Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste
II Semestre 2021

Lecture: Spatio-Temporal Reach and Escape Logic

Offline Monitoring Algorithm

Spatial Boolean Signal

$s_{\varphi}: L \rightarrow[0, T] \rightarrow\{0,1\} \quad$ such that $\quad s_{\varphi}(\ell, t)=1 \Leftrightarrow(\mathcal{S}, \vec{x}, \ell, t) \vDash \varphi$

Offline Monitoring Algorithm

Spatial Quantitative Signal

$\rho_{\varphi}: L \rightarrow[0, T] \rightarrow \mathbb{R} \cup \pm \infty \quad$ such that $\quad \rho_{\varphi}(\ell, t)=\rho(\mathcal{S}, \vec{x}, \ell, t)$

> Spatial Configuration

Sp-TemporalTrajectory

Offline Monitoring Algorithm

Computational consideration

- Temporal operators: like in STL monitoring [1] is linear in the length of the signal times the number of locations in the spatial model.
- Spatial properties are more expensive, they are based on a variations of the classical Floyd-Warshall algorithm.
The number of operations to perform is quadratic for the reach operator and cubic for the escape

Static Space and Regular Grid

The formation of Patterns

The production of skin pigments that generate spots in animal furs:

Space model: a $K \times K$ grid treated as a graph, cell $(i, j) \in L=\{1, \ldots, K\} \times\{1, \ldots, K\}$

Spatio-Temporal Trajectory:

$$
x: L \rightarrow \mathbb{T} \rightarrow \mathbb{R}^{2} \text { s.t. } \quad x(\ell)=\left(x_{A}, x_{B}\right)
$$

Spot formation property

The formation of Patterns

$$
\phi_{\text {pattern }}:=\text { 回 }^{\text {hops }} \wedge_{[0,15]}^{\text {hops }} \phi_{\text {spot }}^{\text {form }}
$$

Perturbation Property

$$
\begin{aligned}
\phi_{\text {pert }} & :=\left(x_{A} \geq 10\right) \wedge\left(\phi_{\text {absorb }} \odot_{[1,2]}^{\text {hops }} \phi_{\text {no_effect }}\right) \\
& \rightarrow \phi_{\text {absorb }}=F_{[0,1]} G_{[0,10]}\left(x_{A}<3\right) \\
& \phi_{\text {noeffect }}:=G_{[0,20]}\left(x_{A}<3\right)
\end{aligned}
$$

Static Space and Stochastic Systems

Application to Stochastic Systems

STREL can be applied on stochastic systems considering methodologies as Statistical Model Checking (SMC)

Stochastic process $\mathcal{M}=(\mathcal{T}, \mathcal{A}, \mu)$ where \mathcal{T} is a trajectory space and μ is a probability measure on a σ-algebra of \mathcal{T}.

We approximate the satisfaction probability $S(\varphi, t)$, i.e. the probability that a trajectory generated by the stochastic process \mathcal{M} satisfies the formula ϕ.

We can do something similar with the quantitative semantics computing the robustness distribution

Bike Sharing Systems (BSS)

London Santander Cycles Hire network

- 733 bike stations (each with 20-40 slots)
- a total population of 57,713 agents (users) picking up and returning bikes

We model it as a Population Continuous Time Markov Chain (PCTMC) with timedependent rates, using historic journey and bike availability data.

Prediction for 40 minutes.

Bike Sharing Systems (BSS)

Spatio-Temporal Trajectory:

$$
x: L->\mathbb{T} \rightarrow \mathbb{Z}^{2} \text { s.t. } \quad x(i, t)=\left(B_{i}(t), S_{i}(t)\right)
$$

Space model

- Locations: $L=\{$ bike stations $\}$,
- Edges: $\left(\ell_{i}, w, \ell_{j}\right) \in W$ iff $\mathrm{w}=\left\|\ell_{i}-\ell_{j}\right\|<1$ kilometer

Availability of Bikes $\quad \phi_{1}=\mathrm{G}\left\{\widehat{\otimes}_{[0, d]}^{\text {weight }}(B>0) \wedge \otimes_{[0, d]}^{\text {weight }}(S>0)\right\}$

std in $[0,0.0158]$, mean $s t d=0.0053$.

std in $[0,0.0158]$, mean std $=0.0039$.

Availability of Bikes $\quad \phi_{1}=\mathrm{G}\left\{\otimes_{[0, d]}^{\text {weight }}(B>0) \wedge \otimes_{[0, d]}^{\text {weight }}(S>0)\right\}$

std in [0, 0.0151] , mean std $=0.0015$.
$d=600 m$

std in [0, 0.0142] , mean std $=0.0002$.

Availability of Bikes $\quad \phi_{1}=\mathrm{G}\left\{\otimes_{[0, d]}^{\text {weight }}(B>0) \wedge \otimes_{[0, d]}^{\text {weight }}(S>0)\right\}$

Satisfaction probability of some BBS stations vs distance $\mathrm{d}=[0,1.0]$

Bike Sharing Systems (BSS)

$$
\psi_{1}=\mathrm{G}\left\{\otimes_{[0, d]}^{w e i g h t}\left(\mathrm{~F}_{\left[t_{w}, t_{w}\right]} B>0\right) \wedge \otimes_{[0, d]}^{w e i g h t}\left(\mathrm{~F}_{\left[t_{w}, t_{w}\right]} S>0\right)\right\}
$$

Average walking speed of $6.0 \mathrm{~km} / \mathrm{h}$, e.g. $\mathrm{d}=0.5 \mathrm{~km}->t_{w}=6$ minutes

The results similar to the results of previous property

Dynamic Space

Mobile Ad-hoc sensor NETwork (MANET)

Mobile Ad-hoc sensor NETwork (MANET)

Mobile Ad-hoc sensor NETwork (MANET)

Space model $S(t)$

- Locations: $L=\{$ devices $\}$,
- Edges: $\left(\ell_{i}, w, \ell_{j}\right) \in W$ iff $\mathrm{w}=\left\|\ell_{i}-\ell_{j}\right\|<\min \left(r_{i}, r_{j}\right)$

Spatio-Temporal Trajectory: $\quad x: L \rightarrow>\mathbb{T} \rightarrow \mathbb{Z} \times \mathbb{R}^{2}$ s.t. $x(i, t)=($ nodeType, battery, temperature $)$ nodeType $=1,2,3$ for coordinator, rooter, and end_device

Connectivity in a MANET

"an end device is either connected to the coordinator or can reach it via a chain of routers"
"broken connection is restored within h time units"

Connectivity in a MANET

"an end device is either connected to the coordinator or can reach it via a chain of routers"

$$
\phi_{\text {connect }}=\text { device } \mathcal{R}_{[0,1]}^{\text {hop }}\left(\text { router } \mathcal{R}^{\text {hop }} \text { coord }\right)
$$

"broken connection is restored within h time units"

$$
\phi_{\text {connect_restore }}=\mathrm{G}\left(\neg \phi_{\text {connect }} \rightarrow \mathrm{F}_{[0, h]} \phi_{\text {connect }}\right)
$$

Boolean Satisfaction at each time step

$$
\phi_{\text {connect }}=\text { device } \mathcal{R}_{[0,1]}^{\text {hop }}\left(\text { router } \mathcal{R}^{\text {hop }} \text { coord }\right)
$$

Delivery in a MANET

"from a given location, we can find a path of (hops) length at least 5 such that all nodes along the path have a battery level greater than 0.5 "

$$
\psi_{3}=\mathcal{E}_{[5, \infty]}^{h o p s}(\text { batter } y>0.5)
$$

Reliability in a MANET

"reliability in terms of battery levels, egg. battery level above 0.5

$$
\phi_{\text {reliable_router }}=((\text { batter } y>0.5) \wedge \text { router }) \mathcal{R}^{\text {hop }} \text { coord }
$$

$$
\phi_{\text {reliable_connect }}=\text { device } \mathcal{R}_{[0,1]}^{\text {hop }}\left(\phi_{\text {reliable_router }}\right)
$$

MOOnlight: https://github.com/MoonLightSuite/MoonLight/wiki

\bigcirc w		Why Github? \vee Tear	Enterprise	Explore $\checkmark \mathrm{Ma}$	e Pricing			Search	1	Sign in		Sign up			
日 MoonLightSuite / MoonLight									\bigcirc Watch	7		3 Star	4	\% Fork	1
<> Code	(1) Issues 2	\%\% Pull requests	© Actions	四 Projects 1	$\square \mathrm{wiki}^{\text {i }}$	(1) Security	$\underline{\sim}$ Insights								
Home Simone edited this page on 1 Jul - 30 revisions															
MoonLight build passing codecov 39\%									- Pages 5						
MoonLight is a light-weight Java-tool for monitoring temporal, spatial and spatio-temporal properties of distributed complex systems, as Cyber-Physical Systems and Collective Adaptive Systems. It supports the specification of properties written with the Reach and Escape Logic (STREL). STREL is a linear-time temporal logic, in particular, it extends the Signal Temporal Logic (STL) with a number of spatial operators that permit to described complex spatial behaviors as being surround, reaching target locations, and escaping from specific regions. MoonLightis implemented in Java, but it features also a MATLAB interface that allows the monitoring of spatio-temporal signals generated within the MATLAB framework. A Python Interface is under development. Getting Started									- Moonlight - Script Syntax - Matlab - Installation - Getting Started - Python - License Clone this wiki locally						
									https://github.com/Moor		๒				
First, you need to download JAVA (version 8) and set the environmental variable															
JAVA_HOME= path to JAVA home directory															
Then you need to get or generate the executable for Python or MATLAB.															
First, you need to clone our repository															
\$ git clone https://github.com/MoonLightSuite/MoonLight.git															
Then you need to compile it by executing the following Gradle tasks in the console															

Bibliography

Mining Requirements:

- Ezio Bartocci, Luca Bortolussi, Laura Nenzi, Guido Sanguinetti, System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587: 3-25 (2015)
$>$ Jin, Deshmukh et al. Mining Requirements from Closed-loop Control Models (HSCC'13, IEEE Trans. On Computer Aided Design '15)
- Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties, FORMATS, 2014
- Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.i,Temporal logic based monitoring of assisted ventilation in intensive care patients, ISoLA, 2014.
- Nenzi L., Silvetti S., Bartocci E., Bortolussi L. (2018) A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 2018. LNCS, vol 11024. Springer, Cham.

