij contains nine components, six
of which are independent (because of symmetry). Thus, in addition to den-
sity and the three velocity components, there are six additional unknowns,
for a total of 10 unknowns. (In Cartesian coordinates the unknowns are r, u,
v, w, sxx, sxy, sxz, syy, syz, and szz). Meanwhile, we have discussed only
four equations so far—continuity (one equation) and Cauchy’s equation
(three equations). Of course, to be mathematically solvable, the number of
equations must equal the number of unknowns, and thus we need six more
equations. These equations are called constitutive equations, and they
enable us to write the components of the stress tensor in terms of the veloc-
ity field and pressure field.

The first thing we do is separate the pressure stresses and the viscous
stresses. When a fluid is at rest, the only stress acting at any surface of any
fluid element is the local hydrostatic pressure P, which always acts inward
and normal to the surface (Fig. 9–36). Thus, regardless of the orientation of
the coordinate axes, for a fluid at rest the stress tensor reduces to

Fluid at rest: (9–52)

Hydrostatic pressure P in Eq. 9–52 is the same as the thermodynamic pres-
sure with which we are familiar from our study of thermodynamics. P is
related to temperature and density through some type of equation of state
(e.g., the ideal gas law). As a side note, this further complicates a compress-
ible fluid flow analysis because we introduce yet another unknown, namely,
temperature T. This new unknown requires another equation—the differential
form of the energy equation—which is not discussed in this text.
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FIGURE 9–36
For fluids at rest, the only stress on a
fluid element is the hydrostatic
pressure, which always acts inward
and normal to any surface.
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Stress Tensor

First step is to separate σij into pressure and 
viscous stresses

Situation not yet improved
6 unknowns in σij  ⇒  6 unknowns in τij + 1 in p, which 
means that we’ve added 1!

Viscous (Deviatoric) 
Stress Tensor

σ ij =

σ xx σ xy σ xz

σ yx σ yy σ yz

σ zx σ zy σ zz
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Constitutive equation - Newtonian

(toothpaste)

(paint)

(quicksand)

Reduction in the number 
of variables is achieved by 
relating shear stress to 
strain-rate tensor.
For Newtonian fluid with 
constant properties

Newtonian fluid includes most common 
fluids:  air, other gases, water, gasoline

Newtonian closure is 
analogous 
to Hooke’s Law for elastic 
solids
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Stresses to Strains to Velocities

Substituting Newtonian closure into stress 
tensor gives

Using the definition of εij  
-

We must be very careful when expanding the last term of Eq. 9–50, which
is the divergence of a second-order tensor. In Cartesian coordinates, the
three components of Cauchy’s equation are

x-component: (9–51a)

y-component: (9–51b)

z-component: (9–51c)

We conclude this section by noting that we cannot solve any fluid
mechanics problems using Cauchy’s equation by itself (even when com-
bined with continuity). The problem is that the stress tensor sij needs to be
expressed in terms of the primary unknowns in the problem, namely, den-
sity, pressure, and velocity. This is done for the most common type of fluid
in Section 9–5.
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σ ij = −Pδ ij + 2µε ij
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Navier-Stokes Equation

Substituting σij into Cauchy’s equation gives the      
Navier-Stokes equation(s):

With Continuity Equation, this results in a closed system 
of equations!

4 equations (continuity and momentum equations)
4 unknowns (U, V, W, P)

Incompressible NSE 
written in vector 

form

ρ D
!
V
Dt

= −∇P + ρ !g + µ∇2 !V

∇⋅
!
V = 0
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Navier-Stokes Equation

In addition to vector form, incompressible N-S 
equation can be written in several other forms:

Cartesian coordinates

Cylindrical coordinates

Tensor notation
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Navier-Stokes Equation - Cartesian 

Continuity

X-momentum

Y-momentum

Z-momentum
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Navier-Stokes Equation - Tensor and Vector

Continuity

Conservation of Momentum
Tensor notation Vector notation

Vector notationTensor notation

Tensor and Vector notation offer a more compact form of the equations. 

Repeated indices are summed over j 
(x1 = x, x2 = y, x3 = z, U1 = U, U2 = V, U3 = W)

ρ D
!
V
Dt

= −∇P + ρ !g + µ∇2 !V


