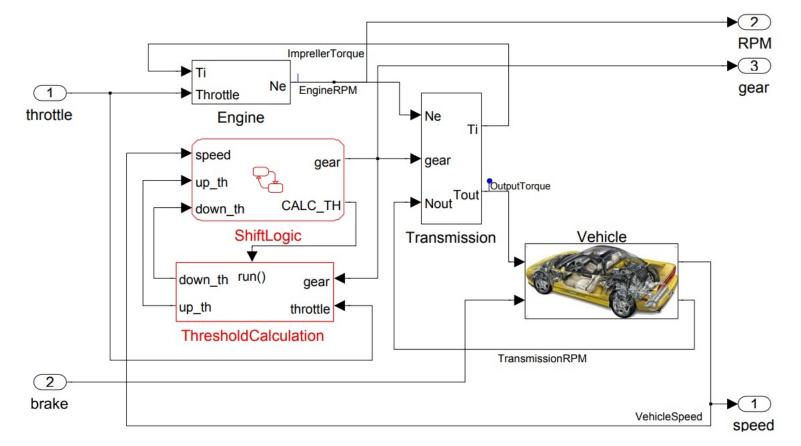
Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2021

Lecture: STL learning 2

Specification Mining



- What is the maximum speed that the vehicle can reach ?
- What is the minimum d well time in a given gear ?

Parametric Signal Temporal Logic

Definition (PSTL syntax)

$$\phi \coloneqq (x_i \bowtie \pi) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \mathcal{U}_{[\tau_1, \tau_2]} \varphi_2$$

with $\bowtie \in \{>, \leq\}$

- π is **threshold** parameter
- τ_1 , τ_2 are **temporal** parameters

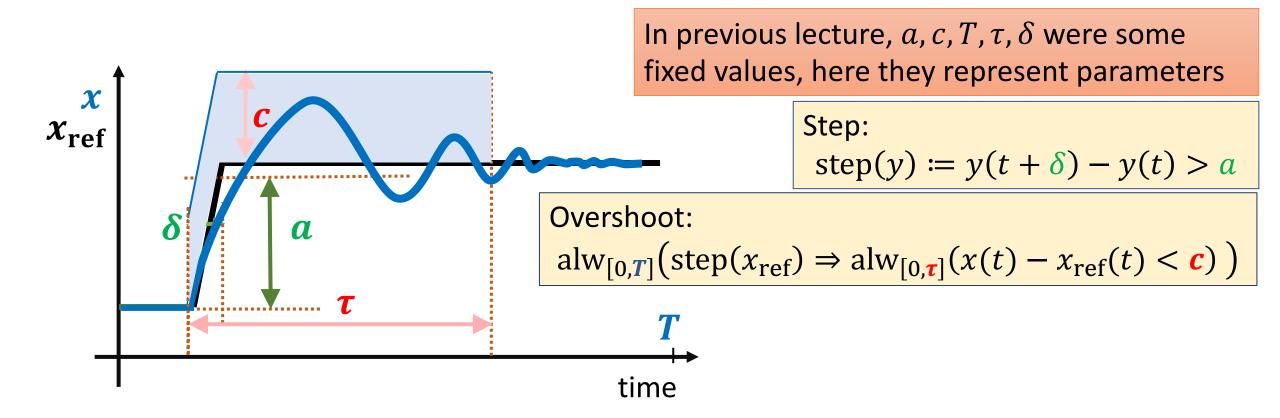
- $\mathbb{K} = (\mathcal{T} \times \mathcal{C})$ be the **parameter space**
- $\theta \in \mathbb{K}$ is a parameter configuration

e.g.,
$$\phi = \mathcal{F}_{[a,b]}(x_i > k), \theta = (0, 2, 3.5)$$
 then $\phi_{\theta} = \mathcal{F}_{[0,2]}(x_i > 3.5).$

Specification Mining

- Specification Mining: Try to find values of parameters of a PSTL formula from a given model
 - Why?
 - Good to know "as-is" properties of the model
 - Finds worst-case behaviors of the model
 - Discriminates between regular and anomalous behaviours

Specification Templates using PSTL



Parameter inference for PSTL

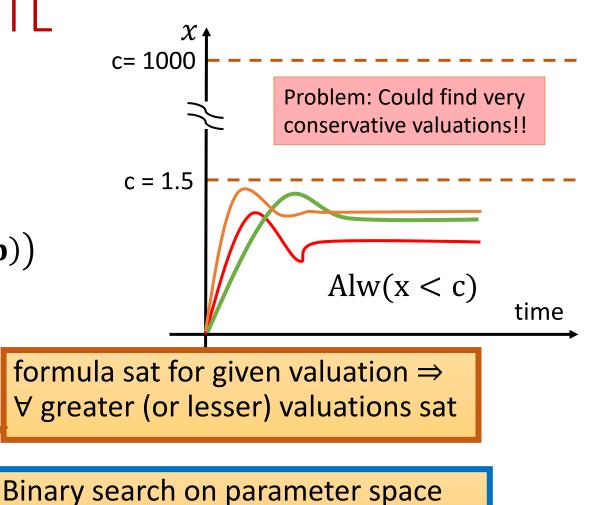
Given:

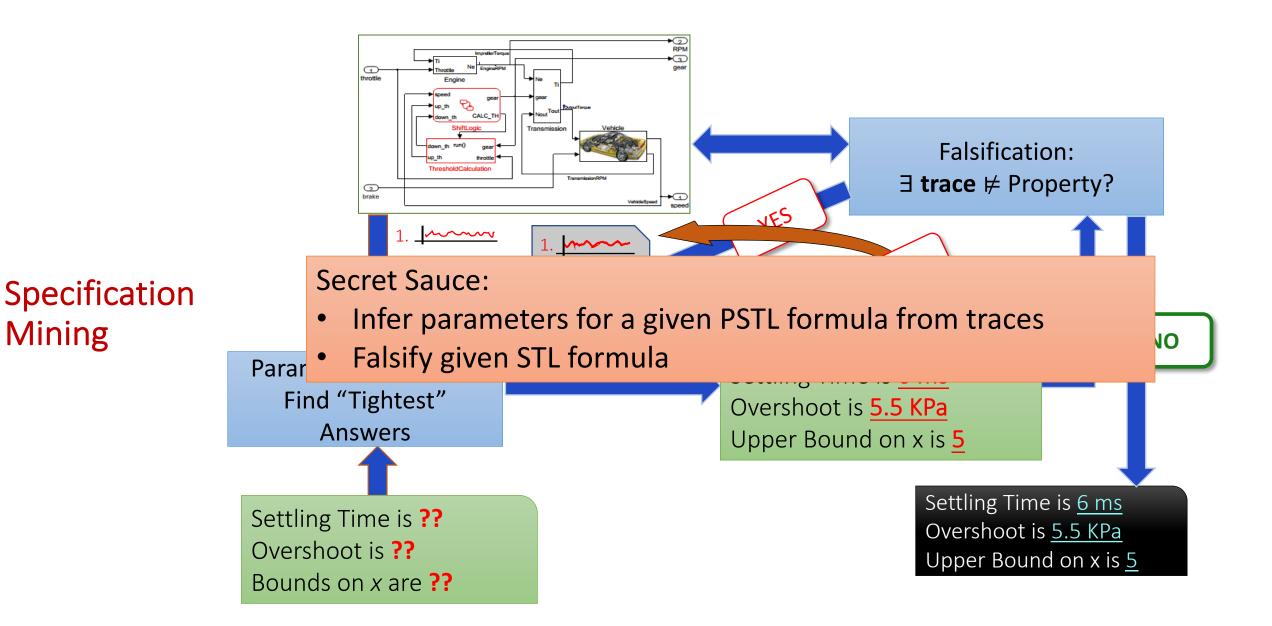
- ▶ PSTL formula $\varphi(\mathbf{p})$, $[\mathbf{p} = (p_1, p_2, ..., p_m)]$
- Fraces x_1, \dots, x_n

Find:

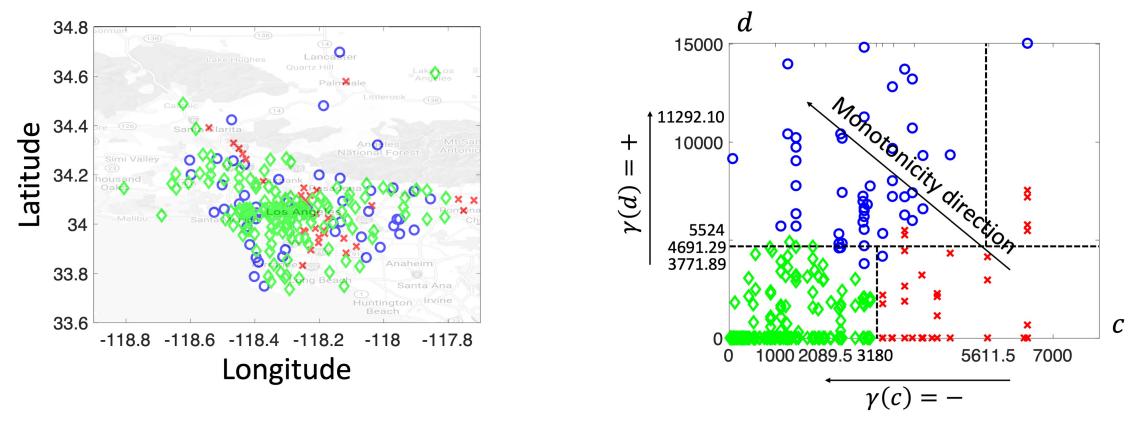
- ► Valuation $v(\mathbf{p})$ such that: $\forall i : x_i \vDash \varphi(v(\mathbf{p}))$ δ -tight valuation
- and ∃i: x_i⊭φ(ν(**p**) ± δ):
 i.e. small perturbation in ν(**p**) makes some trace not satisfy formula

Finding δ -tight valuations hard in general, but **efficient** for **Monotonic PSTL**





Learning STL-based clustering (Unsupervised Learning)



Goal: clusterizing spatio-temporal data using formal logic

Spatially distributed systems generate a large volume of spatiotemporal data

Designers are interested in analyzing and extracting high-level structure from such data

Traditional ML for time-series clustering:

Popular techniques:

- Kmeans
- Hierarchical Clustering
- Agglomerative clustering
- ► Shapelets
- ► Pros:

► Fast

Cons:

- Based on shape-similarity
- May lack interpretability

STL-based clustering of time-series data:

Considerable interest in learning logical properties of temporal data using logics such as Signal Temporal Logic (STL)

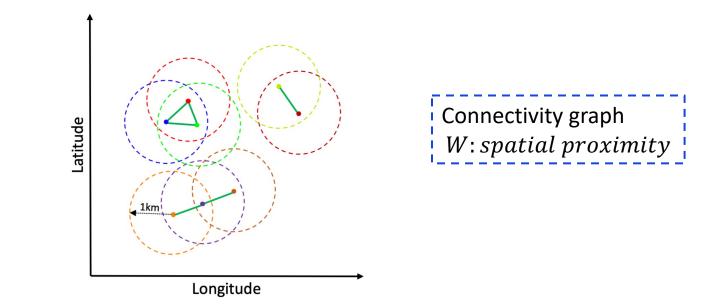
Algorithms for unsupervised learning of spatio-temporal data using formal logics

Spatial Model:

We model the spatial configuration as a weighted graph $S = \langle L, W \rangle$

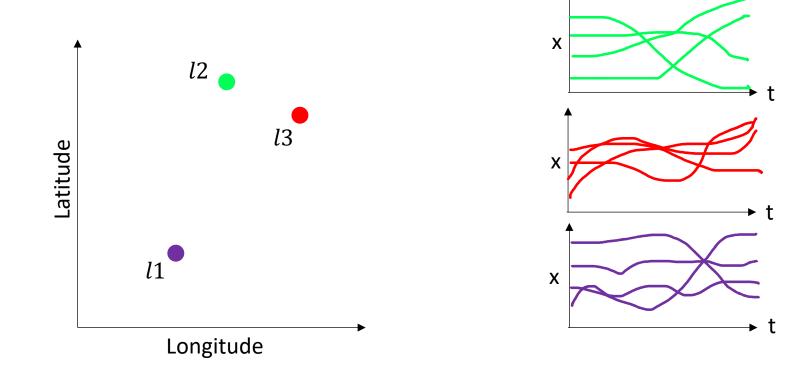
L: set of locations

W: proximity relation between locations



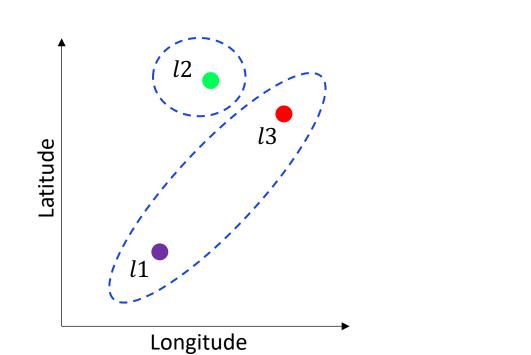
Spatio-temporal trace:

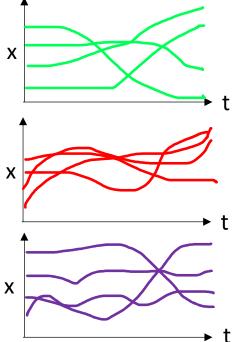
- Time-series data (trace/signal): a sequence of data values indexed by time stamps
- A spatio-temporal trace associates each location in a spatial model with a time-series trace



Spatio-temporal data clustering:

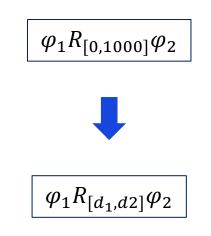
It is a process of grouping data with similar spatial attributes, temporal attributes, or both





Parametric STREL (PSTREL):

Replacing values in STREL by parameters



Monotonic PSTREL $\varphi(p)$:

The polarity of a parameter p is:

- \blacktriangleright + if it is easier to satisfy φ as we increase the value of p
- \blacktriangleright if it is easier to satisfy φ as we decrease the value of p

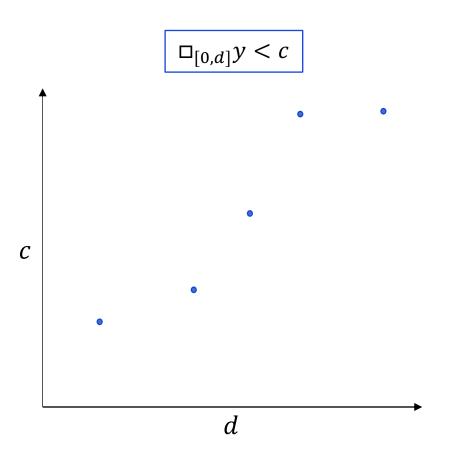
Monotonic PSTREL:

► All parameters have either + or - polarity

► Example: □_[0,d]φ
 ► Polarity of d is -

Validity Domain of PSTREL $\varphi(p)$

- Given a location l
- A set of spatio-temporal traces X associated with l
- The set of all valuations to p such that each trace in X satisfies the STREL formula
- ► Boundary of the validity domain: The robustness value with respect to at least one trace in X is ≈ 0
- Robustness means distance to satisfaction or violation



High-level steps:

Constructing the spatial model

Projecting each spatio-temporal trace to a tight valuation in the parameter space of a given PSTREL formula

Clustering the trace projections

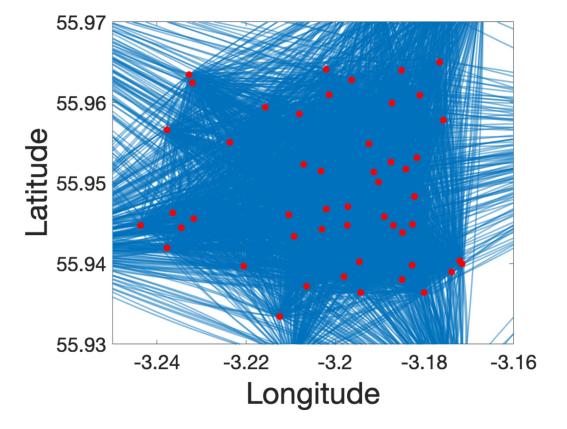
Learning bounding boxes for each cluster using a Decision Tree based approach

Learning a STREL formula for each cluster

Improving the interpretability of the learned STREL formulas

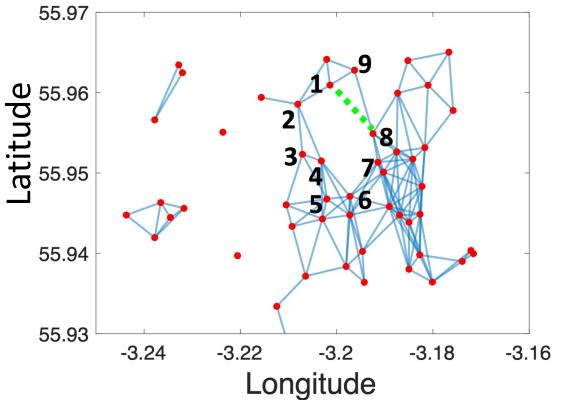
Approach 1: fully connected graph

- Pros: gives the most accurate result
- Cons: computationally expensive



Approach 2: Connectivity graph that connects locations with distance less than a threshold

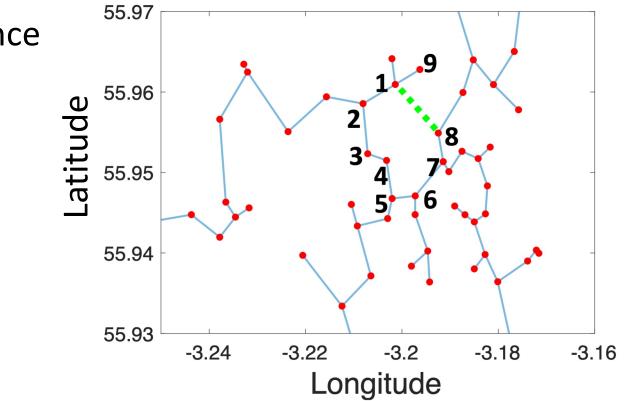
- Pros: lower cost
- Cons: disconnected spatial model which affects the accuracy



Approach 3: Minimum Spanning Tree (MST)

- Pros: low cost and connected graph
- Cons: overestimation of distance

between some nodes



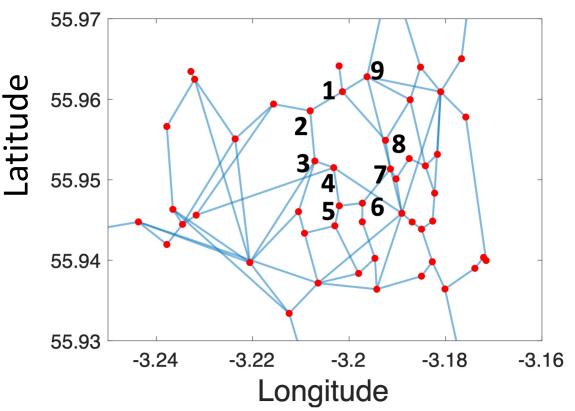
Approach 4: Enhanced Minimum Spanning Graph

Step1: create an MST

Step2: connect nodes that their shortest distance through MST is more than α times their actual distance (default $\alpha = 2$)

Pros: low cost, connected graph and more accurate distance between nodes

Cons: not as accurate as fully connected graph

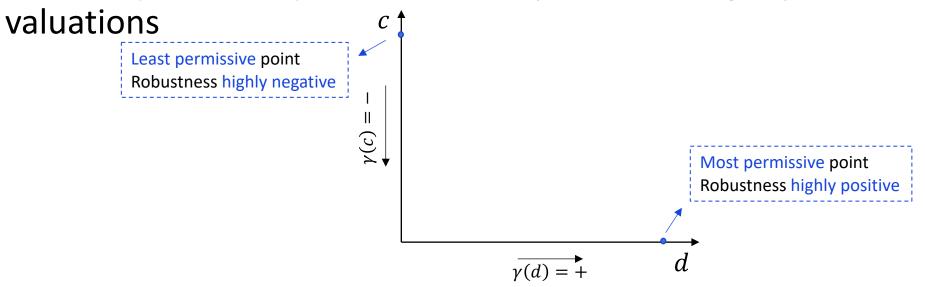


Spatio-temporal trace projection :

The user provides a PSTREL formula

 $G_{[0,3hours]} \diamond_{[0,d]} (Bikes > c)$

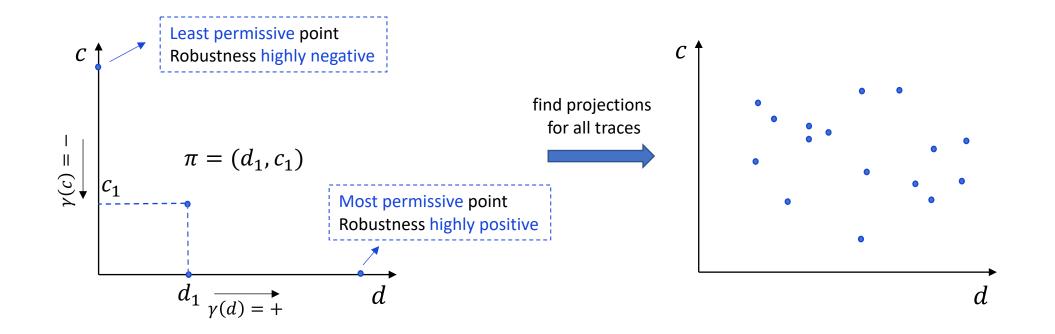
- The goal is to learn the tight parameter valuations for each spatiotemporal trace
- Tight parameter valuation is not unique, and each point on the boundary of validity domain corresponds to a tight parameter



Spatio-temporal trace projection :

• We assume some ordering or priority on parameter space, e.g., $d >_p c$, provided by user

- 1. Bisection search on d
- 2. Bisection search on c

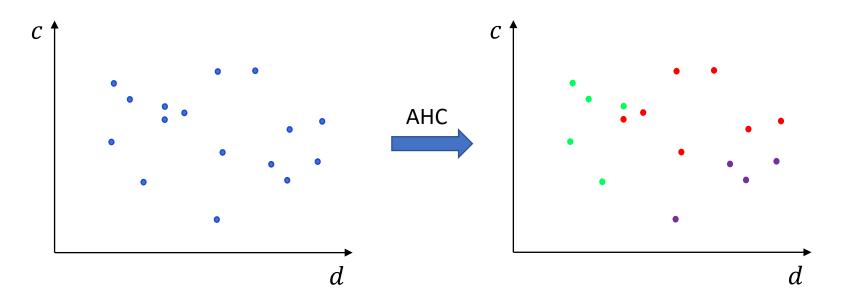


Clustering:

The parameter valuation points serve as features for off-the-shelf clustering algorithms

- ► We use the Agglomerative Hierarchical Clustering (AHC) technique
- Number of clusters to choose:

Domain knowledge/Silhouette metric

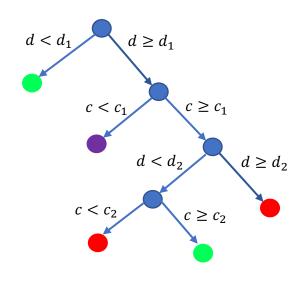


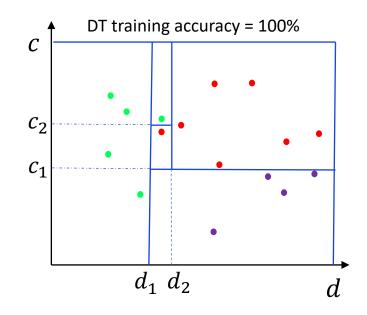
Learning bounding boxes for each cluster:

► We label each parameter valuation with its cluster

Labels = (green, red, purple)

We use off-the-shelf Decision Tree (DT) algorithms to learn bounding boxes

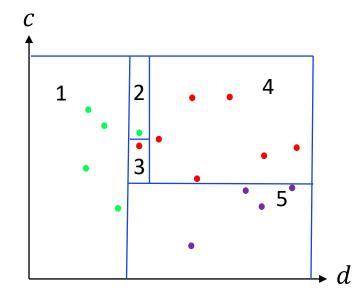




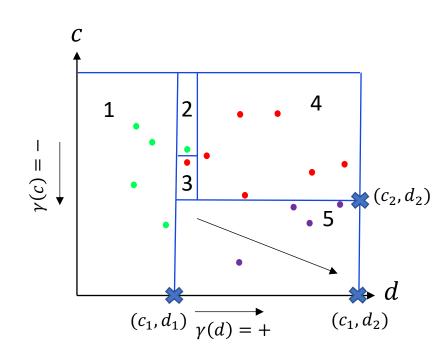
Learning a STREL Formula for each Cluster:

$$\blacktriangleright \varphi_{green} = \varphi_1 \lor \varphi_2$$

- $\blacktriangleright \varphi_{red} = \varphi_3 \lor \varphi_4$
- $\blacktriangleright \varphi_{purple} = \varphi_5$



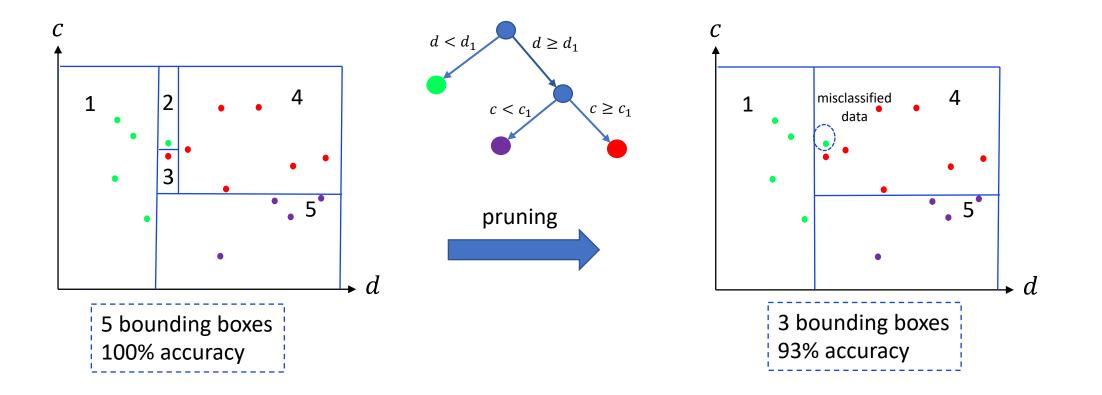
Learning a STREL Formula for each Cluster:



$$\begin{split} \varphi_{5} &= \varphi(c_{1}, d_{2}) \land \neg \varphi(c_{1}, d_{1}) \land \neg \varphi(c_{2}, d_{2}) \\ \varphi &= G_{[0,3hours]} \diamond_{[0,d]} (Bikes > c) \\ \varphi_{5} &= G_{[0,3hours]} \diamond_{[0,d_{2}]} (Bikes > c_{1}) \\ \land \neg G_{[0,3hours]} \diamond_{[0,d_{1}]} (Bikes > c_{1}) \\ \land \neg G_{[0,3hours]} \diamond_{[0,d_{2}]} (Bikes > c_{2}) \end{split}$$

Pruning the Decision Tree:

- In some cases, achieving 100% accuracy can result in long and hence less interpretable formulas
- ► We prune the DT using a K-fold cross validation approach



Benchmarks:

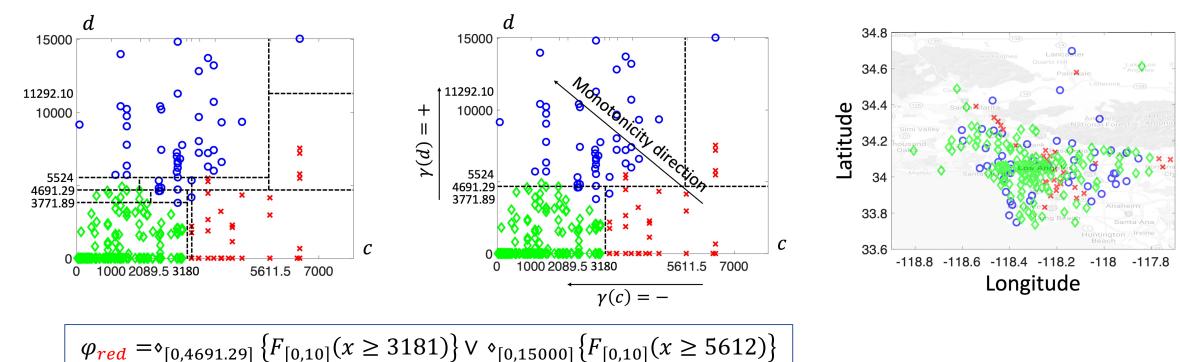
- COVID-19 data from LA County
 - COVID-19 pandemic has extremely affected our lives
 - Understanding the spread pattern of COVID-19 in different areas is vital to stop the spread of the disease.
 - We focus on number of new positive cases in each region of the LA county
- BSS data from the city of Edinburgh
 - The BSS consists of a number of bike stations, distributed over a geographic area
 - We focus on the number of bikes (B) and empty slots (S) in each bike station
 - ► We are interested in analyzing the behavior of each station
- Outdoor Air Quality data from California
- Synthetic data for a food court building

COVID-19 data from LA County

PSTREL formula: $(0,d) \{F_{[0,\tau]}(x > c)\}$

• We fix τ to 10 days

Small d and large c are hot spots



BSS data from the city of Edinburgh

PSTREL formula:

$$\varphi(\tau, d) = G_{[0,\tau]} \big(\varphi_{wait}(\tau) \lor \varphi_{walk}(d) \big)$$

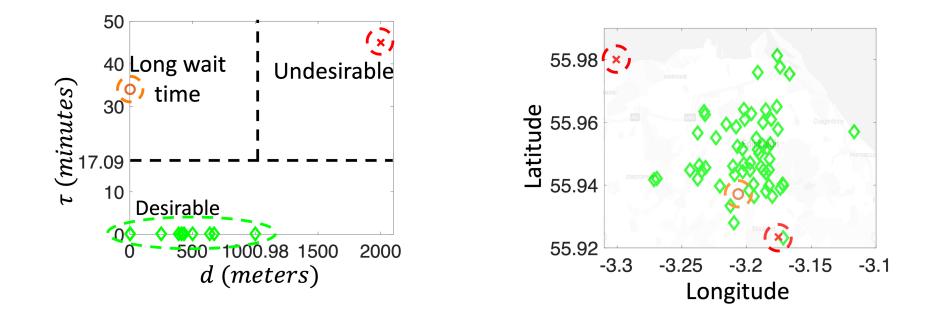
• Within the next 3 hours either $\varphi_{wait}(\tau)$ or $\varphi_{walk}(d)$ is True

$$\begin{aligned} \varphi_{wait}(\tau) &= F_{[0,\tau]}(B \ge 1) \land F_{[0,\tau]}(S \ge 1), \\ \varphi_{walk}(d) &= \diamond_{[0,d]} (B \ge 1) \land \diamond_{[0,d]} (S \ge 1) \end{aligned}$$

> Locations with large τ : long wait times

Locations with large d: far from stations with Bikes/Slots availability

BSS data from the city of Edinburgh



$$\varphi_{red} = \neg G_{[0,3]} (\varphi_{wait}(17.09) \lor \varphi_{walk}(2100)) \land \neg G_{[0,3]} (\varphi_{wait}(50) \lor \varphi_{walk}(1000.98))$$

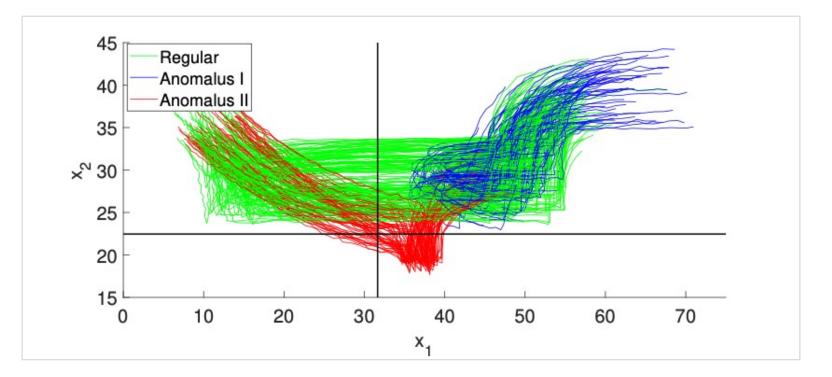
Results summary:

Case	<i>L</i>	<i>W</i>	runtime(secs)	numC	$ arphi_{cluster} $
COVID-19	235	427	813.65	3	$3. \varphi + 4$
BSS	61	91	681.78	3	2. $ \phi + 4$
Air Quality	107	60	136.02	8	5. $ \phi + 7$
Food Court	20	35	78.24	8	3. $ \varphi + 4$

In a nutshell:

- We proposed a technique to learn interpretable STREL formulas from spatio-temporal data
- We proposed a new method for creating a spatial model with a restrict number of edges that preserves connectivity of the spatial model.
- We leveraged robustness of STREL combined with bisection search to extract features for spatiotemporal time-series clustering.
- We applied AHC on the extracted features followed by a DT based approach to learn an interpretable STREL formula for each cluster
- The results show that our method performs slower than ML approaches, but it is more interpretable

Learning STL classifiers



Goal: learning a specification/ classifier as a temporal logic formula to discriminate as much as possible between bad and good behaviours

Advantages: explicability, easy to build monitors

Application: anomaly detection, specification synthesis

Methodology

• *Single-level* variant: learning formula structure and parameter using Context Free Grammar Genetic Programming (CFGGP)

- *Bi-level* variant:
 - learning formula structure CFGGP
 - learn parameters of the formula using by **Bayesian Optimisation**

A fitness function f measures the quality of candidate solutions and depends on the kind of problem at hand (two-classes, one-class)

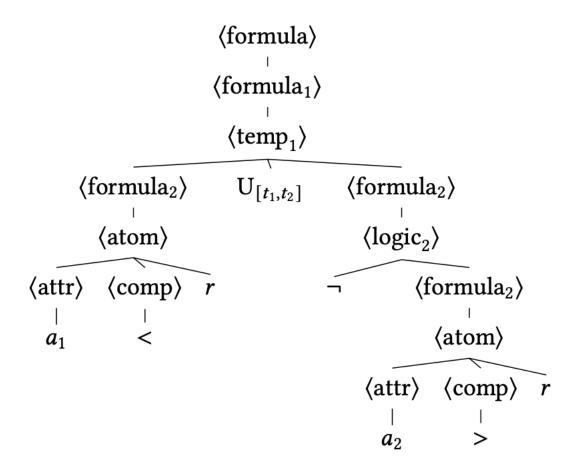
Evolutionary algorithm

- It builds the offspring population *P*'
- It merges the parent and offspring populations
- It shrinks the resulting new population *P*

```
1 function evolve():
           P \leftarrow \text{initialize}(\mathcal{G}, n_{\text{pop}})
 2
           foreach i \in \{1, \ldots, n_{\text{gen}}\} do
 3
                 P' \leftarrow \emptyset
 4
                 while |P'| \leq n_{pop} do
 5
                        i \leftarrow 0
 6
                        repeat
 7
                              if \sim U(0,1) \leq p_{xover} then
  8
                                     (\varphi_{p,1}, f_{p,1}) \leftarrow \text{select}(P)
  9
                                     (\varphi_{p,2}, f_{p,2}) \leftarrow \text{select}(P)
10
                                    \varphi_c \leftarrow \text{crossover}(\varphi_{p,1}, \varphi_{p,2}; \mathcal{G})
11
                              else
12
                                     (\varphi_p, f_p) \leftarrow \text{select}(P)
13
                                    \varphi_c \leftarrow \mathsf{mutate}(\varphi_p; \mathcal{G})
14
                               end
15
                              i \leftarrow i + 1
16
                        until (\varphi_c \notin P \cup P') \land (i \leq n_{atts})
17
                       P' \leftarrow P' \cup \{(\varphi_c, f_{opt}(\varphi_c; \mathcal{L}))\}
18
                 end
19
                 P \leftarrow P \cup P'
20
                 while |P| \ge n_{pop} do
21
                      P \leftarrow P \setminus \{ worst(P) \}
22
                 end
23
           end
24
           return best(P)
25
26 end
```

Building the populations

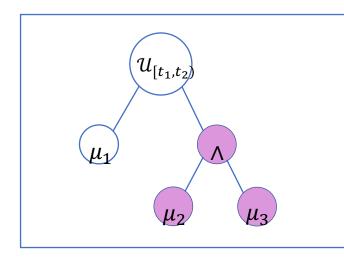
Candidate formulas are represented as derivation trees of a grammar

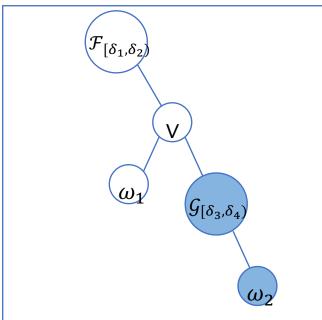


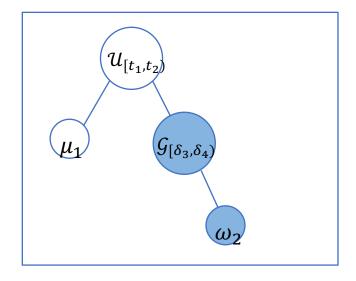
Context Free Grammar

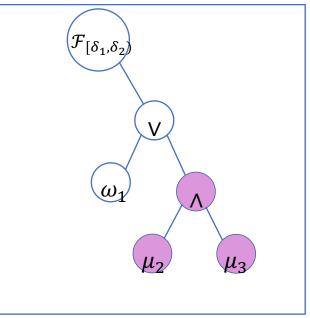
 $\langle \text{formula} \rangle ::= \langle \text{formula}_1 \rangle$ $\langle \text{formula}_i \rangle ::= \begin{cases} \langle \text{atom} \rangle \mid \langle \text{logic}_i \rangle \mid \langle \text{temp}_1 \rangle & \text{if } i < i_{\max} \\ \langle \text{atom} \rangle \mid \langle \text{logic}_i \rangle & \text{otherwise} \end{cases}$ $\langle \text{logic}_i \rangle ::= \neg \langle \text{formula}_i \rangle | \langle \text{formula}_i \rangle \land \langle \text{formula}_i \rangle$ $\langle \text{temp}_i \rangle ::= \langle \text{formula}_{i+1} \rangle U_{\langle \text{interval} \rangle} \langle \text{formula}_{i+1} \rangle |$ $G_{(interval)}(formula_{i+1}) | F_{(interval)}(formula_{i+1})$ (interval) ::= [(num), (num)] $\langle atom \rangle ::= \langle attr \rangle \langle comp \rangle \langle num \rangle$ $\langle \text{attr} \rangle \coloneqq = a_1 \mid a_2 \mid \ldots \mid a_{|A|}$ $\langle \text{comp} \rangle ::= \langle | \rangle$ $\langle num \rangle ::= \langle digit \rangle \langle digit \rangle$ $\langle \text{digit} \rangle ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

Crossover operator

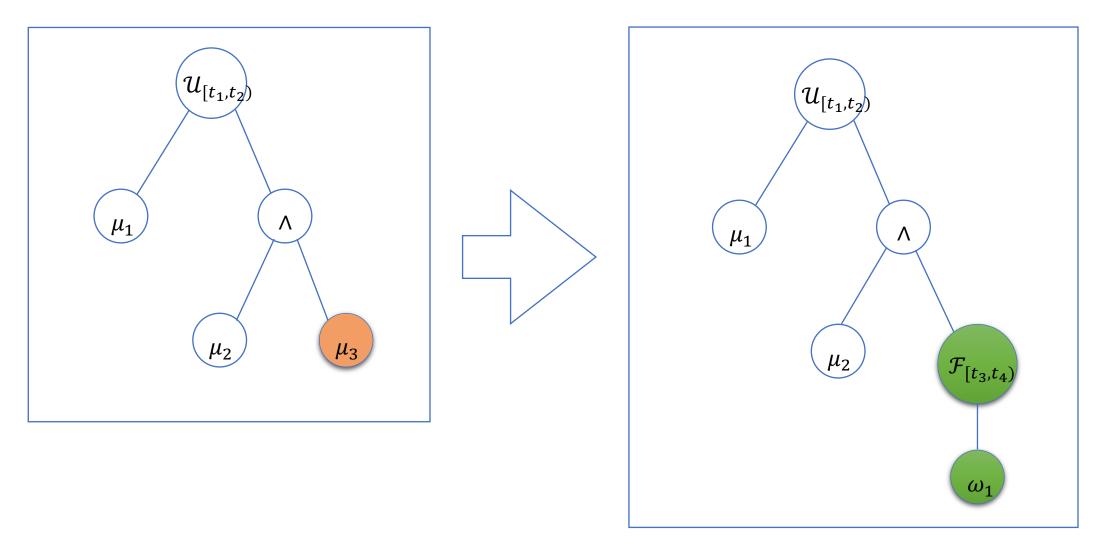




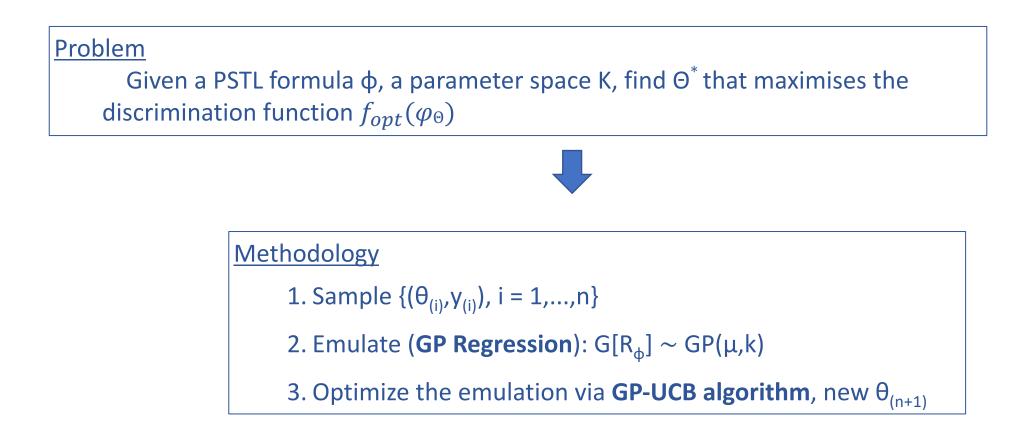




Mutation operator

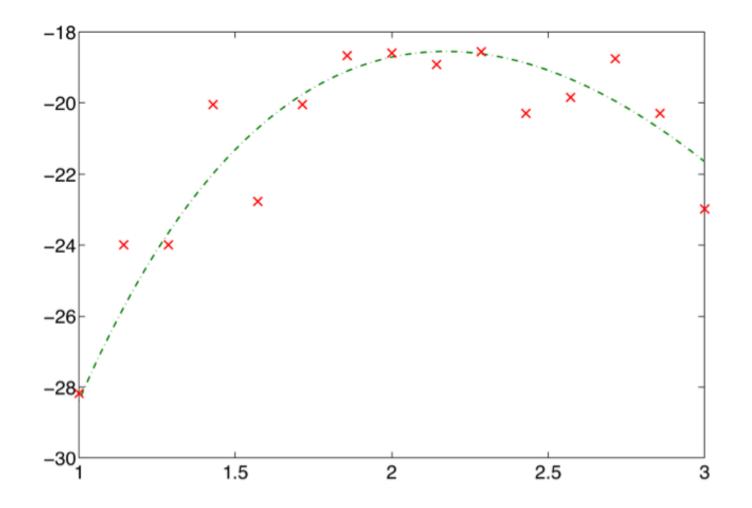


Learning the Parameters



(1) The $G(\phi_{a})$ Computation

Collection of the training set {($\theta^{(i)}, y^{(i)}$), i = 1,...,m} for parameters values θ .

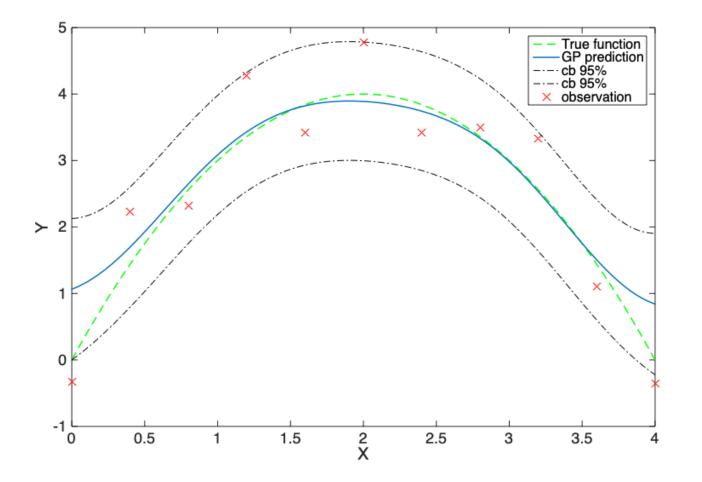


(2) The GP Regression

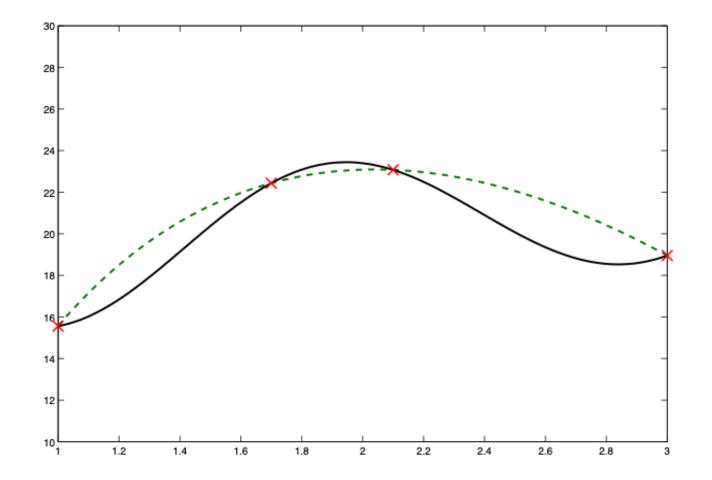
We have noisy observations y of the function value distributed around an unknown true value f (θ) with spherical Gaussian noise

(2) The GP Regression

We have noisy observations y of the function value distributed around an unknown true value f (θ) with spherical Gaussian noise

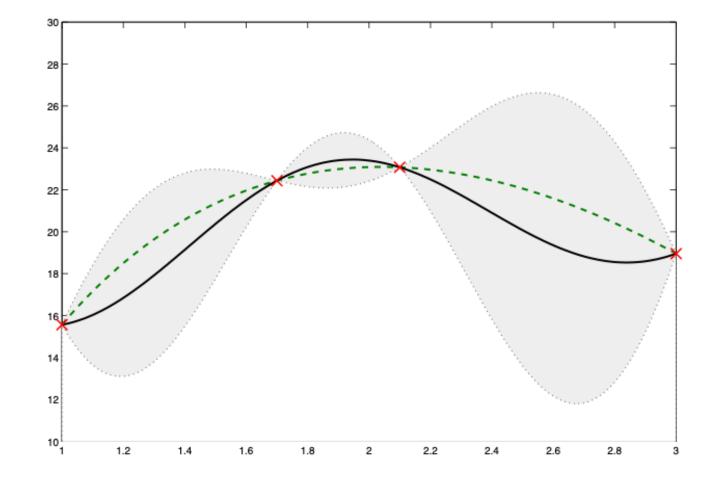


Balance Exploration and Exploitation: we maximise the 95% upper quantile of the distribution: $\theta_{t+1} = argmax_{\theta}[\mu^*(\theta) + \beta_t \sqrt{k^*(\theta, \theta)}]$



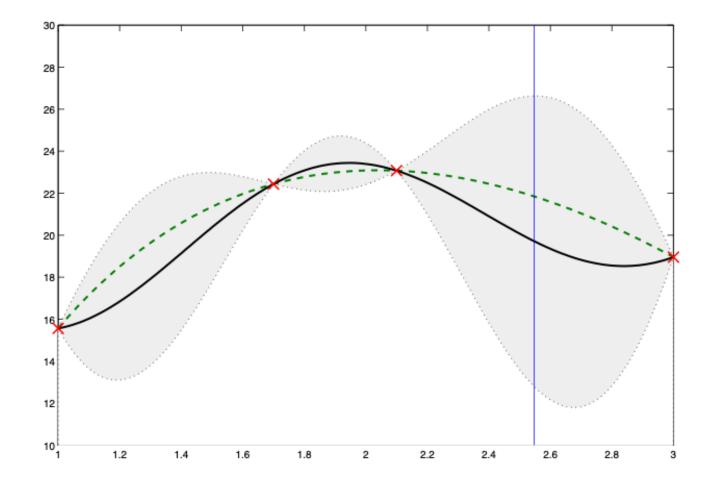
Balance Exploration and Exploitation: we maximise the

95% upper quantile of the distribution: $\theta_{t+1} = argmax_{\theta} [\mu^*(\theta) + \beta_t \sqrt{k^*(\theta, \theta)}]$



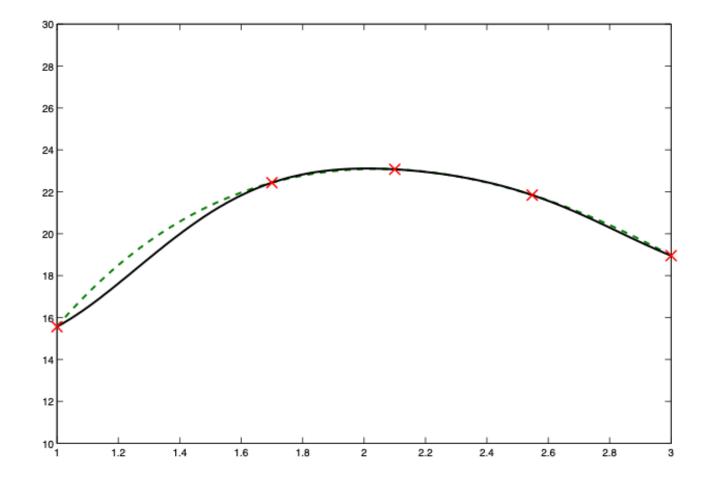
Balance Exploration and Exploitation: we maximise the

95% upper quantile of the distribution: $\theta_{t+1} = argmax_{\theta} [\mu^*(\theta) + \beta_t \sqrt{k^*(\theta, \theta)}]$



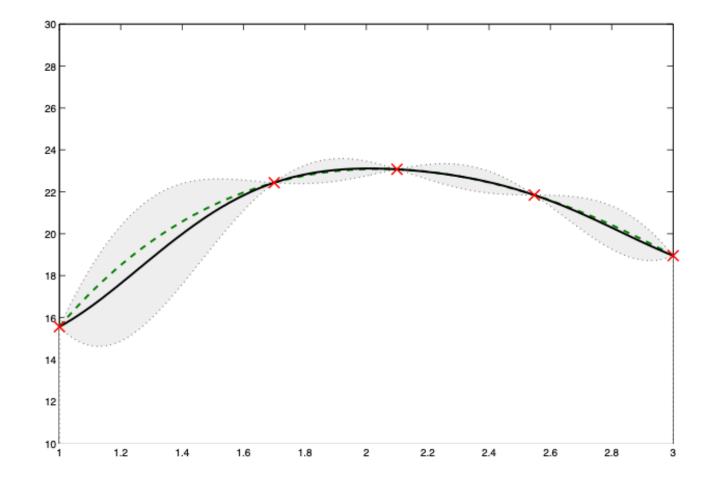
Balance Exploration and Exploitation: we maximise the

95% upper quantile of the distribution: $\theta_{t+1} = \operatorname{argmax}_{\theta} \left[\mu^*(\theta) + \beta_t \sqrt{k^*(\theta, \theta)} \right]$



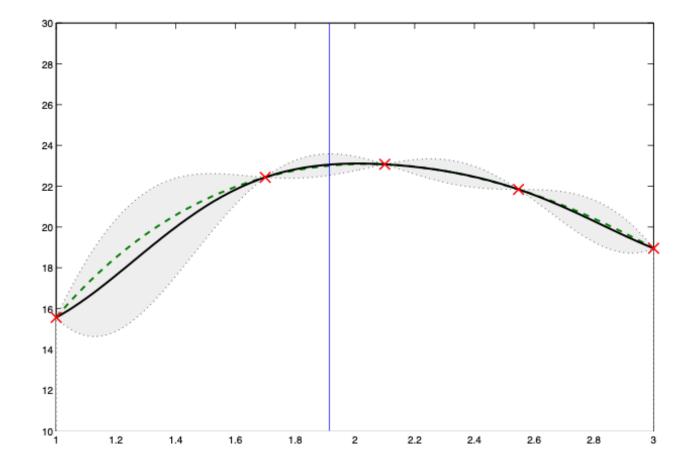
Balance Exploration and Exploitation: we maximise the

95% upper quantile of the distribution: $\theta_{t+1} = \operatorname{argmax}_{\theta} \left[\mu^*(\theta) + \beta_t \sqrt{k^*(\theta, \theta)} \right]$



Balance Exploration and Exploitation: we maximise the

95% upper quantile of the distribution: $\theta_{t+1} = \operatorname{argmax}_{\theta} \left[\mu^*(\theta) + \beta_t \sqrt{k^*(\theta, \theta)} \right]$



Fitness Function for the two-classes problem

$$f(\varphi; X_{\mathcal{L}}^{+}, X_{\mathcal{L}}^{-}) = -\frac{\mu_{\varphi, X_{\mathcal{L}}^{+}} - \mu_{\varphi, X_{\mathcal{L}}^{-}}}{\sigma_{\varphi, X_{\mathcal{L}}^{+}} + \sigma_{\varphi, X_{\mathcal{L}}^{-}}}$$

$$\mu_{\varphi,X} = \frac{1}{|X|} \sum_{\boldsymbol{x} \in X} \rho(\varphi, \boldsymbol{x})$$
$$\sigma_{\varphi,X} = \sqrt{\frac{1}{|X|} \sum_{\boldsymbol{x} \in X} \left(\rho(\varphi, \boldsymbol{x}) - \mu_{\varphi,X}\right)^2}$$

Fitness Function for the one-class problem

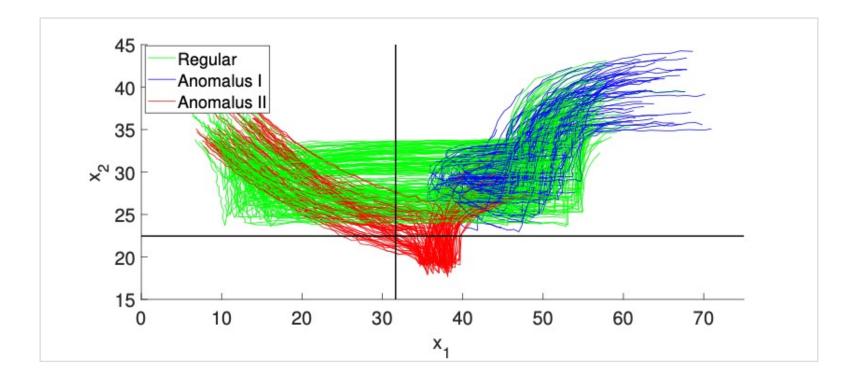
$$f(\varphi; X_{\mathcal{L}}^{+}) = \alpha \frac{1}{\left|X_{\mathcal{L}}^{+}\right|} \left| \left\{ \boldsymbol{x} \in X_{\mathcal{L}}^{+} : \boldsymbol{x} \not\models \varphi \right\} \right| + \frac{1}{\sigma_{\varphi, X_{\mathcal{L}}^{+}}' \left|X_{\mathcal{L}}^{+}\right|} \sum_{\boldsymbol{x} \in X_{\mathcal{L}}^{+}} \left|\rho(\varphi, \boldsymbol{x})\right|$$

$$\sigma_{\varphi,X}' = \sqrt{\frac{1}{|X|} \sum_{\boldsymbol{x} \in X} \left(|\rho(\varphi, \boldsymbol{x})| - \frac{1}{|X|} \sum_{\boldsymbol{x} \in X} |\rho(\varphi, \boldsymbol{x})| \right)^2}$$

Maritime Surveillance

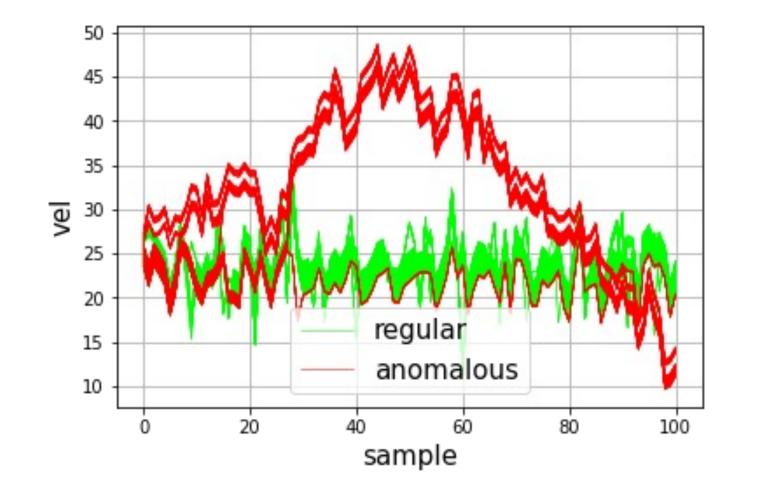
.

Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels behaviours.



$$\phi_{1} = ((x_{2} > 22.46) \mathcal{U}_{[49,287]} (x_{1} \le 31.65))$$

Train Cruise



 $(F_{[22,40]}(vel > 24.48)) \land (F_{[46,49]}(19.00 < vel < 26.44))$

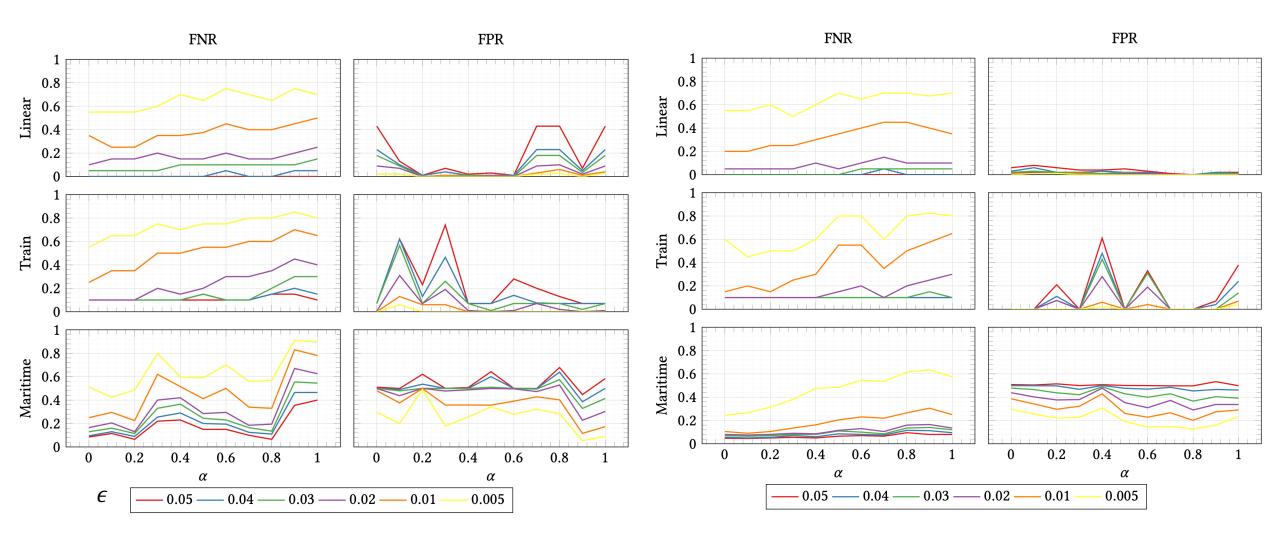
Results (supervised learning)

Dataset	Algorithm	FNR	FPR	MCR	Time
Maritime	BUSTLE (single-level)	0.00	0.00	0.00	109
	BUSTLE (bi-level)	0.00	0.00	0.00	1477
	[23]	0.00	0.00	0.00	N/A
	[22]	0.05	0.02	0.04	73
	[6]	N/A	N/A	0.02	140
Linear	BUSTLE (single-level)	0.00	0.00	0.00	15
	BUSTLE (bi-level)	0.00	0.00	0.00	112
	[23]	0.01	0.01	0.01	N/A
	[22]	N/A	N/A	0.02	39
Train	BUSTLE (single-level)	0.03	0.05	0.04	26
	BUSTLE (bi-level)	0.00	0.03	0.02	523
	[23]	0.07	0.32	0.19	N/A
	[22]	N/A	N/A	0.02	32

Results (semi-supervised learning)

Single-level

Bi-level



Bibliography

Mining Requirements:

- > Jyo Deshmukh et al. Mining Requirements from Closed-loop Control Models (HSCC '13, IEEE Trans. On Computer Aided Design '15)
- Mohammadinejad et al., Mining Interpretable Spatio-temporal Logic Properties for Spatially Distributed Systems, ATVA, 2021.
- V-Chanlatte et al., Logical clustering and learning for time-series data, 2017.
- Bartocci, E., Bortolussi, L., Sanguinetti, G.: Data-driven statistical learning of temporal logic properties, FORMATS, 2014
- Bufo, S., Bartocci, E., Sanguinetti, G., Borelli, M., Lucangelo, U., Bortolussi, L.i, Temporal logic based monitoring of assisted ventilation in intensive care patients, ISoLA, 2014.
- Nenzi L., Silvetti S., Bartocci E., Bortolussi L. (2018) A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 2018. LNCS, vol 11024. Springer, Cham.
- Bombara, G et all, A Decision Tree Approach to Data Classification Using Signal Temporal Logic. In: Proc. of HSCC, 2016.