Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste
II Semestre 2021

Lecture: Spatio-Temporal Reach and Escape Logic

WSN Monitoring System

Spread: after 10 time units, there exists a location I' at a certain distance from location I where the number of infected individuals is more than 50

Reliability: we can always find a path of sensors such that all sensors have a battery level greater than 0.5

Spots: regions with low density of protein A are always surrounded by regions with high level of protein B

How to specify such spatio-temporal behaviours in a formal and human-understandable language ?

How to monitor their onset efficiently?

Part 1:

- Space Model and traces
- Spatio- Temporal Reach and Escape Logic (STREL)

Part 2:

- Monitoring
- Applicability to different scenarios

RESULTS

PROPERTIES

Spatial Configuration

Sp-TemporalTrajectory

Running Example: Wireless Sensor Network

Space Model, Signal and Traces

Spatial Configuration

We consider a discrete space described as a weighted (direct) graph

Reasons:

- many applications, like bike sharing systems, smart grid and sensor networks are naturally framed in a discrete spatial structure
- in many circumstances continuous space is abstracted as a grid or as a mesh, e.g. numerical integration of PDEs

Space Model $S=\langle L, W\rangle$

- L is a set of nodes that we call locations;
- $W \subseteq L \times \mathbb{R} \times L$ is a proximity function associating a label $w \in \mathbb{R}$ to distinct pair $\ell_{1}, \ell_{2} \in L$. If $\left(\ell_{1}, w, \ell_{2}\right) \in W$, it means that there is an edge from ℓ_{1} to ℓ_{2} with weight $w \in \mathbb{R}$

Example

Route $\tau=\ell_{0} \ell_{1} \ell_{2} \ldots$

It is a infinite sequence s.t. $\forall i \geq 0 \exists w$ s.t. $\left(\ell_{i}, w, \ell_{i+1}\right) \in W$

$\ell_{0} \ell_{1} \ell_{2} \ell_{1} \ldots$ is a route
$\ell_{0} \ell_{1} \ell_{2} \ell_{3} \ldots$ is a not route
$\tau[i]$ to denote the $i-t h$ node τ
$\tau(\ell)$ to denote the first occurrence of $\ell \in \tau$

Route Distance $d_{\tau}^{f}[i]$

The distance $d_{\tau}^{f}[i]$ up to index i is:

$$
\begin{aligned}
& d_{\tau}^{f}[i]= \begin{cases}0 & i=0 \\
f\left(d_{\tau[1 . .]}^{f}[i-1], w\right) & (i>0) \text { and } \tau[0] \stackrel{w}{\mapsto} \tau[1]\end{cases} \\
& d_{\tau}^{f}(\ell)=d_{\tau}^{f}[\tau(\ell)]
\end{aligned}
$$

Route Distance $d_{\tau}^{f}[i]$

$$
\begin{aligned}
& \operatorname{weight}(x, y)=x+y \\
& \operatorname{hops}(x, y)=x+1
\end{aligned}
$$

$$
\begin{aligned}
d_{\ell_{0} \ell_{1} \ell_{2 .} .}^{\text {weight }}[2] & =\text { weight }\left(d_{\ell_{1} \ell_{2 . .}}^{\text {weight }}[1], 4\right)=d_{\ell_{1} \ell_{2}}^{\text {weight }}[1]+4=\ldots \\
& =\text { weight }\left(d_{\ell_{2} . .}^{\text {weight }}[0], 2\right)+4=6
\end{aligned}
$$

Location Distance $d_{S}^{f}\left[\ell_{i}, \ell_{j}\right]$

$$
d_{s}^{f}\left[\ell_{i}, \ell_{j}\right]=\min \left\{d_{\tau}\left[\ell_{j}\right] \mid \tau \in \operatorname{Routes}\left(S, \ell_{i}\right)\right\}
$$

$$
d_{S}^{\text {hops }}\left[\ell_{0}, \ell_{2}\right]=\mathbf{2}
$$

Location Distance

$$
d_{S}^{f}\left[\ell_{i}, \ell_{j}\right]=\min \left\{d_{\tau}\left[\ell_{j}\right] \mid \tau \in \operatorname{Routes}\left(S, \ell_{i}\right)\right\}
$$

$$
d_{s}^{\text {hops }}\left[\ell_{0}, \ell_{2}\right]=\mathbf{1}
$$

Signal and Trace

Spatio-Temporal Signals $\quad \sigma: L \rightarrow \mathbb{T} \rightarrow D$

Spatio-Temporal Trace $\quad \overrightarrow{\boldsymbol{x}}: L \rightarrow \mathbb{T} \rightarrow D^{n}$

$$
\begin{aligned}
& x(\ell)=\left(v_{B}, v_{T}\right) \\
& x(\ell, t)=\left(v_{B}(t), v_{T}(t)\right)
\end{aligned}
$$

Dynamic Spatial Model

$$
\left(t_{i}, S_{i}\right) \text { for } i=1, \ldots, n \text { and } S(t)=S_{i} \forall t \in\left[t_{i}, t_{i+1}\right)
$$

STREL

Spatio- Temporal Reach and Escape Logic (STREL)

It is an extension of the Signal Temporal Logic with a number of spatial modal operators

STREL Syntax

$$
\varphi:=\operatorname{true}|\mu| \neg \varphi\left|\varphi_{1} \wedge \varphi_{2}\right| \varphi_{1} \mathrm{U}_{I} \varphi_{2}\left|\varphi_{1} \mathrm{~S}_{I} \varphi_{2}\right| \varphi_{1} \mathcal{R}_{d}^{f} \varphi_{2} \mid \mathcal{E}_{d}^{f} \varphi
$$

In addition, we can derive:

- The disjunction operator: V
- the temporal operators: $F_{I}, G_{I}, O_{I}, \mathrm{H}_{\mathrm{I}}$
- the spatial operators: somewhere, everywhere and surround

Reach: $\quad \varphi_{1} \mathcal{R}_{\left[d_{1}, d_{2}\right]}^{f} \varphi_{2}$

(S, \vec{x}, ℓ, t) satisfies $\varphi_{1} \mathcal{R}_{\left[d_{1}, d_{2}\right]}^{f} \varphi_{2}$ iff it satisfies φ_{2} in a location ℓ^{\prime} reachable from ℓ through a route τ, with a length $d_{\tau}^{f}\left[\ell^{\prime}\right] \in\left[d_{1}, d_{2}\right]$ and such that $\tau[0]=\ell$ and all its elements with index less than $\tau\left(\ell^{\prime}\right)$ satisfy φ_{1}

Reach yellow $\mathcal{R}_{[1,4]}^{\text {hops }}$ pink

$$
\begin{aligned}
& \tau=\ell_{3} \ell_{13} \ell_{14} \ell_{17} \ell_{35} \\
& d_{\tau}^{h o p s}\left[\ell_{35}\right]=4, \text { where } \tau[0]=\ell_{3}
\end{aligned}
$$

Escape:
 $\mathcal{E}_{\left[d_{1}, d_{2}\right]}^{f} \varphi$

(S, \vec{x}, ℓ, t) satisfies $\mathcal{E}_{\left[d_{1}, d_{2}\right]}^{f} \varphi$ if and only there exists a route τ and a location $\ell^{\prime} \in \tau$ such that $\tau[0]=\ell, d_{S}^{f}\left[\ell, \ell^{\prime}\right] \in\left[d_{1}, d_{2}\right]$ and all elements $\tau[0], \ldots \tau[k]$ (with $\tau\left(l^{\prime}\right)=k$) satisfy φ

Escape: $\quad \mathcal{E}_{[3, \infty]}^{\text {hops }}$ orange

Somewhere:
 $\diamond_{\left[d_{1}, d_{2}\right]}^{f} \varphi$

(S, \vec{x}, ℓ, t) satisfies $\diamond_{\left[d_{1}, d_{2}\right]}^{f} \varphi \quad$ iff there exists a location ℓ^{\prime} reachable from ℓ, via a path with length $d_{\tau}^{f}\left[\ell^{\prime}\right] \in\left[d_{1}, d_{2}\right]$, that satisfies φ

$$
\begin{aligned}
& \tau[0]=\ell_{1}, \tau[k]=\ell_{35} \\
& \tau=\ell_{1} \ldots \ell_{35} \\
& d_{\tau}^{h o p s}(k) \in[3,5]
\end{aligned}
$$

Everywhere: $\quad \square_{\left[d_{1}, d_{2}\right]}^{f} \varphi$

(S, \vec{x}, ℓ, t) satisfies $\square_{\left[d_{1}, d_{2}\right]}^{f} \varphi$ iff all the locations ℓ^{\prime} reachable from ℓ via a path with length $d_{\tau}^{f}\left[\ell^{\prime}\right] \in\left[d_{1}, d_{2}\right]$, satisfy φ

$$
\square_{[2,3]}^{h o p s} \text { yellow }
$$

Surround:
 $\varphi_{1} \bigcirc_{\left[d_{1}, d_{2}\right]}^{f} \varphi_{2}$

(S, \vec{x}, ℓ, t) iff there exists a φ_{1}-region that contains ℓ, all locations in that region satisfies φ_{1} and are reachable from ℓ via a path with length less than d_{2}.
All the locations that do not belong to the φ_{1}-region but are directly connected to a location of that region must satisfy φ_{2} and be reached from ℓ via a path with length in the interval $\left[\mathrm{d}_{1}, d_{2}\right]$.

Surround: green $\bigcirc_{[0,100]}^{\text {hops }}$ blue

Surround: green $\odot_{[2,3]}^{\text {hops }}$ blue

