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Objectives

® Appreciate why approximations are necessary, and
know when and where to use.

®Understand effects of lack of inertial terms in the
creeping flow approximation.

@®Understand superposition as a method for solving
potential flow.

®Predict boundary layer thickness and other
boundary layer properties.



Introduction

®We derived the NSE and developed several exact solutions.

®We will study several methods for simplifying the NSE,
which permit use of mathematical analysis and solution.

® An approximate solution is one in which the Navier—Stokes
equation is simplified in some region of the flow before we start
the solution.

® Term(s) are eliminated a priori depending on the class of problem,
which may differ from one region of the flow to another.
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Nondimensionalization of the NSE

©®Purpose: Order-of-Magnitude analysis of the terms in the
NSE, which is necessary for simplification and approximate
solutions.

®We begin with the incompressible NSE
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@Each term is dimensional, and each variable or property (p, V,
t, M, etc.) is also dimensional.

®What are the primary dimensions of each term in the NSE
equation!?

Answer : { LZ; }




Nondimensionalization of the NSE

®To nondimensionalize, we choose scaling
parameters as follows

TABLE 10-1

Scaling parameters used to nondimensionalize the continuity and momentum
equations, along with their primary dimensions

Scaling Parameter Description Primary Dimensions
L Characteristic length {L}

V Characteristic speed {Lt=1}

f Characteristic frequency {t-1}

P, — P, Reference pressure difference {mL~1t=?}

g Gravitational acceleration {Lt=2)



Nondimensionalization of the NSE

©®Next, we define nondimensional variables, using the scaling
parameters in Table 10-1
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®To plug the nondimensional variables into the NSE, we need
to first rearrange the equations in terms of the dimensional
variables
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Nondimensionalization of the NSE

®Now we substitute into the NSE to obtain
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®Every additive term has primary dimensions {m'L-2t-2}.
To nondimensionalize, we multiply every term by

L/(pV?2), which has primary dimensions {m-!L2t2}, so that
the dimensions cancel. After rearrangement:
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Nondimensionalization of the NSE

®  Each of terms in [ ] is a nondimensional group of
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Navier-Stokes equation in nondimensional form




Nondimensionalization of the NSE

®Nondimensionalization vs. Normalization

@ NSE are now nondimensional, but not necessarily normalized.
What is the difference!?

® Nondimensionalization concerns only the dimensions of the
equation - we can use any value of scaling parameters L,V, etc.

@ Normalization is more restrictive than nondimensionalization.
To normalize the equation, we must choose scaling parameters
L,V, etc. that are appropriate for the flow being analyzed, such
that all nondimensional variables are of order of magnitude
unity, i.e., their minimum and maximum values are close to 1.0.

t*~1 F~1 V*~1 P'~1 g'~1 V'~l

If we have properly normalized the NSE, we can compare the relative importance of the terms

in the equation by comparing the relative magnitudes of the nondimensional parameters
St, Eu, Fr; and Re.




Comments about CD-NSE

®The nondimensionalized continuity equation contains no additional
dimensionless parameters.

@®The order of magnitude of the nondimensional variables is unity if they
are nondimensionalized using a length, speed, frequency, etc., that are
characteristic of the flow field.

® The relative importance of the terms in depends only on the relative
magnitudes of the dimensionless parameters

@ Dynamic similarity between a model and a prototype requires all four
of [ ] to be the same for the model and the prototype.

@If the flow is steady then the first term on the left side of then
disappears. If the characteristic frequency f is very small such that
St<<I, the flow is called quasi-steady.

®The effect of gravity is important only in flows with free-surface
effects.

@ If no free surface the only effect of gravity on the flow dynamics is a
hydrostatic pressure distribution in the vertical direction superposed on the
pressure field due to the fluid flow.



Creeping Flow

®Also known as “Stokes Flow” or “Low Reynolds
number flow”

®Occurs when Re << |

® p,V, or L are very small, e.g., micro-organisms, MEMS,
nano-tech, particles, bubbles

® U is very large, e.g. honey, lava
® g effect is negligible
® Steady flow

® Advective term is negligible



Creeping Flow

®To simplify NSE, assume St ~ |, Fr ~ |

Eu|V*P* = | — | V**V*

Pressure Viscous

®Since forces forces
P* ~ 1, V* ~ 1
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Creeping Flow

@This is important Py — Py, ~ ﬂ

@ Very different from inertia dominated flows where

® Density has completely dropped out of NSE. To demonstrate this,
convert back to dimensional form:

VP = ,uVZV

@ This is now a LINEAR EQUATION which can be solved for simple
geometries.



Creeping Flow

®Solution of Stokes flow is beyond the scope.

@ Analytical solution for flow over a sphere gives a
drag coefficient which is a linear function of

velocity V and viscosity L.

— (N Fp=3muVD
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Example

EXAMPLE 10-2 Terminal Velocity of a Particle from a Volcano

A volcano has erupted, spewing stones, steam, and ash several thousand feet
into the atmosphere (Fig. 10-14). After some time, the particles begin to
settle to the ground. Consider a nearly spherical ash particle of diameter
50 wm, falling in air whose temperature is —50°C and whose pressure is
55 kPa. The density of the particle is 1240 kg/m3. Estimate the terminal
velocity of this particle at this altitude.

DJ
F down — W= ng particleg (1)

Downward force:

The aerodynamic drag force acting on the particle is obtained from Eq.
10-12, and the buoyancy force is the weight of the displaced air. Thus,

3

Fup = FD + Fbuoyancy = 37TMVD + T~ Pair8 (2)

Upward force: p

We equate Egs. 1 and 2, and solve for terminal velocity V,

D2
V= m (p particle — P 2ir) &

3 (50 X 10~ %m)?
18(1.474 X 10 > kg/m - s)

= (0.115 m/s

[(1240 — 0.8588) kg/m’](9.81 m/s?)

Finally, we verify that the Reynolds number is small enough that creeping
flow Is an appropriate approximation,

_ paVD (08588 kg/m’)(0.115 m/s)(50 X 10 ~° m)

= 0.335
s 1.474 X 10" kg/m - s

Re

®Although the equation for

creeping flow drag on a
sphere was derived for a case
with Re<<], it turns out that
the approximation is
reasonable up to Re = |.

@A more involved calculation,

including a Reynolds number
correction and a correction
based on the mean free path
of air molecules, yields a
terminal velocity of 0.1 10 m/s;
the error of the creeping flow
approximation is less than 5
percent.



Inviscid Regions of Flow

@ Definition: Regions where net viscous forces are

negligible compared to pressure and/or inertia

forces
| | ~0 if Re large
A ) 1. (1]
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Euler Equation

The Euler equation approximation is
appropriate in high Reynolds number
regions of the flow, where net
viscous forces are negligible, far away
from walls and wakes.
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Inviscid Regions of Flow

@Euler equation often used in aerodynamics

@Elimination of viscous term changes PDE from
mixed elliptic-hyperbolic to hyperbolic. This
affects the type of analytical and computational
tools used to solve the equations.

®Must “relax” wall boundary condition from no-slip
to slip

No-slip BC Slip BC
u=v=w=20 T,=0,V,=0

V,, = normal velocity



Irrotational Flow Approximation

Irrotational flow region

Rotational flow region

Olrrotational

approximation: vorticity
is negligibly small

(=VxV0

®In general, inviscid

regions are also
irrotational, but there
are situations where
inviscid flow are
rotational, e.g., solid
body rotation



Irrotational Flow Approximation

@®What are the implications of irrotational
approximation. Look at continuity and momentum
equations.

@ Continuity equation
® Use the vector identity VxVop=0

—

® Since the flow is irrotational VXV =0

V =Vé

dis a scalar potential function




Irrotational Flow Approximation

D Therefore, regions of irrotational flow are also
called regions of potential flow.

O From the definition of the gradient operator V

. _99 ., _ 99 _ 99
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@Substituting into the continuity equation gives

—

V-V=V:V¢=V=0




Irrotational Flow Approximation

®This means we only need to solve 1 linear scalar
equation to determine all 3 components of
velocity!

Vng =\ Laplace Equation

@ Luckily, the Laplace equation appears in numerous
fields of science, engineering, and mathematics.
This means there are well developed tools for
solving this equation.



Irrotational Flow Approximation

®Momentum equation

@ If we can compute ¢ from the Laplace equation (which

came from continuity) and then velocity from the

—

definition V = V¢ , why do we need the NSE? = To

compute Pressure.

® To begin analysis, apply irrotational approximation to
viscous term of the NSE:

uV3V = pV3(Ve) = uV(V3¢) =0

\. J

Y
=0



Irrotational Flow Approximation

@ Therefore, the NSE reduces to the Euler equation for
irrotational flow:

nondimensional [St] 8‘7* | (‘7* V*) V* — — [EU,] V*P* + L- g
ot* ] F'r?
dimensional 0 %_‘; + 517 : V) {_/; = —VP + pg
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DlInstead of integrating to find P, use vector identity to
derive Bernoulli equation

7 NP (L) P x (vxP) 29 (L) 7 <
(V) 2 (VxV) - ,



Irrotational Flow Approximation
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@ This form of Bernoulli equation is valid for inviscid
(and irrotational) flow since we’ve shown that NSE
reduces to the Euler equation.




Irrotational Flow Approximation

O However

Inviscid

Irrotational (C = 0)
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gz = C along a streamline

gz = C everywhere



Irrotational Flow Approximation

@®Therefore, the process for irrotational flow

® Calculate ¢ from Laplace equation (from continuity)

® Calculate velocity from definition V' = v

® Calculate pressure from Bernoulli equation (derived
from momentum equation)

2 1 ]
002 - g (20 — 2)

P=PFP,+p

Valid for 3D or 2D




Boundary Layer (BL) Approximation

i

o sip  No gae
Euler \ slip > Navier—
equation h’ Stokes
\ (7 equation
(b)
y e
4" OQuter flow (inviscid and/or
—_— irrotational region of flow)

Boundary layer (rotational with
— non-negligible viscous forces)

®BL approximation bridges the gap between the Euler
and NS equations, and between the slip and no-slip
BC at the wall.

®Prandtl (1904) introduced the BL approximation

®At a given x-location, the higher the Reynolds
number, the thinner the boundary layer.
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Boundary Layer (BL) Approximation

@ Flat Boundary Layer
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Boundary layer

o is proportional to the square root of Rey. These results are valid only for a
laminar boundary layer on a flat plate.

As we move down the plate to larger and larger values of x, Rex increases
linearly with x. At some point, infinitesimal disturbances in the flow begin to
grow, and the boundary layer cannot remain laminar—it begins a transition
process toward turbulent flow.

For a smooth flat plate with a uniform free stream, the transition process begins
at a critical Reynolds number, Rey, critical =102, and continues until the boundary

layer is fully turbulent at the transition Reynolds number, Rey, transition = 3 - 108



Boundary Layer (BL) Approximation
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Boundary Layer (BL) Approximation

Boundary layer

®BL Equations: we restrict
attention to steady, 2D,
laminar flow (although
method is fully applicable
to unsteady, 3D, turbulent
flow)

®BL coordinate system

® x :tangential direction

®y :normal direction




Turbulent Boundary Layer

Black lines: instantaneous
Pink line: time-averaged

lllustration of unsteadiness of a
turbulent BL
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Comparison of laminar and
turbulent BL profiles



Pressure Gradients

®Shape of the BL is strongly
influenced by external pressure

gradient:

(a) favorable (dP/dx < 0)
(b) zero

(c) mild adverse (dP/dx > 0)

(d) critical adverse (t,, = 0)

(e) large adverse with reverse (or

separated) flow




Pressure Gradients

@®The BL approximation is not
valid downstream of a
separation point because of

reverse flow in the separation
bubble.

@ Turbulent BL is more resistant
to flow separation than

laminar BL exposed to the
same adverse pressure
gradient

Laminar flow separates at corner

Turbulent flow does not separate




