
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

II Semestre 2021

Lecture: Spatio-Temporal Reach and Escape Logic



Offline Monitoring Algorithm 

Spatial Boolean Satisfaction

Introduction SSTL Case Study Monitoring SSTL Algorithms Results Conclusions

Monitoring SSTL
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Spatial Boolean Signal

s' ∶ L→ [0,T ]→ {0,1} such that s'(`, t) = 1⇔ (S, �x , `, t) � '
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⇢' ∶ L→ [0,T ]→ R ∪ ±∞ such that ⇢'(`, t) = ⇢(S, �x , `, t)
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SSTL Syntax

' ∶= µ � ¬' � '1 ∧'2 � '1 U[t1,t2] '2 � �[d1,d2]' � '1 �[d1,d2] '2

In addition F[t1,t2]' ∶= U[t1,t2]', G[t1,t2]' ∶= ¬F[t1,t2]¬', �'[d1,d2] ∶= ¬�¬[d1,d2] '.
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Computational consideration

• Temporal operators: like in STL monitoring [1] is linear in the length of 
the signal times the number of locations in the spatial model. 

• Spatial properties are more expensive, they are based on a variations 
of the classical Floyd-Warshall algorithm. 
The number of operations to perform is quadratic for the reach 
operator and cubic for the escape

[1] O. Maler, T. Ferrére, and D. Nickovic. Efficient Robust Monitoring for STL. In Proc.CAV 2010



Static Space and Regular Grid
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Pattern formation

The production of skin pigments that generate spots in animal furs:
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The production of skin pigments that generate spots in animal furs:

Space model: a K×K grid treated as a graph,   cell 8, : ∈ < = {1, … , A}×{1, … , A}

Spatio-Temporal Trajectory: D: < −> H → ℝ! s.t. D ℓ = (D", D#)
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Spot formation property

�spotform ∶= F[Tpattern,Tpattern+�]G[0,Tend ]((xA ≤ h)S[w1,w2](xA > h))
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Spots formation property
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�x = (xA, xB) ∶ T × L→ R2 is the trace (with L = {1, ..,32} × {1, ..,32})

Spot formation property

F[18,20]G[0,30]((A ≤ 0.5)�[1,4] (A > 2))

�spotform = F[19,20]G((A ≤ 0.5)�hops[1,w2] (A > 0.5))
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Pattern property

�pattern ∶= �[0,w]� [0,w ′]�spotform ,

� w is the distance to cover all space

� w′ measures the distance between spots
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Fig. 5. Concentration of protein A for the reaction-diffusion system for the frames with t =
0,5,7,12,20,50 time units. The initial conditions (i.e. the initial concentration of A and B) are
set randomly. The colour map for the concentration is specified in the legend on the right.
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Fig. 6. (a) Boolean (left) and quantitative (right) satisfaction of the (spot formation) property;
in the Boolean case the cells that satisfy the formula are in red; (b) Snapshots at time t = 50 of
protein A for the reaction-diffusion model with different diffusion rates for which we have the
formation of different patterns.

4.1 Properties

Spot (�spot ∶= (A <= h)�hops[d1,d2] (A > h)) holds in sub-regions that have low concen-
tration of A, surrounded by a high concentrations of A. In detail, this property holds
in the location ` that belongs to a region L′ of the grid where all elements satisfy the
atomic proposition A <= h and their distance from ` belong to the interval is less than
d2. Furthermore, each element directly connected with L′ satisfy A > 0, and its distance
from ` belongs to [d1d2]. The elements in the boundary correspond to all elements di-
rectly connected to a location of L′. Note that the use of distance bounds in the surround
operator allows one to constrain the size/ diameter of the spot to [d1d2]. If we have only
one type of distance function, the name in the formula can be even omitted.

Spot Formation (F[T,T+�]G(spot)) means that from a point in the future between T
and T +� the spot property should always hold. In Fig.6(a) we can see the Boolean and
quantitative satisfaction of the Spot Formation formula with h = 0.5, T = 19, � = 1, d1 =
1, d2 = 6 for the trajectory reported in Fig. 5.

Pattern (� �[0,dspot] spotformation) means that each node in the grid should be
connected to a node at a distance less than dspot where the spot property holds, where
dspot represent the maximum distance between spots. This property permits to describe
a global behaviour. As we pointed in the description of the logic the monitor is done
in each location, differently from the temporal part where we define the satisfaction
of the whole trajectory as the satisfaction at time zero. Using the everywhere operator
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Fig. 5. Concentration of protein A for the reaction-diffusion system for the frames with t =
0,5,7,12,20,50 time units. The initial conditions (i.e. the initial concentration of A and B) are
set randomly. The colour map for the concentration is specified in the legend on the right.
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Fig. 6. (a) Boolean (left) and quantitative (right) satisfaction of the (spot formation) property;
in the Boolean case the cells that satisfy the formula are in red; (b) Snapshots at time t = 50 of
protein A for the reaction-diffusion model with different diffusion rates for which we have the
formation of different patterns.
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d2. Furthermore, each element directly connected with L′ satisfy A > 0, and its distance
from ` belongs to [d1d2]. The elements in the boundary correspond to all elements di-
rectly connected to a location of L′. Note that the use of distance bounds in the surround
operator allows one to constrain the size/ diameter of the spot to [d1d2]. If we have only
one type of distance function, the name in the formula can be even omitted.

Spot Formation (F[T,T+�]G(spot)) means that from a point in the future between T
and T +� the spot property should always hold. In Fig.6(a) we can see the Boolean and
quantitative satisfaction of the Spot Formation formula with h = 0.5, T = 19, � = 1, d1 =
1, d2 = 6 for the trajectory reported in Fig. 5.

Pattern (� �[0,dspot] spotformation) means that each node in the grid should be
connected to a node at a distance less than dspot where the spot property holds, where
dspot represent the maximum distance between spots. This property permits to describe
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in each location, differently from the temporal part where we define the satisfaction
of the whole trajectory as the satisfaction at time zero. Using the everywhere operator
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Pattern property

�pattern ∶= �[0,w]� [0,w ′]�spotform ,

� w is the distance to cover all space

� w′ measures the distance between spots

�pattern ∶= �hops �hops[0,15] �spotform
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Perturbation Property
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Perturbation property

�pert ∶= (xA ≥ hpert) ∧ (�1S[wm,wM]�2)
� �1 = F[0,Tp]G[0,Td ](xA < h′);
� �2 ∶= G[0,T ](xA < h′)

�pert ∶= (xA ≥ 10) ∧ (�absorb �hops[1,2] �no e↵ect)
� �absorb = F[0,1]G[0,10](xA < 3);� �noe↵ect ∶= G[0,20](xA < 3)(a)
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Application to Stochastic Systems

STREL can be applied on stochastic systems considering methodologies as 
Statistical Model Checking (SMC)

Stochastic process             where is a trajectory space and ' is a probability 
measure on a σ-algebra of 

We approximate the satisfaction probability ((*, +), i.e. the probability that a 
trajectory generated by the stochastic process      satisfies the formula φ.

Monitoring Spatio-Temporal Properties (Invited Tutorial) 11

stochastic processM = (T ,A, µ), where T is a trajectory space and µ is a probability
measure on a �-algebraA of T , a quantity for measuring how a certain STREL formula
' is satisfied by M is the satisfaction probability S(', t), i.e. the probability that a
trajectory generated by the stochastic processM satisfies the formula ' at the time t:
E[s(', ⇠, t)] = ∫⇠∈T s(', ⇠, t)dµ(⇠) where s(', ⇠, t) = 1 if (⇠, t) � ' and 0 otherwise.
The quantitative counterpart of the satisfaction probability is the expected robustness,
defined as �⇢(', t)� ∶= E[⇢(', ⇠, t)] = ∫⇠∈T ⇢(', ⇠, t)dµ(⇠) that is the expectation of
the robustness computed over the trajectories ofM.

More specifically, SMC for satisfaction probability works by pipelining the gener-
ation of traces and their monitoring: every time a trace is generated by the simulator, it
is passed to the Boolean monitor, which returns either 0 (false) or 1 (true). Probabilis-
tically, this can be seen as a sample of a Bernoulli random variable, having probability
p(�) of observing 1. From a finite sample of such values, we can rely on standard sta-
tistical tools to estimate p(�) and to compute the confidence level of such an estimate.
Estimation of average robustness works in a similar way. Examples of spatio-temporal
model checking to compute the approximated probabilistic satisfaction can be found
in [14]. Analyzing these systems through the computation of satisfaction probability
and/or average robustness, can therefore bring key insights in assessing and evaluating
the design choices being made. The combination of Statistical Model Checking with
quantitative semantics has been explored earlier for STL in [9] and applied to tasks like
system design and parameter synthesis [9,25].

4 Static Space and Regular Grid: the formation of Patterns

We consider here the simplest scenario, a regular grid, with only hop distance function
and a deterministic model. In particular, in this example, we show how to exploit the
surround operator to specify the formation of patterns and some other spatio-temporal
related properties.

Model and Trace. The space model is a K ×K grid treated as a weighted undirected
graph, where each cell (i, j) ∈ {1, . . . ,K}×{1, . . . ,K} is a location, edges connect each
pairs of neighbouring nodes along four directions and they have only one label which
corresponds to the hop distance function, i.e. if two cells are neighbors the distance is
equal to one.

The spatio-temporal trace describes the concentration of two proteins A and B in
each cell of the grid at each time step. It is generated by a reaction-diffusion system,
discretised according to a Finite Difference scheme [63], as a system of ODEs whose
variables are organised in the K ×K rectangular grid. Fig. 5 reports the concentration
of A for a number of time steps. It can be seen that from time t = 20 the shape of
the pattern is apparent and remains stable; the pattern consists in a almost equidistant
distribution of (blue) spots which have a low concentration of A surrounded by regions
with a high concentration of A. For protein B (not shown) happens the opposite (high
density regions surrounded by low density regions). More details about the model can
be found here [62].
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variables are organised in the K ×K rectangular grid. Fig. 5 reports the concentration
of A for a number of time steps. It can be seen that from time t = 20 the shape of
the pattern is apparent and remains stable; the pattern consists in a almost equidistant
distribution of (blue) spots which have a low concentration of A surrounded by regions
with a high concentration of A. For protein B (not shown) happens the opposite (high
density regions surrounded by low density regions). More details about the model can
be found here [62].

Stochastic Semantics
The average robustness E (R') is the mean of the distribution,

P (X 2 {~x 2 D | ⇢(�, ~x , 0) 2 [a, b]}) = P (R'(X) 2 [a, b])

where R'(X) is a real-value random-variable.
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We can do something similar with the 
quantitative semantics computing the 
robustness distribution



London Santander Cycles Hire network

- 733 bike stations (each with 20-40 slots) 
- a total population of 57,713 agents (users)         

picking up and returning bikes

We model it as a Population Continuous 
Time Markov Chain (PCTMC) with time-
dependent rates, using historic journey and 
bike availability data.

Prediction for 40 minutes.

Bike Sharing Systems (BSS)



Spatio-Temporal Trajectory: -: / −> 2 → ℤ# s.t. - 5, + = 7$ + , ($ +

Space model  
• Locations: / = {95:; <+=+5>?<},    
• Edges: ℓ$, B, ℓ% ∈ D iff w = ∥ ℓ$ − ℓ% ∥ < 1 :5I>J;+;K

Bike Sharing Systems (BSS)
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5.1 Properties

We use STREL to study spatio-temporal properties of the system and to explore their
robustness considering a set of parameter values for the formulas. In the following, we
will consider the distance induced by the function �(v, (x, y)) = v + ��(x, y)��2, where(x, y) are the coordinates of the distance vector between two adjacent nodes, while v is
the distance incrementally computed by �.

Local Availability One of the main problems of these systems consists in the avail-
ability of bikes or free slots in each station. The most interesting question related to this
issue from a user’s point of view is “If I don’t find a bike (free slot, resp.) here, can
I find another station close enough where there is an available bike (resp. free slot)?”
This concern can be expressed by the STREL property described below:

�1 = G{�weight[0,d] (B > 0) ∧�weight[0,d] (S > 0)} (1)

A station ` satisfies �1 if and only if it is always true that, between 0 and Tend minutes,
there exists a station at a distance less than or equal to d, that has at least one bike and
a station at a distance less or equal to d that has at least one free slot.

In the analysis, we investigate the value of parameter d ∈ [0,1] kilometres to see
how the satisfaction of the property changes in each location. Figure 7 shows the ap-
proximate satisfaction probability p�1 for 1000 runs for all the stations, for (a) d = 0,
and (b) d = 0.3 For d = 0, we can see that many stations have a high probability to be
full or empty (indicated by red points), i.e. low values of satisfaction probability, with
standard deviation of all the locations in the range [0, 0.0158] and mean standard devi-
ation 0.0053. However, increasing d to d = 0.3 kilometres, i.e. allowing a search area of
up to 300 metres from the station that currently has no bikes, or no slots respectively, we
greatly increase the satisfaction probability of �1, with a standard deviation that remains
in the same range and mean standard deviation of 0.0039. For d = 0.5, the probability of
p�1 is greater than 0.5 for all the stations; standard deviation is in the range [0, 0.0142]
and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability of some BBS
stations vs distance d=[0,1.0].

Timed Availability The property we analyzed previously did not consider that a user
will need some time to reach a nearby station. Property '1 can be refined to take this
aspect into consideration by considering a nested spatio-temporal property:

 1 = G[0,Tend]{��[0,d](F[tw,tw]B > 0) ∧��[0,d](F[tw,tw]S > 0)} (2)

A station ` satisfies  1 if and only if it is always true between 0 and Tend minutes that
there exists a station at a distance less than or equal to d, that, eventually in a time equal
to tw (the walking time), has at least one bike and a station at a distance less than or
equal to d, that, eventually in a time equal to tw has at least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example that if
we evaluate a distance d = 0.5 kilometers, we consider a walking time tw = 6 minutes.
The results of  1 are very similar to the results of �1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b) shows
the difference between the satisfaction probability of properties  1, �1 for the same
locations.
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5.1 Properties

We use STREL to study spatio-temporal properties of the system and to explore their
robustness considering a set of parameter values for the formulas. In the following, we
will consider the distance induced by the function �(v, (x, y)) = v + ��(x, y)��2, where(x, y) are the coordinates of the distance vector between two adjacent nodes, while v is
the distance incrementally computed by �.

Local Availability One of the main problems of these systems consists in the avail-
ability of bikes or free slots in each station. The most interesting question related to this
issue from a user’s point of view is “If I don’t find a bike (free slot, resp.) here, can
I find another station close enough where there is an available bike (resp. free slot)?”
This concern can be expressed by the STREL property described below:

�1 = G{�weight[0,d] (B > 0) ∧�weight[0,d] (S > 0)} (1)

A station ` satisfies �1 if and only if it is always true that, between 0 and Tend minutes,
there exists a station at a distance less than or equal to d, that has at least one bike and
a station at a distance less or equal to d that has at least one free slot.

In the analysis, we investigate the value of parameter d ∈ [0,1] kilometres to see
how the satisfaction of the property changes in each location. Figure 7 shows the ap-
proximate satisfaction probability p�1 for 1000 runs for all the stations, for (a) d = 0,
and (b) d = 0.3 For d = 0, we can see that many stations have a high probability to be
full or empty (indicated by red points), i.e. low values of satisfaction probability, with
standard deviation of all the locations in the range [0, 0.0158] and mean standard devi-
ation 0.0053. However, increasing d to d = 0.3 kilometres, i.e. allowing a search area of
up to 300 metres from the station that currently has no bikes, or no slots respectively, we
greatly increase the satisfaction probability of �1, with a standard deviation that remains
in the same range and mean standard deviation of 0.0039. For d = 0.5, the probability of
p�1 is greater than 0.5 for all the stations; standard deviation is in the range [0, 0.0142]
and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability of some BBS
stations vs distance d=[0,1.0].

Timed Availability The property we analyzed previously did not consider that a user
will need some time to reach a nearby station. Property '1 can be refined to take this
aspect into consideration by considering a nested spatio-temporal property:

 1 = G[0,Tend]{��[0,d](F[tw,tw]B > 0) ∧��[0,d](F[tw,tw]S > 0)} (2)

A station ` satisfies  1 if and only if it is always true between 0 and Tend minutes that
there exists a station at a distance less than or equal to d, that, eventually in a time equal
to tw (the walking time), has at least one bike and a station at a distance less than or
equal to d, that, eventually in a time equal to tw has at least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example that if
we evaluate a distance d = 0.5 kilometers, we consider a walking time tw = 6 minutes.
The results of  1 are very similar to the results of �1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b) shows
the difference between the satisfaction probability of properties  1, �1 for the same
locations.
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5.1 Properties

We use STREL to study spatio-temporal properties of the system and to explore their
robustness considering a set of parameter values for the formulas. In the following, we
will consider the distance induced by the function �(v, (x, y)) = v + ��(x, y)��2, where(x, y) are the coordinates of the distance vector between two adjacent nodes, while v is
the distance incrementally computed by �.

Local Availability One of the main problems of these systems consists in the avail-
ability of bikes or free slots in each station. The most interesting question related to this
issue from a user’s point of view is “If I don’t find a bike (free slot, resp.) here, can
I find another station close enough where there is an available bike (resp. free slot)?”
This concern can be expressed by the STREL property described below:

�1 = G{�weight[0,d] (B > 0) ∧�weight[0,d] (S > 0)} (1)

A station ` satisfies �1 if and only if it is always true that, between 0 and Tend minutes,
there exists a station at a distance less than or equal to d, that has at least one bike and
a station at a distance less or equal to d that has at least one free slot.

In the analysis, we investigate the value of parameter d ∈ [0,1] kilometres to see
how the satisfaction of the property changes in each location. Figure 7 shows the ap-
proximate satisfaction probability p�1 for 1000 runs for all the stations, for (a) d = 0,
and (b) d = 0.3 For d = 0, we can see that many stations have a high probability to be
full or empty (indicated by red points), i.e. low values of satisfaction probability, with
standard deviation of all the locations in the range [0, 0.0158] and mean standard devi-
ation 0.0053. However, increasing d to d = 0.3 kilometres, i.e. allowing a search area of
up to 300 metres from the station that currently has no bikes, or no slots respectively, we
greatly increase the satisfaction probability of �1, with a standard deviation that remains
in the same range and mean standard deviation of 0.0039. For d = 0.5, the probability of
p�1 is greater than 0.5 for all the stations; standard deviation is in the range [0, 0.0142]
and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability of some BBS
stations vs distance d=[0,1.0].

Timed Availability The property we analyzed previously did not consider that a user
will need some time to reach a nearby station. Property '1 can be refined to take this
aspect into consideration by considering a nested spatio-temporal property:

 1 = G[0,Tend]{��[0,d](F[tw,tw]B > 0) ∧��[0,d](F[tw,tw]S > 0)} (2)

A station ` satisfies  1 if and only if it is always true between 0 and Tend minutes that
there exists a station at a distance less than or equal to d, that, eventually in a time equal
to tw (the walking time), has at least one bike and a station at a distance less than or
equal to d, that, eventually in a time equal to tw has at least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example that if
we evaluate a distance d = 0.5 kilometers, we consider a walking time tw = 6 minutes.
The results of  1 are very similar to the results of �1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b) shows
the difference between the satisfaction probability of properties  1, �1 for the same
locations.
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5.1 Properties

We use STREL to study spatio-temporal properties of the system and to explore their
robustness considering a set of parameter values for the formulas. In the following, we
will consider the distance induced by the function �(v, (x, y)) = v + ��(x, y)��2, where(x, y) are the coordinates of the distance vector between two adjacent nodes, while v is
the distance incrementally computed by �.

Local Availability One of the main problems of these systems consists in the avail-
ability of bikes or free slots in each station. The most interesting question related to this
issue from a user’s point of view is “If I don’t find a bike (free slot, resp.) here, can
I find another station close enough where there is an available bike (resp. free slot)?”
This concern can be expressed by the STREL property described below:

�1 = G{�weight[0,d] (B > 0) ∧�weight[0,d] (S > 0)} (1)

A station ` satisfies �1 if and only if it is always true that, between 0 and Tend minutes,
there exists a station at a distance less than or equal to d, that has at least one bike and
a station at a distance less or equal to d that has at least one free slot.

In the analysis, we investigate the value of parameter d ∈ [0,1] kilometres to see
how the satisfaction of the property changes in each location. Figure 7 shows the ap-
proximate satisfaction probability p�1 for 1000 runs for all the stations, for (a) d = 0,
and (b) d = 0.3 For d = 0, we can see that many stations have a high probability to be
full or empty (indicated by red points), i.e. low values of satisfaction probability, with
standard deviation of all the locations in the range [0, 0.0158] and mean standard devi-
ation 0.0053. However, increasing d to d = 0.3 kilometres, i.e. allowing a search area of
up to 300 metres from the station that currently has no bikes, or no slots respectively, we
greatly increase the satisfaction probability of �1, with a standard deviation that remains
in the same range and mean standard deviation of 0.0039. For d = 0.5, the probability of
p�1 is greater than 0.5 for all the stations; standard deviation is in the range [0, 0.0142]
and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability of some BBS
stations vs distance d=[0,1.0].

Timed Availability The property we analyzed previously did not consider that a user
will need some time to reach a nearby station. Property '1 can be refined to take this
aspect into consideration by considering a nested spatio-temporal property:

 1 = G{�weight[0,d] (F[tw,tw]B > 0) ∧�weight[0,d] (F[tw,tw]S > 0)} (2)

A station ` satisfies  1 if and only if it is always true between 0 and Tend minutes that
there exists a station at a distance less than or equal to d, that, eventually in a time equal
to tw (the walking time), has at least one bike and a station at a distance less than or
equal to d, that, eventually in a time equal to tw has at least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example that if
we evaluate a distance d = 0.5 kilometers, we consider a walking time tw = 6 minutes.
The results of  1 are very similar to the results of �1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b) shows
the difference between the satisfaction probability of properties  1, �1 for the same
locations.

Average walking speed of 6.0 km/h, e.g. d = 0.5 km -> +& = 6 minutes

The results similar to the results of previous property
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Mobile Ad-hoc sensor NETwork (MANET)

Space model  ((+)
• Locations: / = {L;M5N;<},    
• Edges: ℓ$, B, ℓ% ∈ D iff w = ∥ ℓ$ − ℓ% ∥ < min K$, K%

Spatio-Temporal Trajectory: -: / −> 2 → ℤ × ℝ# s.t.
- 5, + = ?>L;TUV;, 9=++;KU, +;JV;K=+WK;
?>L;TUV; = 1, 2, 3 for coordinator, rooter, and end_device
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“an end device is either connected to the coordinator or can reach it via a chain of routers”

“broken connection is restored within h time units”
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“an end device is either connected to the coordinator or can reach it via a chain of routers”

“broken connection is restored within h time units”
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Boolean Satisfaction at each time step
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Delivery in a MANET 

Monitoring Spatio-Temporal Properties (Invited Tutorial) 17

Connectivity. The first property one is interested to monitor is the connectivity. That
is, each node that is an end device is directly connected either to a router or to a coor-
dinator:

 1 = deviceRhops[0,1] (router ∨ coord)
The formula above holds if from a node satisfying the atomic proposition end dev
(indicating an end device), we can reach a node satisfying either router or coord (that
are the atomic proposition satisfied by coordinators or a routers), following a path in
the spatial graph such that the hops distance along this path (i.e. its number of edges) is
not bigger than 1.

More sophisticated properties can be specified with STREL. For instance, the fol-
lowing property can be used to specify that an end device is either connected to the
coordinator or can reach it via a chain of at most of 5 routers:

 2 = deviceRhops[0,1] (routerRhops[0,5]coord)
Delivery. Another property that one could be interested in monitoring is the ability
of the system to forward a message at a given distance. The ability of a component to
forward a message is related to its battery level. To express this property, we can use
the escape operator:

 3 = Ehops[5,∞](battery > 0.5)
This property states that from a given location, we can find a path of (hops) length at
least 5 such that all nodes along the path have a battery level greater than 0.5, i.e. that a
message will be forwarded along a connection with no risk of power failure.

Reliability. Spatial and temporal operators can be mixed to specify properties regard-
ing the evolution of the space in time. For instance, the following property is satisfied
by the nodes with a battery level less than 0.5 that can reach in less than 10 hops another
component that will eventually have a the battery level greater than 0.5:

 4 = (battery < 0.5)Rhops[0,10] F(battery > 0.5)
Moreover, the following property can be used to state that the correct spatial con-

figuration is preserved in each time step:

 5 = G 2

where  2 is the formula defined above.

7 Related Work

Machine learning vs specification languages Pattern recognition is a well-established
research area in machine learning. A typical approach consists in using a classifier
trained with a labeled data set that assigns each data item to one class. Once the classi-
fier is built from data using one of the several machine learning (ML) techniques [66]

“from a given location, we can find a path of (hops) length at least 5 such 
that all nodes along the path have a battery level greater than 0.5”



Reliability in a MANET 

“reliability  in  terms  of  battery  levels,  e.g. battery level above 0.5



Moonlight:  https://github.com/MoonLightSuite/MoonLight/wiki
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