Algorithms with Untrusted Predictions

Giulia Bernardini giulia.bernardini@units.it

Fundamentals of algorithms a.y. 2021/2022

Dealing with Uncertainty

Machine-learned systems

- Good on average
- Not robust
- No guarantees

Classic (online) algorithms

- Provably good in the worst case
- Often overly pessimistic

A New Paradigm in Algorithmics

Machine-learned systems

- Good on average
- Not robust
- No guarantees

Classic (online) algorithms

- Provably good in the worst case
- Often overly pessimistic

Learning-augmented algorithms

- Do not assume a worst-case scenario
- Strong performance guarantees both in theory and in practice
- No assumptions on the type of errors

Warmup: Predictive Binary Search*

h(q) - predicted location of q in A

Strategy: probe h(q). If q > A[h(q)] probe $h(q)+2^i$ until finding the right interval *I* for *q*. Then apply binary search to *I*.

^{*}Lykouris and Vassilvitskii: *Competitive Caching with Machine Learned Advice,* ICML, 2018

Even relatively weak predictions make Binary Search faster!

The Ski Rental Problem

- 1 cost of renting per day
- b cost of buying the skis
 - X number of skiing days

Problem: to buy or not to buy?

2-Competitive Algorithm

Competitive ratio: worst-case cost of ALG / best case cost

2-competitive strategy for Ski Rental:

- rent for the first b –1 days
- buy on day b

No deterministic algorithm can do better!

Ski Rental with Prediction

What if we have a prediction of the number of skiing days?

y - predicted number of skiing days

x - true number of skiing days

$$\eta = |x-y|$$
 - prediction error

Ski Rental with Prediction - Naïve

A naïve strategy is to blindly follow the prediction:

- if $y \ge b$ then buy on day 1;
- otherwise rent every day.

If the prediction is good, this has optimal cost OPT.

In case of large prediction error, though, the cost can be unbounded: in general the cost is at most OPT + η .

Consistency and Robustness*

Let $c(\eta)$ be the competitive ratio of a learning-augmented algorithm A.

A is α -robust if $c(\eta) \le \alpha$ for all η

A is β -consistent if c(0) = β

Consistency measures how well A does with perfect predictions

Robustness measures how well A does with terrible predictions

^{*}Lykouris and Vassilvitskii: *Competitive Caching with Machine Learned Advice,* 2018

Ski Rental with Untrusted Prediction

Naïve Predictive Ski Rental: 1-consistent, not robust (as $c(\eta) = (OPT + \eta) / OPT = 1 + \eta/OPT$.

A more judicious strategy^{*} depending on $\lambda \in (0,1)$ is:

- if $y \ge b$ then buy on day $\lceil \lambda b \rceil$;
- otherwise buy on day $\lceil b/\lambda \rceil$.

The parameter λ determines how much we trust the prediction.

This algorithm is $(1+1/\lambda)$ -robust and $(1+\lambda)$ -consistent.

Kumar, Purohit, Svitkina: Improving Online Algorithms via ML Predictions, NeurIPS, 2018

Theorem: the competitive ratio of the algorithm is at most min{ $(1+\lambda)/\lambda$, $(1+\lambda)+\eta/(1-\lambda)OPT$ }, $\lambda \in (0,1)$.

When $y \ge b$ and $x \ge \lceil \lambda b \rceil$, $ALG = b + \lceil \lambda b \rceil - 1$.

The worst competitive ratio is when $x=\Gamma\lambda b$, for which OPT= $\Gamma\lambda b$. In this case,

 $\mathsf{ALG} = b + \lceil \lambda b \rceil - 1 \le b + \lambda b \le ((1 + \lambda)/\lambda) \lceil \lambda b \rceil = ((1 + \lambda)/\lambda)\mathsf{OPT}$

For y < b, the worst case is when $x = \lceil b/\lambda \rceil$, as OPT=bwhile ALG = $b+\lceil b/\lambda \rceil-1 \le b+b/\lambda = ((1+\lambda)/\lambda)OPT$.

In both cases, the competitive ratio is given by

 $((1+\lambda)/\lambda)$ OPT / OPT = $(1+\lambda)/\lambda$

For $y \ge b$, for all $x < \lceil \lambda b \rceil$, it holds ALG = OPT = x.

Ski Rental with Untrusted Prediction

Theorem: the competitive ratio of the algorithm is at most min{ $(1+\lambda)/\lambda$, $(1+\lambda)+\eta/((1-\lambda)OPT)$ }, $\lambda \in (0,1)$.

When $\lceil \lambda b \rceil \le x \le b$, it holds $b \le y \le OPT + \eta$

ALG = $b + \lceil \lambda b \rceil - 1 \le (1 + \lambda)b \le (1 + \lambda)(OPT + \eta)$

When $y \ge b$ and $x \ge b$, OPT = b (buying on day 1) while

ALG = $b + \lceil \lambda b \rceil - 1 \le (1 + \lambda)b = (1 + \lambda)OPT$

For y < b, for all $x \le b$, it holds ALG = OPT = x

Ski Rental with Untrusted Prediction $\sum_{k=1}^{\infty}$ Theorem: the competitive ratio of the algorithm is at most min{ $(1+\lambda)/\lambda$, $(1+\lambda)+\eta/((1-\lambda)OPT)$ }, $\lambda \in (0,1)$. Proof.

For y < b and $b < x < \lceil b/\lambda \rceil$, we have

ALG = $x \le y + \eta < b + \eta = OPT + \eta$

For y < b and $x \ge \lceil b/\lambda \rceil$, note that OPT=b,

 $\eta = x - y > b/\lambda - b = (1 - \lambda)b/\lambda$ and thus we have

 $ALG = b + \lceil b/\lambda \rceil - 1 \le b + b/\lambda < b + \eta/(1 - \lambda) = OPT + \eta/(1 - \lambda)$

From the previous cases, $ALG \leq (1+\lambda)OPT+\eta/(1-\lambda)$.

Corollary: Ski Rental with Untrusted Predictions is $(1+\lambda)$ -consistent and $(1+1/\lambda)$ -robust, for any $\lambda \in (0,1)$.

Algorithms with Untrusted Predictions

- Various flavours of Rent-Or-Buy
- Various flavours of Caching
- Various flavours of Scheduling
- Frequency Estimation
- Online Facility Location
- Bloom Filters
- Online Transportation Problems (work in progress...)