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Objectives

Appreciate why approximations are necessary, and 
know when and where to use.
Understand effects of lack of inertial terms in the 
creeping flow approximation.
Understand superposition as a method for solving 
potential flow.
Predict boundary layer thickness and other 
boundary layer properties.
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Introduction

We derived the NSE and developed several exact solutions.
We will study several methods for simplifying the NSE, 
which permit use of mathematical analysis and solution.

An approximate solution is one in which the Navier–Stokes 
equation is simplified in some region of the flow before we start 
the solution. 
Term(s) are eliminated a priori depending on the class of problem, 
which may differ from one region of the flow to another. 
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Nondimensionalization of the NSE

Purpose:  Order-of-Magnitude analysis of the terms in the 
NSE, which is necessary for simplification and approximate 
solutions.
We begin with the incompressible NSE

Each term is dimensional, and each variable or property (ρ,  V, 
t, μ, etc.) is also dimensional.
What are the primary dimensions of each term in the NSE 
equation?
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Nondimensionalization of the NSE

To nondimensionalize, we choose scaling 
parameters as follows
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Nondimensionalization of the NSE

Next, we define nondimensional variables, using the scaling 
parameters in Table 10-1

To plug the nondimensional variables into the NSE, we need 
to first rearrange the equations in terms of the dimensional 
variables



ì

Nondimensionalization of the NSE

Now we substitute into the NSE to obtain

Every additive term has primary dimensions {m1L-2t-2}.  
To nondimensionalize, we multiply every term by         
L/(ρV2), which has primary dimensions {m-1L2t2}, so that 
the dimensions cancel.  After rearrangement:
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Nondimensionalization of the NSE

Each of terms in [ ] is a nondimensional group of 
parameters (Pi Group):

Strouhal number Euler number
Inverse of Froude 
number squared

Inverse of Reynolds 
number

Navier-Stokes equation in nondimensional form
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Nondimensionalization of the NSE

Nondimensionalization vs. Normalization
NSE are now nondimensional, but not necessarily normalized.  
What is the difference?

Nondimensionalization concerns only the dimensions of the 
equation - we can use any value of scaling parameters L, V, etc.

Normalization is more restrictive than nondimensionalization.  
To normalize the equation, we must choose scaling parameters 
L,V, etc. that are appropriate for the flow being analyzed, such 
that all nondimensional variables are of order of magnitude 
unity, i.e., their minimum and maximum values are close to 1.0.

If we have properly normalized the NSE, we can compare the relative importance of the terms 
in the equation by comparing the relative magnitudes of the nondimensional parameters       

St, Eu, Fr, and Re.
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Comments about CD-NSE

The nondimensionalized continuity equation contains no additional 
dimensionless parameters. 
The order of magnitude of the nondimensional variables is unity if they 
are nondimensionalized using a length, speed, frequency, etc., that are 
characteristic of the flow field. 

The relative importance of the terms in depends only on the relative 
magnitudes of the dimensionless parameters 

Dynamic similarity between a model and a prototype requires all four 
of [ ] to be the same for the model and the prototype.
If the flow is steady then the first term on the left side of then 
disappears. If the characteristic frequency f is very small such that 
St<<1, the flow is called quasi-steady. 
The effect of gravity is important only in flows with free-surface 
effects.

If no free surface the only effect of gravity on the flow dynamics is a 
hydrostatic pressure distribution in the vertical direction superposed on the 
pressure field due to the fluid flow.  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Creeping Flow

Also known as “Stokes Flow” or “Low Reynolds 
number flow”
Occurs when Re << 1
ρ, V, or L are very small, e.g., micro-organisms, MEMS, 
nano-tech, particles, bubbles

μ is very large, e.g. honey, lava
g effect is negligible
Steady flow
Advective term is negligible
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Creeping Flow

To simplify NSE, assume St ~ 1, Fr ~ 1

Since
Pressure 
forces

Viscous 
forces
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Creeping Flow

This is important

Very different from inertia dominated flows where  

Density has completely dropped out of NSE.  To demonstrate this, 
convert back to dimensional form:

This is now a LINEAR EQUATION which can be solved for simple 
geometries.
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Creeping Flow

Solution of Stokes flow is beyond the scope.

Analytical solution for flow over a sphere gives a 
drag coefficient which is a linear function of 
velocity V and viscosity µ.
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Example

Although the equation for 
creeping flow drag on a 
sphere  was derived for a case 
with Re<<1, it turns out that 
the approximation is 
reasonable up to Re ≅ 1. 

A more involved calculation, 
including a Reynolds number 
correction and a correction 
based on the mean free path 
of air molecules, yields a 
terminal velocity of 0.110 m/s; 
the error of the creeping flow 
approximation is less than 5 
percent.

Analysis We follow the step-by-step method of repeating variables discussed
in Chap. 7; the details are left as an exercise. There are four parameters in
this problem (n ! 4). There are three primary dimensions: mass, length, and
time, so we set j ! 3 and use independent variables V, L, and m as our
repeating variables. We expect only one Pi since k ! n " j ! 4 " 3 ! 1,
and that Pi must equal a constant. The result is

Thus, we have shown that for creeping flow around any three-dimensional
object, the aerodynamic drag force is simply a constant multiplied by mVL.
Discussion This result is significant, because all that is left to do is find the
constant, which is a function only of the shape of the object.

Drag on a Sphere in Creeping Flow
As shown in Example 10–1, the drag force FD on a three-dimensional object
of characteristic dimension L moving under creeping flow conditions at
speed V through a fluid with viscosity m is FD ! constant # mVL. Dimen-
sional analysis cannot predict the value of the constant, since it depends on
the shape and orientation of the body in the flow field.

For the particular case of a sphere, Eq. 10–11 can be solved analytically.
The details are beyond the scope of this text, but can be found in graduate-
level fluid mechanics books (White, 1991; Panton, 1996). It turns out that
the constant in the drag equation is equal to 3p if L is taken as the sphere’s
diameter D (Fig. 10–13).

Drag force on a sphere in creeping flow: (10–12)

As a side note, two-thirds of this drag is due to viscous forces and the other
one-third is due to pressure forces. This confirms that the viscous terms and
the pressure terms in Eq. 10–11 are of the same order of magnitude, as
mentioned previously.

EXAMPLE 10–2 Terminal Velocity of a Particle from a Volcano

A volcano has erupted, spewing stones, steam, and ash several thousand feet
into the atmosphere (Fig. 10–14). After some time, the particles begin to
settle to the ground. Consider a nearly spherical ash particle of diameter
50 mm, falling in air whose temperature is "50°C and whose pressure is
55 kPa. The density of the particle is 1240 kg/m3. Estimate the terminal
velocity of this particle at this altitude.

SOLUTION We are to estimate the terminal velocity of a falling ash particle.
Assumptions 1 The Reynolds number is very small (we will need to verify
this assumption after we obtain the solution). 2 The particle is spherical.
Properties At the given temperature and pressure, the ideal gas law 
gives r ! 0.8588 kg/m3. Since viscosity is a very weak function of pres-
sure, we use the value at "50°C and atmospheric pressure, m ! 1.474
$ 10"5 kg/m · s.
Analysis We treat the problem as quasi-steady. Once the falling particle
has reached its terminal velocity, the net downward force (weight) balances

FD ! 3pmVD

FD ! constant " MVL
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FIGURE 10–11
A child trying to move in a pool of

plastic balls is analogous to a
microorganism trying to propel itself

without the benefit of inertia.

V

m

FD

D

FIGURE 10–13
The aerodynamic drag on a sphere 

of diameter D in creeping flow 
is equal to 3pmVD.

V

L

m

FD

FIGURE 10–12
For creeping flow over a three-

dimensional object, the aerodynamic
drag on the object does not depend on

density, but only on speed V, some
characteristic size of the object L,

and fluid viscosity m.
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the net upward force (aerodynamic drag ! buoyancy), as illustrated in Fig.
10–15.

Downward force: (1)

The aerodynamic drag force acting on the particle is obtained from Eq.
10–12, and the buoyancy force is the weight of the displaced air. Thus,

Upward force: (2)

We equate Eqs. 1 and 2, and solve for terminal velocity V,

Finally, we verify that the Reynolds number is small enough that creeping
flow is an appropriate approximation,

Thus the Reynolds number is less than 1, but certainly not much less than 1.
Discussion Although the equation for creeping flow drag on a sphere (Eq.
10–12) was derived for a case with Re "" 1, it turns out that the approxima-
tion is reasonable up to Re ≅ 1. A more involved calculation, including a
Reynolds number correction and a correction based on the mean free path of
air molecules, yields a terminal velocity of 0.110 m/s (Heinsohn and Cimbala,
2003); the error of the creeping flow approximation is less than 5 percent.

A consequence of the disappearance of density from the equations of
motion for creeping flow is clearly seen in Example 10–2. Namely, air den-
sity is not important in any calculations except to verify that the Reynolds
number is small. (Note that since rair is so small compared to rparticle, the
buoyancy force could have been ignored with negligible loss of accuracy.)
Suppose instead that the air density were one-half of the actual density in
Example 10–2, but all other properties were unchanged. The terminal veloc-
ity would be the same (to three significant digits), except that the Reynolds
number would be smaller by a factor of 2. Thus,

The terminal velocity of a dense, small particle in creeping flow conditions is
independent of fluid density, but highly dependent on fluid viscosity.

Since the viscosity of air varies with altitude by only about 25 percent, a
small particle settles at nearly constant speed regardless of elevation, even
though the air density increases by more than a factor of 10 as the particle
falls from an altitude of 50,000 ft (15,000 m) to sea level.

Re #
rairVD
m

#
(0.8588 kg$m3)(0.115 m$s)(50 % 10 & 6 m)

1.474 % 10 & 5 kg$m ' s
# 0.335

 # 0.115 m$s 

 #
(50 % 10 & 6 m)2

18(1.474 % 10 & 5 kg$m ' s)
 [(1240 & 0.8588) kg$m3](9.81 m$s2)

 V #
D2

18m
 (rparticle & rair)g 

Fup # FD ! Fbuoyancy # 3pmVD ! p 
D3

6
 rairg

Fdown # W # p 
D3

6
 rparticleg
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Terminal
velocity

V

FIGURE 10–14
Small ash particles spewed from 
a volcanic eruption settle slowly 
to the ground; the creeping flow
approximation is reasonable for 
this type of flow field.

V

rparticle

rair, mair

Fbuoyancy

D

FD

W

FIGURE 10–15
A particle falling at a steady terminal
velocity has no acceleration; therefore,
its weight is balanced by aerodynamic
drag and the buoyancy force acting on
the particle.
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Inviscid Regions of Flow

Definition:  Regions where net viscous forces are 
negligible compared to pressure and/or inertia 
forces

~0 if Re large

Euler Equation

The Euler equation approximation is 
appropriate in high Reynolds number 

regions of the flow, where net 
viscous forces are negligible, far away 

from walls and wakes. 
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Inviscid Regions of Flow

Euler equation often used in aerodynamics
Elimination of viscous term changes PDE from 
mixed elliptic-hyperbolic to hyperbolic.   This 
affects the type of analytical and computational 
tools used to solve the equations.
Must “relax” wall boundary condition from no-slip 
to slip

No-slip BC
u = v = w = 0

Slip BC
τw = 0, Vn = 0

Vn = normal velocity
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Irrotational Flow Approximation

Irrotational 
approximation: vorticity 
is negligibly small

In general, inviscid 
regions are also 
irrotational, but there 
are situations where 
inviscid flow are 
rotational, e.g., solid 
body rotation 
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Irrotational Flow Approximation

What are the implications of irrotational 
approximation.  Look at continuity and momentum 
equations.
Continuity equation

Use the vector identity

Since the flow is irrotational

φ is a scalar potential function
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Irrotational Flow Approximation

Therefore, regions of irrotational flow are also 
called regions of potential flow.

From the definition of the gradient operator ∇

Substituting into the continuity equation gives

Cartesian

Cylindrical
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Irrotational Flow Approximation

This means we only need to solve 1 linear scalar 
equation to determine all 3 components of 
velocity!

Luckily, the Laplace equation appears in numerous 
fields of science, engineering, and mathematics.  
This means there are well developed tools for 
solving this equation.

Laplace Equation



ì

Irrotational Flow Approximation

Momentum equation
If we can compute 𝜙 from the Laplace equation (which 

came from continuity) and then velocity from the 
definition              , why do we need the NSE?  ⇒ To 

compute Pressure.

To begin analysis, apply irrotational approximation to 
viscous term of the NSE:

= 0
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Irrotational Flow Approximation

Therefore, the NSE reduces to the Euler equation for 
irrotational flow:

Instead of integrating to find P, use vector identity to 
derive Bernoulli equation

nondimensional

dimensional
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Irrotational Flow Approximation

This allows the steady Euler equation to be written as

This form of Bernoulli equation is valid for inviscid 
(and irrotational) flow since we’ve shown that NSE 
reduces to the Euler equation. 
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Irrotational Flow Approximation

However

Inviscid

Irrotational (ζ = 0)
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(and the negative sign) within the gradient operator. We substitute Eq. 10–16 
into Eq. 10–15, and rearrange by combining three terms within one gradient 
operator,

  =
!
a

P
r

1
V 2

2
1 gzb 5 V

!
3 z

!
 (10–17)

 From the definition of the cross product of two vectors,  C
!
 5  A

!
 3  B

!
, the 

vector  C
!
 is perpendicular to both A

→
 and B

→
. The left side of Eq. 10–17 must 

therefore be a vector everywhere perpendicular to the local velocity vector 
V
!
, since V

!
 appears in the cross product on the right side of Eq. 10–17. Now 

consider flow along a three-dimensional streamline (Fig. 10–19), which by 
definition is everywhere parallel to the local velocity vector. At every point 
along the streamline, =

!
(P/r 1 V2/2 1 gz) must be perpendicular to the 

streamline. Now dust off your vector algebra book and recall that the gradi-
ent of a scalar points in the direction of maximum increase of the scalar. 
Furthermore, the gradient of a scalar is a vector that points perpendicular to 
an imaginary surface on which the scalar is constant. Thus, we argue that 
the scalar (P/r 1 V2/2 1 gz) must be constant along a streamline. This is 
true even if the flow is rotational (z

!
 Þ 0). Thus, we have derived a version 

of the steady incompressible Bernoulli equation, appropriate in regions 
of flow with negligible net viscous forces, i.e., in so-called inviscid 
regions of flow.

Steady incompressible Bernoulli equation in inviscid regions of flow:

 
P
r

1
V 2

2
1 gz 5 C 5 constant along streamlines (10–18)

Note that the Bernoulli “constant” C in Eq. 10–18 is constant only along a 
streamline; the constant may change from streamline to streamline.
 You may be wondering if it is physically possible to have a rotational 
region of flow that is also inviscid, since rotationality is usually caused by 
viscosity. Yes, it is possible, and we give one simple example—solid body 
rotation (Fig. 10–20). Although the rotation may have been generated by 
viscous forces, a region of flow in solid body rotation has no shear and 
no net viscous force; it is an inviscid region of flow, even though it is also 
rotational. As a consequence of the rotational nature of this flow field, 
Eq. 10–18 applies to every streamline in the flow, but the Bernoulli constant C 
differs from streamline to streamline, as illustrated in Fig. 10–20.

EXAMPLE 10–3    Pressure Field in Solid Body Rotation

A fluid is rotating as a rigid body (solid body rotation) around the z-axis as 
illustrated in Fig. 10–20. The steady incompressible velocity field is given by 
ur 5 0, uu 5 vr, and uz 5 0. The pressure at the origin is equal to P0. Cal-
culate the pressure field everywhere in the flow, and determine the Bernoulli 
constant along each streamline.

SOLUTION  For a given velocity field, we are to calculate the pressure field 
and the Bernoulli constant along each streamline.

FIGURE 10–19
Along a streamline, =

!
(P/r 1 V2/2 1 

gz) is a vector everywhere 
perpendicular to the streamline; 

hence, P/r 1 V2/2 1 gz is 
constant along the streamline.

Streamline

→

→

→

→

→→

∆

r 2

V 2  

Vz

P
+ + gz

x, i

z, k

y, j

a b

FIGURE 10–20
Solid body rotation is an example 

of an inviscid region of flow that is 
also rotational. The Bernoulli 

constant C differs from streamline 
to streamline but is constant along 

any particular streamline.

u u

u u = vr

r

P
r

+ + gz = CV 2

2

C = C1

C = C2

C = C3

515-563_cengel_ch10.indd   527 12/18/12   1:24 PM
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Irrotational Flow Approximation

Therefore, the process for irrotational flow

Calculate 𝜙 from Laplace equation (from continuity)

Calculate velocity from definition

Calculate pressure from Bernoulli equation (derived 
from momentum equation)

Valid for 3D or 2D
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Boundary Layer (BL) Approximation

BL approximation bridges the gap between the Euler 
and NS equations, and between the slip and no-slip 
BC at the wall.
Prandtl (1904) introduced the BL approximation
At a given x-location, the higher the Reynolds 
number, the thinner the boundary layer. 

(continuity plus Navier–Stokes) throughout the whole flow field. Neverthe-
less, boundary layer theory is still useful in some engineering applications,
since it takes much less time to arrive at a solution. In addition, there is a lot
we can learn about the behavior of flowing fluids by studying boundary lay-
ers. We stress again that boundary layer solutions are only approximations
of full Navier–Stokes solutions, and we must be careful where we apply this
or any approximation.

The key to successful application of the boundary layer approximation is
the assumption that the boundary layer is very thin. The classic example is a
uniform stream flowing parallel to a long flat plate aligned with the x-axis.
Boundary layer thickness d at some location x along the plate is sketched
in Fig. 10–77. By convention, d is usually defined as the distance away
from the wall at which the velocity component parallel to the wall is 99 per-
cent of the fluid speed outside the boundary layer. It turns out that for a
given fluid and plate, the higher the free-stream speed V, the thinner the
boundary layer (Fig. 10–77). In nondimensional terms, we define the
Reynolds number based on distance x along the wall,

Reynolds number along a flat plate: (10–60)

Hence,

At a given x-location, the higher the Reynolds number, the thinner the
boundary layer.

In other words, the higher the Reynolds number, the thinner the boundary
layer, all else being equal, and the more reliable the boundary layer approx-
imation. We are confident that the boundary layer is thin when d !! x (or,
expressed nondimensionally, d/x !! 1).

The shape of the boundary layer profile can be obtained experimentally
by flow visualization. An example is shown in Fig. 10–78 for a laminar
boundary layer on a flat plate. Taken over 50 years ago by F. X. Wortmann,
this is now considered a classic photograph of a laminar flat plate boundary

Rex "
rVx
m

"
Vx
n
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y

d(x)

Rex ~ 102

V
x

y

d(x)

Rex ~ 104

V
x

(a)

(b)

FIGURE 10–77
Flow of a uniform stream parallel 
to a flat plate (drawings not to scale):
(a) Rex ! 102, (b) Rex ! 104. The
larger the Reynolds number, the thinner
the boundary layer along the plate at a
given x-location.

FIGURE 10–78
Flow visualization of a laminar 
flat plate boundary layer profile.
Photograph taken by F. X. Wortmann
in 1953 as visualized with the tellurium
method. Flow is from left to right, and
the leading edge of the flat plate is far
to the left of the field of view.
Wortmann, F. X. 1977 AGARD Conf. Proc. no.
224, paper 12.
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 Flat Boundary Layer

Boundary Layer (BL) Approximation

layer profile. The no-slip condition is clearly verified at the wall, and the
smooth increase in flow speed away from the wall verifies that the flow is
indeed laminar.

Note that although we are discussing boundary layers in connection with
the thin region near a solid wall, the boundary layer approximation is not
limited to wall-bounded flow regions. The same equations may be applied
to free shear layers such as jets, wakes, and mixing layers (Fig. 10–79),
provided that the Reynolds number is sufficiently high that these regions are
thin. The regions of these flow fields with non-negligible viscous forces and
finite vorticity can also be considered to be boundary layers, even though a
solid wall boundary may not even be present. Boundary layer thickness d(x)
is labeled in each of the sketches in Fig. 10–79. As you can see, by conven-
tion d is usually defined based on half of the total thickness of the free shear
layer. We define d as the distance from the centerline to the edge of the
boundary layer where the change in speed is 99 percent of the maximum
change in speed from the centerline to the outer flow. Boundary layer thick-
ness is not a constant, but varies with downstream distance x. In the exam-
ples discussed here (flat plate, jet, wake, and mixing layer), d(x) increases
with x. There are flow situations however, such as rapidly accelerating outer
flow along a wall, in which d(x) decreases with x.

A common misunderstanding among beginning students of fluid mechan-
ics is that the curve representing d as a function of x is a streamline of the
flow—it is not! In Fig. 10–80 we sketch both streamlines and d(x) for the
boundary layer growing on a flat plate. As the boundary layer thickness
grows downstream, streamlines passing through the boundary layer must
diverge slightly upward in order to satisfy conservation of mass. The
amount of this upward displacement is smaller than the growth of d(x).
Since streamlines cross the curve d(x), d(x) is clearly not a streamline
(streamlines cannot cross each other or else mass would not be conserved).

For a laminar boundary layer growing on a flat plate, as in Fig. 10–80,
boundary layer thickness d is at most a function of V, x, and fluid properties
r and m. It is a simple exercise in dimensional analysis to show that d/x is a
function of Rex. In fact, it turns out that d is proportional to the square root
of Rex. You must note, however, that these results are valid only for a lami-
nar boundary layer on a flat plate. As we move down the plate to larger and
larger values of x, Rex increases linearly with x. At some point, infinitesimal
disturbances in the flow begin to grow, and the boundary layer cannot
remain laminar—it begins a transition process toward turbulent flow. For a
smooth flat plate with a uniform free stream, the transition process begins
at a critical Reynolds number, Rex, critical ≅ 1 ! 105 , and continues until
the boundary layer is fully turbulent at the transition Reynolds number,
Rex, transition ≅ 3 ! 106 (Fig. 10–81). The transition process is quite compli-
cated, and details are beyond the scope of this text.
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(a)

(b)

(c)

d(x)

x

d(x)

x

V

V

d(x)

x

V2

V1

FIGURE 10–79
Three additional flow regions where

the boundary layer approximation may
be appropriate: (a) jets, (b) wakes, and

(c) mixing layers.

V y
Streamlines

d(x)d(x)d(x)

Boundary layer
x

d(x) FIGURE 10–80
Comparison of streamlines and the

curve representing d as a function of x
for a flat plate boundary layer. Since
streamlines cross the curve d(x), d(x)

cannot itself be a streamline of the flow.
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𝛿 is proportional to the square root of Rex. These results are valid only for a 
laminar boundary layer on a flat plate.

As we move down the plate to larger and larger values of x, Rex increases 
linearly with x. At some point, infinitesimal disturbances in the flow begin to 
grow, and the boundary layer cannot remain laminar—it begins a transition 
process toward turbulent flow. 

For a smooth flat plate with a uniform free stream, the transition process begins 
at a critical Reynolds number, Rex, critical ≅105, and continues until the boundary 
layer is fully turbulent at the transition Reynolds number, Rex, transition ≅ 3·106 
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Boundary Layer (BL) Approximation

Not to scale

To scale
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Boundary Layer (BL) Approximation

BL Equations:  we restrict 
attention to steady, 2D, 
laminar flow (although 
method is fully applicable 
to unsteady, 3D, turbulent 
flow)

BL coordinate system
x : tangential direction
y : normal direction
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Turbulent Boundary Layer

Illustration of unsteadiness of a  
turbulent BL

Black lines:  instantaneous
Pink line:  time-averaged

Comparison of laminar and  
turbulent BL profiles
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Pressure Gradients

Shape of the BL is strongly 
influenced by external pressure 
gradient:

(a) favorable (dP/dx < 0)

(b) zero

(c) mild adverse (dP/dx > 0)

(d) critical adverse (τw = 0)

(e) large adverse with reverse (or 

separated) flow



ì

Pressure Gradients

The BL approximation is not 
valid downstream of a 
separation point because of 
reverse flow in the separation 
bubble.
Turbulent BL is more resistant 
to flow separation than 
laminar BL exposed to the 
same adverse pressure 
gradient

Laminar flow separates at corner

Turbulent flow does not separate


