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Dealing with Uncertainty

Machine-learned systems | Classic (online) algorithms

- Good on average - Provably good in the
- Not robust worst case
- No guarantees - Often overly pessimistic




A New Paradigm in Algorithmics

Machine-learned systems

- Good on average
- Not robust

- No guarantees
N\

Classic (online) algorithms

- Provably good in the
worst case

- Often overly pessimistic
J

Learning-augmented algorithms

- Do not assume a worst-case scenario

- Strong performance guarantees both
in theory and in practice

- No assumptions on the type of errors



Warmup: Predictive Binary Search” M
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Strategy: probe h(q). If g > A[h(q)] probe h(qg)+2' until
finding the right interval I for q.
Then apply binary search to 1.

“Lykouris and Vassilvitskii: Competitive Caching with Machine Learned Advice, ICML, 2018



Warmup: Predictive Binary Search M

t(q) - the true position of g in A

e = |t(q) - h(q)| - the prediction error
I
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The cost of Predictive Binary Search is at most
2log(e) which is bounded by 2log(n).

Even relatively weak predictions make Binary
Search faster!



The Ski Rental Problem ® AO\

X

é 1 - cost of renting per day
ééé b - cost of buying the skis

@ x - number of skiing days

Problem: to buy or not to buy?



o
2-Competitive Algorithm }

Competitive ratio: worst-case cost of ALG / best case cost

2-competitive strategy for Ski Rental:

- rent for the first b -1 days
- buyondayb

No deterministic algorithm can do better!



&
Ski Rental with Prediction x

What if we have a prediction of the number of skiing days?

‘ y - predicted number of skiing days

% X - true number of skiing days

, n =|x-y|- prediction error



RN
Ski Rental with Prediction - Nailve }

A naive strategy is to blindly follow the prediction:

- ify > b then buy on day 1;
- otherwise rent every day.

If the prediction is good, this has optimal cost OPT.

In case of large prediction error, though, the cost can
be unbounded: in general the cost is at most OPT +n.



* ® M
Consistency and Robustness }

Let c(n) be the competitive ratio of a
learning-augmented algorithm A.

Ais a-robust if ¢(n) < a for all n
Ais p-consistent if c(0) = 5

Consistency measures how well A does with perfect
predictions

Robustness measures how well A does with terrible
predictions

“Lykouris and Vassilvitskii: Competitive Caching with Machine Learned Advice, 2018



RN
Ski Rental with Untrusted Prediction}

Nalve Predictive Ski Rental: 1-consistent, not robust
(as c(n) = (OPT + )/ OPT = 1 + n/OPT.

A more judicious strategy” depending on A€(0,1) is:

- ify> b then buy on day I'Ab7;
- otherwise buy on day 'b/A1.

The parameter A determines how much we trust the
prediction.

This algorithm is (1+1/4)-robust and (1+4)-consistent.

*Ku mar, Purohit, Svitkina: Improving Online Algorithms via ML Predictions, NeurIPS, 2018
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Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{ (1+4)/A, (1+A)+n/(1-1)OPT }, A€(0,1).
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Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{|(1+1)/A | (1+A)+n/((1-1)OPT) }, A€(0,1).

Proof.
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Wheny > b and x>Tib1, ALG=b+[Ab1-1.

The worst competitive ratio is when x=[1b1, for which
OPT=l1b1. In this case,

ALG=b+IAb1-1< b+Ab < (1+A)/A)TAbT = ((1+A4)/A)OPT



RN
Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{|(1+1)/A | (1+A)+n/((1-1)OPT) }, A€(0,1).

Proof.
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For y < b, the worst case is when x =b/A1, as OPT=b
while ALG = b+ b/A1-1 < b+b/4 = ((1+1)/1)OPT.

In both cases, the competitive ratio is given by

((1+2)/2)OPT / OPT = (1+A4)/A
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Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{ (1+)/4 , (1+A)+n/((1-2)OPT) }, A€(0,1).

Proof.
[ 3 i i & |
0 x TAb1 b y

Fory > b, for all x <TAb1, it holds ALG = OPT = x.
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Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{ (1+)/4 , (1+A)+n/((1-2)OPT) }, A€(0,1).

Proof. N
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When [Ab1<x < b, itholds b <y <OPT +n
ALG = b+TAbT-1< (1+A)b < (1+4)(OPT+n)
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Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{ (1+)/ , (1+A)+n/(1-A)OPT }, A€(0,1).

Proof.
[ i i—8 & |
0 [AD] b x y

When y > b and x > b, OPT = b (buying on day 1) while
ALG = b+ AbT-1< (1+4)b = (1+1)OPT
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Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{ (1+)/4 , (1+A)+n/((1-2)OPT) }, A€(0,1).

Proof.
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Fory < b, forall x< b, it holds ALG = OPT =x
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Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{ (1+)/4 , (1+A)+n/((1-2)OPT) }, A€(0,1).

Proof. n
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Fory < band b <x<Tb/Al, we have
ALG = x < y+n < b+n = OPT+n
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Ski Rental with Untrusted Prediction}

Theorem: the competitive ratio of the algorithm is at
most min{ (1+)/4 , (1+A)+n/((1-2)OPT) }, A€(0,1).

Proof. N
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For y < b and x > b/A1, note that OPT=p,
n=x-y>b/A-b = (1-A)b/A and thus we have

ALG = b+Ib/A1-1 < b+b/A < b+n/(1-1) = OPT+n/(1-4)
From the previous cases, ALG < (1+2)OPT+n/(1-1).



RN
Ski Rental with Untrusted Prediction}

Corollary: Ski Rental with Untrusted Predictions is
(1+A)-consistent and (1+1/4)-robust, for any A€(0,1).




Algorithms with Untrusted Predictions

- Various flavours of Rent-Or-Buy

- Various flavours of Caching

- Various flavours of Scheduling

- Frequency Estimation

- Online Facility Location

- Bloom Filters

- Online Transportation Problems (work in progress...)




