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Classical fluids
- Interactions
- Measurable and interesting physical quantities
- Metropolis Monte Carlo approach (mainly)
- Molecular dynamics 
   (here: several slides; but today only few basic concepts will be discussed)
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Interactions
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A very simple interaction

r

U(r)

a

no double site occupancy 
(=no overlap)

The lattice gas model :

but in general: ...
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Interactions
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are averages over the trajectories, rather than the trajectories themselves. Questions such as these
are addressed by statistical mechanics and many of the ideas of statistical mechanics are discussed
in this chapter. However, the only background needed for this chapter is a knowledge of Newton’s
laws of motion.

8.2 The Intermolecular Potential

The first step is to specify the model system we wish to simulate. For simplicity, we assume that
the dynamics can be treated classically and that the molecules are spherical and chemically inert.
We also assume that the force between any pair of molecules depends only on the distance between
them. In this case the total potential energy U is a sum of two-particle interactions:

U = u(r12) + u(r13) + · · · + u(r23) + · · · =
N−1
∑

i=1

N
∑

j=i+1

u(rij), (8.1)

where u(rij) depends only on the magnitude of the distance rij between particles i and j. The
pairwise interaction form (8.1) is appropriate for simple liquids such as liquid argon.

In principle, the form of u(r) for electrically neutral molecules can be constructed by a first
principles quantum mechanical calculation. Such a calculation is very difficult, and it usually is
sufficient to choose a simple phenomenological form for u(r). The most important features of u(r)
for simple liquids are a strong repulsion for small r and a weak attraction at large r. The repulsion
for small r is a consequence of the Pauli exclusion principle. That is, the electron clouds of two
molecules must distort to avoid overlap, causing some of the electrons to be in different quantum
states. The net effect is an increase in kinetic energy and an effective repulsive force between the
electrons, known as core repulsion. The dominant weak attraction at larger r is due to the
mutual polarization of each molecule; the resultant attractive force is called the van der Waals
force.

One of the most common phenomenological forms of u(r) is the Lennard-Jones potential:

u(r) = 4 ϵ
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A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
occurs at a separation r = 21/6σ. The parameters ϵ and σ of the Lennard-Jones potential which
give good agreement with the experimental properties of liquid argon are ϵ = 1.65 × 10−21 J and
σ = 3.4 Å.
Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
magnitude of the corresponding force:

f(r) = −∇u(r) =
24 ϵ
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REMARK: 
this is an effective interaction, a simple phenomenological form for   u(r)
(it is an approximation, since in general, 3-, 4- ... many-body terms are present)

(or atoms)
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A typical 2-body effective potentialCHAPTER 8. THE DYNAMICS OF MANY PARTICLE SYSTEMS 218
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σ

Figure 8.1: Plot of the Lennard-Jones potential u(r). Note that the potential is characterized by
a length σ and an energy ϵ.

What is the value of u(r) for r = 0.8σ? How much does u increase if r is decreased to r = 0.72σ,
a decrease of 10%? What is the value of u at r = 2.5σ? At what value of r does the force equal
zero?

8.3 The Numerical Algorithm

Now that we have specified the interaction between the particles, we need to introduce a numerical
integration method for computing the trajectory of each particle. As might be expected, we need
to use at least a second-order algorithm to maintain conservation of energy for the times of interest
in molecular dynamics simulations. We adopt the commonly used algorithm:

xn+1 = xn + vn∆t + 1
2an(∆t)2 (8.4a)

vn+1 = vn + 1
2 (an+1 + an)∆t. (8.4b)

To simplify the notation, we have written the algorithm for only one component of the particle’s
motion. The new position is used to find the new acceleration an+1 which is used together with
an to obtain the new velocity vn+1. The algorithm represented by (8.4) is a convenient form of
the Verlet algorithm (see Appendix 5A).

repulsion

attraction
minimum

general form
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Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
magnitude of the corresponding force:

f(r) = −∇u(r) =
24 ϵ

r

[

2
(σ

r
)12 −

(σ

r

)6
]

r̂. (8.3)

CHAPTER 8. THE DYNAMICS OF MANY PARTICLE SYSTEMS 217

are averages over the trajectories, rather than the trajectories themselves. Questions such as these
are addressed by statistical mechanics and many of the ideas of statistical mechanics are discussed
in this chapter. However, the only background needed for this chapter is a knowledge of Newton’s
laws of motion.

8.2 The Intermolecular Potential

The first step is to specify the model system we wish to simulate. For simplicity, we assume that
the dynamics can be treated classically and that the molecules are spherical and chemically inert.
We also assume that the force between any pair of molecules depends only on the distance between
them. In this case the total potential energy U is a sum of two-particle interactions:

U = u(r12) + u(r13) + · · · + u(r23) + · · · =
N−1
∑

i=1

N
∑

j=i+1

u(rij), (8.1)

where u(rij) depends only on the magnitude of the distance rij between particles i and j. The
pairwise interaction form (8.1) is appropriate for simple liquids such as liquid argon.

In principle, the form of u(r) for electrically neutral molecules can be constructed by a first
principles quantum mechanical calculation. Such a calculation is very difficult, and it usually is
sufficient to choose a simple phenomenological form for u(r). The most important features of u(r)
for simple liquids are a strong repulsion for small r and a weak attraction at large r. The repulsion
for small r is a consequence of the Pauli exclusion principle. That is, the electron clouds of two
molecules must distort to avoid overlap, causing some of the electrons to be in different quantum
states. The net effect is an increase in kinetic energy and an effective repulsive force between the
electrons, known as core repulsion. The dominant weak attraction at larger r is due to the
mutual polarization of each molecule; the resultant attractive force is called the van der Waals
force.

One of the most common phenomenological forms of u(r) is the Lennard-Jones potential:

u(r) = 4 ϵ

[

(σ

r

)
12

−
(σ

r

)
6
]

. (8.2)

A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
occurs at a separation r = 21/6σ. The parameters ϵ and σ of the Lennard-Jones potential which
give good agreement with the experimental properties of liquid argon are ϵ = 1.65 × 10−21 J and
σ = 3.4 Å.
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A first goal in the study of fluids:
to gain insight into qualitative differences 

between different phases
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Figure 17.4: A sketch of the phase diagram for a simple material.

densities? Can a solid form in the absence of an attractive interaction? What are the physically
relevant quantities for a system with an interaction of the form (17.38 )? There are no thermal
quantities such as the mean potential energy because this quantity is always zero. The major
quantity of interest is g(r) which yields information on the correlations of the particles and the
equation of state. If the interaction is given by (17.38 ), it can be shown that (17.37) reduces to

βP

ρ
= 1 +

2 π

3
ρσ3g(σ) (d = 3) (17.39a)

= 1 +
π

2
ρσ2g(σ) (d = 2 ) (17.39b)

= 1 + ρσg(σ). (d = 1) (17.39c)

We will calculate g(r) for different values of r and then extrapolate our results to r = σ (see
Problem 17.16b).

Because the application of molecular dynamics and Monte Carlo methods to hard disks is
similar, we discuss the latter method only briefly and do not include a program here. The idea is
to choose a disk at random and move it to a trial position as implemented in the following:

LET itrial = int(N*rnd) + 1
LET xtrial = x(itrial) + (2*rnd - 1)*delta
LET ytrial = y(itrial) + (2*rnd - 1)*delta

If the new position overlaps another disk, the move is rejected and the old configuration is retained;
otherwise the move is accepted. A reasonable, although not necessarily optimum, choice for the
maximum displacement δ is to choose δ such that approximately one half of all trial states are
accepted. We also need to fix the maximum amplitude of the move so that the moves are equally
probable in all directions.
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Measurable and  
interesting   

physical quantities
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Measurable and  
interesting  quantities

• pair correlation function  g(r) 

• energy  E 

• pressure   p 

• ...
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• pair correlation function  g(r) 

• energy  E 

• pressure   p 

• ...

concepts and qualitative features

mathematical formulation and 
expressions useful for computation
{
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Radial distribution function

(*)
is a conditional probability
of finding a particle in the shell r ÷ r + dr

given one at the origin

g(r)dr

g(r)

(dr = infinitesimal volume of the shell)

Definition

Consider one reference particle at the origin and count the others; then, average 
over the reference particles 
(Here: spherically symmetric interactions assumed; g depends only on r=|r| )

(dimensionless)
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(Reminder: spherically symmetric interactions 
assumed; g depends only on r=|r| )

Radial distribution function

N particles, volume V : density ρ = N/V

CHAPTER 8. THE DYNAMICS OF MANY PARTICLE SYSTEMS 239

distribution function g(r) is the most common measure of this correlation and is defined as
follows. Suppose that N particles are contained in a region of volume V with number density
ρ = N/V . (In two and one dimensions, we replace V by the area and length respectively.) Choose
one of the particles to be the origin. Then the mean number of other particles in the shell between
r and r + dr is given by ρg(r) dr, where the volume element dr = 4πr2dr (d = 3), 2πrdr (d = 2),
or 2 dr (d = 1). If the interparticle interaction is spherically symmetric and the system is a gas or
a liquid, then g(r) depends only on the separation r = |r|. The normalization condition for g(r) is

ρ

∫

g(r) dr = N − 1 ≈ N. (8.13)

Equation (8.13) implies that if we choose one particle as the origin and count all the other particles
in the system, we obtain N − 1 particles. For an ideal gas, there are no correlations between the
particles, and g(r) = 1 for all r. For the Lennard-Jones interaction, we expect that g(r) → 0
as r → 0, because the particles cannot penetrate one another. We also expect that g(r) → 1 as
r → ∞, because the effect of one particle on another decreases as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1
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Normalization

ρg(r)dr

The mean number of particles in the 
shell with radius between r and r+dr is:

0

∞
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Radial distribution function

repulsive interactions on short-range scale: g(r → 0) → 0
in general: g(r) → 1 for r → ∞

Gives insight into the structure of a many-body system.
 General behavior at short and long distances:

g(r)
Physical meaning
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Radial distribution function
Typical features:

      gas: almost structureless 
(ideal gas:  no interactions or correlations,  g(r) = 1  for r large enough)

liquid: some structure with broad peaks
solid: evidence of well separated coordination shells, 
zero in between; broadening of the peaks depending on T

(credit to:  Thomas/Penfold Group, http://rkt.chem.ox.ac.uk/ )
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The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys., 2017, 19, 3756

 

another example (2D):
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Radial distribution function
formulation in case of spherically symmetric interactions:
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distribution function g(r) is the most common measure of this correlation and is defined as
follows. Suppose that N particles are contained in a region of volume V with number density
ρ = N/V . (In two and one dimensions, we replace V by the area and length respectively.) Choose
one of the particles to be the origin. Then the mean number of other particles in the shell between
r and r + dr is given by ρg(r) dr, where the volume element dr = 4πr2dr (d = 3), 2πrdr (d = 2),
or 2 dr (d = 1). If the interparticle interaction is spherically symmetric and the system is a gas or
a liquid, then g(r) depends only on the separation r = |r|. The normalization condition for g(r) is

ρ

∫

g(r) dr = N − 1 ≈ N. (8.13)

Equation (8.13) implies that if we choose one particle as the origin and count all the other particles
in the system, we obtain N − 1 particles. For an ideal gas, there are no correlations between the
particles, and g(r) = 1 for all r. For the Lennard-Jones interaction, we expect that g(r) → 0
as r → 0, because the particles cannot penetrate one another. We also expect that g(r) → 1 as
r → ∞, because the effect of one particle on another decreases as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1
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r → ∞, because the effect of one particle on another decreases as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1
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FOR j = i + 1 to N
LET dx = separation(x(i) - x(j),Lx)
LET dy = separation(y(i) - y(j),Ly)
LET r2 = dx*dx + dy*dy
LET r = sqr(r2)
LET ibin = truncate(r/dr,0) + 1
IF ibin <= nbin then

LET gcum(ibin) = gcum(ibin) + 1
END IF

NEXT j
NEXT i
LET ncorrel = ncorrel + 1 ! # times n(r) computed

END SUB

The results for n(r) for different configurations are accumulated in the array gcum; the latter array
is normalized in SUB normalize g listed below. The use of periodic boundary conditions in SUB
compute g implies that the maximum separation between any two particles in the x and y direction
is Lx/2 and Ly/2 respectively. Hence for a square cell, we can determine g(r) only for r ≤ 1

2L.
To obtain g(r) from n(r), we note that for a given particle i, we consider only those particles

whose j is greater than i (see SUB compute g). Hence, there are a total of 1
2N(N − 1) separations

that are considered. In two dimensions we compute n(r,∆r) for a circular shell whose area is
2πr∆r. These considerations imply that g(r) is related to n(r) by

ρg(r) =
n(r,∆r)

1
2N 2πr∆r

. (two dimensions) (8.16)

Note the factor of N/2 in the denominator of (8.16). The following subroutine normalizes the array
gcum and yields g(r):

SUB normalize_g(ncorrel)
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),dr
LET density = N/(Lx*Ly)
LET rmax = min(Lx/2,Ly/2)
LET normalization = density*ncorrel*0.5*N
LET bin = 1
LET r = 0
OPEN #2: name "gdata", access output,create new
DO while r <= rmax

LET area_shell = pi*((r + dr)^2 - r^2)
LET g = gcum(bin)/(normalization*area_shell)
PRINT r+dr/2,g
PRINT #2: r+dr/2,g
LET bin = bin + 1
LET r = r + dr

LOOP
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distribution function g(r) is the most common measure of this correlation and is defined as
follows. Suppose that N particles are contained in a region of volume V with number density
ρ = N/V . (In two and one dimensions, we replace V by the area and length respectively.) Choose
one of the particles to be the origin. Then the mean number of other particles in the shell between
r and r + dr is given by ρg(r) dr, where the volume element dr = 4πr2dr (d = 3), 2πrdr (d = 2),
or 2 dr (d = 1). If the interparticle interaction is spherically symmetric and the system is a gas or
a liquid, then g(r) depends only on the separation r = |r|. The normalization condition for g(r) is

ρ

∫

g(r) dr = N − 1 ≈ N. (8.13)

Equation (8.13) implies that if we choose one particle as the origin and count all the other particles
in the system, we obtain N − 1 particles. For an ideal gas, there are no correlations between the
particles, and g(r) = 1 for all r. For the Lennard-Jones interaction, we expect that g(r) → 0
as r → 0, because the particles cannot penetrate one another. We also expect that g(r) → 1 as
r → ∞, because the effect of one particle on another decreases as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1

Remember:

Integrated all over the space, n(r,Δr) gives the number of pairs considered, 
which is  N(N-1)/2, times the area of the circular shell

For a given particle  i,  consider only those with  j > i
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Radial distribution function
Again in the case of spherically symmetric interactions

Mathematical formulation - details for the 2D case:

g(r) =
number of pairs with distance between r and r + ∆r

2πr∆r · ρN

ρ

ρ

OK for a numerical implementation

<= (δ: to be considered within 
the accuracy of Δr ;  up to 
here: double counting of pairs)

<= (here: no double           
counting of pairs)
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Pair correlation function

g(r) =
1

ρ2
⟨
∑

i

∑

j ̸=i

δ(ri)δ(rj − ri)⟩ ensemble average over 
pairs 

OK for numerical 
implementation

Mathematical formulation:

=
N

V 2
⟨
∑

i

∑

j ̸=i

δ(r − rij)⟩

(Here: V  instead of A,  for a 3D case in general)

N particles, volume V : density ρ = N/V

(similar to the radial distribution function,
but more general definition, 

i.e., interactions not spherically symmetric)
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Radial distribution function
Related quantities

For comparison with experiments:
geometrical structure factor  S(k);
fluctuations in g(r) are related to S(k): 

ρ(k) =
N∑

i=1

exp (ik · ri)

S(k) =
1

N
⟨ρ(k)ρ(−k)⟩ =

1

N

〈

N
∑

i,j=1

exp (ik · (ri − rj))

〉

=

= 1 + 4πρ

∫
∞

0

r2
sin (kr)

kr
g(r)dr

(average also over time 
if the configuration of 

the fluid evolves)

 23



Radial distribution function

ρg(r): local density about a given particle

potential energy between this particle and others
in a volume dr around r: u(r)ρg(r)dr

Relevance of g(r) for other physical quantities
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distribution function g(r) is the most common measure of this correlation and is defined as
follows. Suppose that N particles are contained in a region of volume V with number density
ρ = N/V . (In two and one dimensions, we replace V by the area and length respectively.) Choose
one of the particles to be the origin. Then the mean number of other particles in the shell between
r and r + dr is given by ρg(r) dr, where the volume element dr = 4πr2dr (d = 3), 2πrdr (d = 2),
or 2 dr (d = 1). If the interparticle interaction is spherically symmetric and the system is a gas or
a liquid, then g(r) depends only on the separation r = |r|. The normalization condition for g(r) is

ρ

∫

g(r) dr = N − 1 ≈ N. (8.13)

Equation (8.13) implies that if we choose one particle as the origin and count all the other particles
in the system, we obtain N − 1 particles. For an ideal gas, there are no correlations between the
particles, and g(r) = 1 for all r. For the Lennard-Jones interaction, we expect that g(r) → 0
as r → 0, because the particles cannot penetrate one another. We also expect that g(r) → 1 as
r → ∞, because the effect of one particle on another decreases as their separation increases.

The radial distribution function can be measured indirectly by elastic radiation scattering
experiments, especially by the scattering of X-rays. Several thermodynamic properties also can be
obtained from g(r). Because ρg(r) can be interpreted as the local density about a given particle, the
potential energy of interaction between this particle and all other particles between r and r + dr is
u(r)ρg(r) dr, if we assume that only two-body interactions are present. The total potential energy
is found by integrating over all values of r and multiplying by N/2. The factor of N is included
because any of the N particles could be chosen as the particle at the origin, and the factor of 1/2 is
included so that each pair interaction is counted only once. The result is that the mean potential
energy per particle can be expressed as

U

N
=

ρ

2

∫

g(r)u(r) dr. (8.14)

It also can be shown that the relation (8.10) for the mean pressure can be rewritten in terms of
g(r) so that the equation of state can be expressed as

PV

NkT
= 1 − ρ

2dkT

∫

g(r) r
du(r)

dr
dr. (8.15)

To determine g(r) for a particular configuration of particles, we first compute n(r,∆r), the
number of particles in a spherical (circular) shell of radius r and small, but nonzero width ∆r,
with the center of the shell centered about each particle. A subroutine for computing n(r) is given
in the following:

SUB compute_g(ncorrel)
DECLARE PUBLIC x(),y()
DECLARE PUBLIC N,Lx,Ly
DECLARE PUBLIC gcum(),nbin,dr
DECLARE DEF separation
! accumulate data for n(r)
FOR i = 1 to N - 1

average potential energy per particle:

g(r) gives structural information, but 
it is relevant to calculate also other ensemble averages of quantities 
depending on pair interactions, e.g., energy:
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Pressure

If only two-body forces are present, the virial eq. of state can 
be rewritten using the radial distribution function:

CHAPTER 17. MONTE CARLO SIMULATION OF THE CANONICAL ENSEMBLE 606

?

Figure 17.3: An example of frustration on a triangular lattice.

velocities {vi}, and the potential energy U is a function of only the particle positions {ri}. Because
the velocity appears quadratically in the kinetic energy, the equipartition theorem implies that the
contribution of the velocity coordinates to the mean energy is 1

2kT per degree of freedom. Hence,
we need to sample only the positions of the molecules, that is, the “configurational”degrees of
freedom. Is such a simplification possible for quantum systems?

The physically relevant quantities of a fluid include its mean energy, specific heat and equation
of state. Another interesting quantity is the radial distribution function g(r) which we introduced
in Chapter 8. We will find in Problems 17.16–17.18 that g(r) is a probe of the density fluctuations
and hence a probe of the local order in the system. If only two-body forces are present, the mean
potential energy per particle can be expressed as (see (??))

U

N
=

ρ

2

∫
g(r)V (r) dr, (17.36)

and the (virial) equation of state can be written as (see (8.15 ))

βP

ρ
= 1 − βρ

2 d

∫
g(r) r

dV (r)
dr

dr. (17.37)

Hard core interactions. To separate the effects of the short range repulsive interaction from the
longer range attractive interaction, we first investigate a model of hard disks with the interparticle
interaction

V (r) =

{
+∞ r < σ

0 r ≥σ.
(17.38)

Such an interaction has been extensively studied in one dimension (hard rods), two dimensions
(hard disks), and in three dimensions (hard spheres). Hard sphere systems were the first systems
studied by Metropolis and coworkers.

Because there is no attractive interaction present in (17.38), there is no transition from a gas
to a liquid. Is there a phase transition between a fluid phase at low densities and a solid at high

From the virial(see next slide) and equipartition theorems:
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The presence of the factor d(N − 1) rather than dN in (8.8) is an example of a finite size
correction which becomes unimportant for large N . We shall ignore this correction in the following.

Another macroscopic quantity of interest is the mean pressure of the system. The pressure is
related to the force per unit area acting normal to an imaginary surface in the system. By Newton’s
second law, this force can be related to the momentum that crosses the surface per unit time. In
general, this momentum flux has two contributions. The easiest contribution to understand is the
one carried by the particles due to their motion. This contribution, equal to the pressure of an
ideal gas, is derived in many texts (cf. Chapter 7 of Reif) using simple kinetic theory arguments
and is given by Pideal = NkT/V .

The other contribution to the momentum flux arises from the momentum transferred across
the surface due to the forces between particles on different sides of the surface. The form of this
contribution to the dynamical pressure is difficult to derive if periodic boundary conditions are used
(cf. Haile). The instantaneous pressure at time t including both contributions to the momentum
flux is given by

P (t) =
N

V
kT (t) +

1
dV

∑

i<j

rij(t) · Fij(t), (8.9)

where rij = ri − rj , and Fij is the force on particle i due to particle j.

The mean pressure P ≡ P (t) is found by computing a time average of the right-hand side of
(8.9). The computed quantity of interest is not P , but the quantity

PV

NkT
− 1 =

1
dNkT

∑

i<j

rij · Fij . (8.10)

In Program md, the right-hand side of (8.10), known as the virial, is computed in SUB accel and
accumulated in the variable vcum. This quantity represents the correction to the ideal gas equation
of state due to interactions between the particles.

The relation of information at the microscopic level to macroscopic quantities such as the
temperature and pressure is one of the fundamental elements of statistical mechanics. In brief,
molecular dynamics allows us to compute various time averages of the phase space trajectory over
finite time intervals. The main practical question we must consider is whether our time intervals
are sufficiently long to allow the system to explore phase space and yield meaningful averages.
In equilibrium statistical mechanics, a time average is replaced by an ensemble average over all
possible configurations. The quasi-ergodic hypothesis asserts the equivalence of these two averages
if the same quantities are held fixed. In statistical mechanics, the ensemble of systems at fixed
E, V , and N is called the microcanonical ensemble. Averages in this ensemble correspond to the
time averages we find in molecular dynamics which are at fixed E, V and N . (Molecular dynamics
also imposes an additional, but unimportant, constraint on the center of mass motion.) Ensemble
averages are explored using Monte Carlo methods in Chapters ?? and ??.

The goal of the following problems is to explore some of the qualitative features of gases,
liquids, and solids. Because we consider only small systems and relatively short run times, our
results will only be suggestive.
Problem 8.5. Qualitative properties of a liquid and a gas

(average over particles pairs and time)
Note the additional term due to interactions with respect 

to the eq. of state of the ideal gas
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Virial theorem

If the force between any two particles of the system results from a 
potential energy V(r) = αr n where r is the inter-particle distance, 
the virial theorem is simply:

2⟨Ekin⟩ = −
N∑

k=1

⟨Fk · rk⟩

2⟨Ekin⟩ = n⟨Vtot⟩

If <Ekin> is the time average of the total kinetic energy and Fk is the force 
acting on the particle k at the position rk , the virial theorem states:

(average
 also over time)
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Simple interaction potentials

• Hard disks (spheres)

• Lennard-Jones

• ...
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Hard disks
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CLOSE #2
END SUB

The shell thickness ∆r needs to be sufficiently small so that the important features of g(r) are
found, but large enough so that each bin has a reasonable number of contributions. The value of ∆r
can be specified in SUB initial; a reasonable compromise choice for its magnitude is dr = 0.025.
Problem 8.11. The structure of g(r) for a dense liquid and a solid

1. Incorporate SUB compute g and SUB normalize g into your molecular dynamics program
and determine g(r) for some of the same densities and temperatures that you have considered
in previous problems. What are the qualitative features of g(r)?

2. Compute g(r) for a system of N = 64 particles that are fixed on a triangular lattice with
Lx = 8 and Ly =

√
3Lx/2. What is the density of the system? What is the nearest neighbor

distance between sites? At what value of r does the first maximum of g(r) occur? What is
the next nearest distance between sites? At what value of r does the second maximum of
g(r) occur? Does your calculated g(r) have any other relative maxima? If so, relate these
maxima to the structure of the triangular lattice.

3. Use your molecular dynamics program to compute g(r) for a dense fluid (ρ > 0.6, T ≈ 1.0)
using at least N = 32 particles. How many relative maxima can you observe? In what ways
do they change as the density is increased? How does the behavior of g(r) for a dense liquid
compare to that of a dilute gas and a solid?

8.9 Hard disks

How can we understand the temperature and density dependence of the equation of state and the
structure of a dense liquid? One way to gain more insight is to modify the interaction and see how
the properties of the system change. In particular, we would like to understand the relative role
of the repulsive and attractive parts of the interaction. For this reason, we consider an idealized
system of hard disks for which the interaction u(r) is purely repulsive:

u(r) =

{

+∞, r < σ

0, r ≥σ .
(8.17)

The length σ is the diameter of the hard disks (see Figure 8.6). In three dimensions the interaction
(8.17) describes the interaction of hard spheres (billiard balls); in one dimension (8.17) describes
the interaction of hard rods.

Because the interaction u(r) between hard disks is a discontinuous function of r, the dynamics
of hard disks is qualitatively different than it is for a continuous interaction such as the Lennard-
Jones potential. For hard disks, the particles move in straight lines at constant speed between
collisions and change their velocities instantaneously when a collision occurs. Hence the problem
becomes finding the next collision and computing the change in the velocities of the colliding pair.
We will see that the dynamics can be computed exactly in principle and is limited only by computer
roundoff errors.
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σ

Figure 8.6: The closest distance between two hard disks is σ. The disks exert no force on one
another unless they touch.

The dynamics of a system of hard disks can be treated as a sequence of two-body elastic
collisions. The idea is to consider all pairs of particles i and j and to find the collision time tij for
their next collision ignoring the presence of all other particles. In many cases, the particles will be
going away from each other and the collision time is infinite. From the collection of collision times
for all pairs of particles, we find the minimum collision time. We then move all particles forward
in time until the collision occurs and calculate the postcollision velocities of the colliding pair.

We first determine the particle velocities after a collision. Consider a collision between particles
1 and 2. Let v1 and v2 be their velocities before the collision and v′

1 and v′
2 be their velocities

after the collision. Because the particles have equal mass, it follows from conservation of energy
and linear momentum that

v′1
2 + v′2

2 = v1
2 + v2

2 (8.18)

v′
1 + v′

2 = v1 + v2. (8.19)

From (8.19) we have

∆v1 = v′
1 − v1 = −(v′

2 − v2) = −∆v2. (8.20)

When two hard disks collide, the force is exerted along the line connecting their centers,
r12 = r1 − r2. Hence, the components of the velocities parallel to r12 are exchanged, and the
perpendicular components of the velocities are unchanged. It is convenient to write the velocity of
particles 1 and 2 as a vector sum of its components parallel and perpendicular to the unit vector
r̂12 = r12/|r12|. We write the velocity of particle 1 as:

v1 = v1,∥ + v1,⊥, (8.21)

where v1,∥ = (v1 · r̂12)r̂12,

v′
1,∥ = v2,∥ v′

2,∥ = v1,∥ (8.22a)

and
v′

1,⊥ = v1,⊥ v′
2,⊥ = v2,⊥. (8.22b)

A particular form of interacting potential 
(similar to the simplest lattice gas model with no double site occupancy, 

but here in a continuum)

No minimum; check overlap!
No attractive part  =>  no transition from gas to liquid

u(r)

r
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σ

2σ σ
√

3

particle (or number) density : ρ =
number of particles

area
=

N

A

max particle (or number) density : ρmax =
2

√

3σ2

reduced density : ρ
∗

= ρσ
2

max reduced density : ρ
∗

max
=

2
√

3
= 0.907

σ: diameter of the disks

Solid phase: close-packed 
structure (hex lattice); 
position of the peaks:

NN shell:   
σ 

2NN shell:                     
σ

3NN shell:  
2σ 

√

3

Hard disks

(non-dimensional quantity)

ρ
∗

max
=

2
√

3
= 1.1547

f =
areaoccupied

areaavailable

=
π

2
√

3
= 0.907max packing fraction: f =

⇡

4
⇢⇤

1
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of hard disks in 2D

/σ

σ

2σ σ
√

3

at different reduced densities 

<= liquid

<= solid
<= transition ?

the appearance of a double structure in the peak around 2σ 
is a fingerprint of the liquid-solid transition

(high density solid: peaks at ~1.7 σ  and  2 σ )

Radial distribution function

ρ
∗

max
=

2
√

3
= 1.1547max reduced density:

f =
⇡

4
⇢⇤

1
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dal suspensions and Brownian dynamics simulations @7# for
varying interparticle interactions. Furthermore, Löwen @35#
has shown that the criterion does reasonably well for 2D
colloidal fluids, making the Löwen-Palberg-Simon rule the
only freezing criterion to hold simultaneously in two and
three dimensions. Clearly, such a rule is not applicable for
atomic liquids, which are governed by Newtonian dynamics
and are therefore characterized by a single diffusion coeffi-
cient.
The criteria presented above are useful because they pro-

vide a means for locating the liquid-solid transition without
resorting to free-energy calculations. Of course, such conve-
nience is obtained at the cost of rigor, since thermodynamics
dictates the equality of pressure, temperature, and chemical
potential as the only criteria to be satisfied for coexisting
bulk phases in equilibrium. Nevertheless, these rules suggest
that some features of the freezing transition, at least for
simple fluids, are universal in character. This is not surpris-
ing in light of the fact that dense liquids can be treated as a
perturbation on the hard-sphere fluid @37,38#, which itself
~most likely @39#! exhibits an entropy-driven freezing transi-
tion in both two and three dimensions @40–42#. In fact,
Longuet-Higgins and Widom @43# demonstrated that the
freezing parameters for argon could be obtained from an ex-
tended van der Waals treatment of the hard-sphere fluid. This
line of reasoning was instrumental in motivating the early
order-parameter ~density-functional! theories of freezing
@13,44,45#.
In this paper we present evidence that the simplest model

fluids, namely, the hard-disk and hard-sphere fluids, exhibit a
structural precursor to the freezing transition. This feature
manifests itself as a shoulder just before the second peak of
the fluid-phase radial distribution function ~RDF! at densities
close to ~but below! to the freezing transition ~see Figs. 1 and
2!. The shoulder first becomes visible at a D-dimensional
packing fraction h;0.67 for hard disks and h;0.47 for
hard spheres. The D-dimensional packing fraction is defined
as

h5rv~s/2!, ~1!

where r is the number density and v(r) is the volume of a
D-dimensional sphere of radius r ,

v~r !5
pD/2rD

G~11D/2!
. ~2!

For example, for D51, 2, and 3, v(r)52r , pr2, and
4pr3/3, respectively.
The onset of this significant structural change appears

within 5% of the freezing transition, which occurs at h f'
0.69 in two dimensions and h f' 0.494 in three dimensions.
Unlike the familiar split second peak that occurs in the RDF
of the dense, metastable hard-sphere system ~see, e.g.,
@46,47#!, the appearance of the shoulder in the stable fluid
phase is, for the most part, unrecognized. Labı́k and
Malijevský @48# noticed the shoulder in their Monte Carlo
simulations of the hard-sphere fluid. Upon further investiga-
tion @49,50#, it was concluded that the shoulder marked the
onset of the supercooled liquid, whose structure is similar to
that of the amorphous solid. Giarritta, Ferrario, and Gi-
aquinta @51# noted the shoulder in their curved space simu-
lations of dense, hard-disk systems. It is interesting to note
that both subpeaks and shoulders have appeared on the ex-
perimentally measured RDFs of several simple liquids. Their
presence was originally attributed to finite truncation of the
Fourier inversion integral of the structure factor. However,
Fehder @52# has suggested, based on his study of Lennard-
Jones disks, that the subsidiary features may actually result
from alternative patterns of local ordering in the fluid.
In the present work we demonstrate that the appearance of

the shoulder in the hard-disk and hard-sphere fluid corre-
sponds to a salient structural feature that is not present in the
low-density fluid. Furthermore, the data suggest that the
structural motif is indeed a precursor of the crystalline solid.

II. RESULTS AND DISCUSSION

For our study of the fluid phase, molecular dynamics
simulations were performed for systems of 500 particles in
both two and three dimensions. The systems were equili-
brated for a period of 5000N collisions, which was sufficient
to guarantee reproducible thermodynamic properties. A
slightly larger system of 780 particles was chosen to simulate

FIG. 1. Radial distribution function g(r) for hard disks plotted
versus distance r ~in units of diameters!. Curves represent the fluid
phase with h50.65, 0.67, 0.68, and 0.69 ~freezing point!.

FIG. 2. Radial distribution function g(r) for hard spheres plot-
ted versus distance r ~in units of diameters!. Curves represent the
fluid phase with h50.42, 0.45, 0.47, and 0.494 ~freezing point!.
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We show that the simplest model fluids in two and three dimensions, namely, the hard-disk and hard-sphere
fluids, exhibit a structural precursor to the freezing transition, which manifests itself as a shoulder in the second
peak of the radial distribution function. This feature is not present in the radial distribution function of the
low-density fluid. Close examination of the two-dimensional fluid configurations in the vicinity of the freezing
transition reveals that the shoulder corresponds to the formation of a distinct structural motif, identifiable as a
four-particle hexagonally close-packed arrangement. As the dense fluid approaches the freezing transition, the
ordered arrangements form large embryonic domains, commensurate with those seen in the crystal at the
melting point. Contrary to the notion that the split second peak is a signature of the amorphous solid, our
results support the idea that it is a precursor to the development of long-range order. @S1063-651X~98!00109-3#

PACS number~s!: 61.20.Ne, 61.20.Ja, 64.70.Dv

I. INTRODUCTION

Phenomenological rules associated with the liquid-solid
phase transition can be found for systems in both two and
three dimensions @1–3#. Perhaps the most successful crite-
rion for determining the freezing transition in three-
dimensional ~3D! monatomic liquids was introduced in 1969
by Hansen and Verlet @4#. They noticed that the amplitude of
the first peak in the liquid structure factor S(k) is nearly 2.85
at the freezing line, a seemingly universal feature that has
been verified both by simulations @4–7# and experiments @8–
12#. Nonetheless, studies of 2D liquids @13–15# reveal that
the peak in the liquid structure factor is much larger at the
freezing line, indicating that the simple Hansen-Verlet rule
does not carry over to arbitrary spatial dimension. For the 3D
monatomic crystal, one can appeal to the celebrated Linde-
mann melting criterion @16#, which states that, on average,
the root-mean-square ~rms! displacement of the atoms scaled
by their interparticle separation is approximately 0.15 at the
melting line. Proposed in 1910, the Lindemann criterion has
been found to be valid for a variety of real and model crys-
tals @17#, quite independent of the specific atomic interac-
tions. Preliminary studies by Stillinger and co-workers
@18,19# suggest that a reverse Lindemann criterion holds for
the displacement of liquid atoms about their inherent struc-
tures @20,21# at the freezing line, indicating that the criterion
provides a somewhat symmetric description of the liquid-
solid equilibrium. It is worth noting that the rms displace-
ment diverges logarithmically with system size in 2D crys-
tals and thus the Lindemann criterion is not a suitable rule
for melting in two dimensions @22#.
Two-dimensional systems have provided a fertile medium

for the study of phase transitions. Indeed, the topological
simplification relative to three dimensions has allowed con-
siderable theoretical and computational progress @3,23#. Un-

derlying the physics of low-dimensional condensed phases is
the role of long-wavelength fluctuations. Most notably, 2D
crystals do not possess long-range translational order
@24,25#; rather, the translational order is quasi-long-ranged,
with a density-density correlation function that decays alge-
braically to zero @26,22#. However, there is true long-range
bond-orientational order in the crystal, while both transla-
tional and orientational order are short ranged in the equilib-
rium fluid. The defect-mediated theory of Kosterlitz, Thou-
less, Halperin, Nelson, and Young @27–30# addresses the
effect of long-wavelength fluctuations on the 2D melting
transition. It predicts that the crystal undergoes a continuous
melting transition via the unbinding of dislocations into a
~possibly metastable @31#! hexatic phase, with short-range
translational order and quasi-long-range orientational order.
The hexatic phase is predicted to undergo a second continu-
ous transition to the equilibrium fluid via the unbinding of
disclinations. Of course, the Kosterlitz-Thouless-Halperin-
Nelson-Young ~KTHNY! scenario does not rule out the pos-
sibility of a first-order melting transition occurring by an-
other mechanism. In fact, there is strong evidence to support
a first-order phase transition in the hard-disk system @32–34#.
While the validity of the KTHNY theory is still an interest-
ing open question ~see, e.g., @3,23#!, many of its predictions
have been verified by simulations and experiments. Of spe-
cial relevance here is the prediction that the dimensionless
combination K[4m̃(m̃1l̃)/(2m̃1l̃) is equal to 16p on the
melting line, where m̃ and l̃ are reduced Lamé constants. It
has been recognized @35# that while the KTHNY melting
criterion is found to hold for 2D solids @14,36#, there is no
analog in three dimensions.
More recently, Löwen, Palberg, and Simon @7# introduced

a dynamical criterion for the freezing of three-dimensional
colloidal fluids. It states that the ratio of the long-time to the
short-time diffusion coefficient DL /D0 in the liquid is '0.1
at the freezing line. The criterion has been verified by forced
Rayleigh scattering experiments on charged-stabilized colloi-*Electronic address: torquato@matter.princeton.edu
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?

Figure 17.3: An example of frustration on a triangular lattice.

velocities {vi}, and the potential energy U is a function of only the particle positions {ri}. Because
the velocity appears quadratically in the kinetic energy, the equipartition theorem implies that the
contribution of the velocity coordinates to the mean energy is 1

2kT per degree of freedom. Hence,
we need to sample only the positions of the molecules, that is, the “configurational”degrees of
freedom. Is such a simplification possible for quantum systems?

The physically relevant quantities of a fluid include its mean energy, specific heat and equation
of state. Another interesting quantity is the radial distribution function g(r) which we introduced
in Chapter 8. We will find in Problems 17.16–17.18 that g(r) is a probe of the density fluctuations
and hence a probe of the local order in the system. If only two-body forces are present, the mean
potential energy per particle can be expressed as (see (??))

U

N
=

ρ

2

∫
g(r)V (r) dr, (17.36)

and the (virial) equation of state can be written as (see (8.15 ))

βP

ρ
= 1 − βρ

2 d

∫
g(r) r

dV (r)
dr

dr. (17.37)

Hard core interactions. To separate the effects of the short range repulsive interaction from the
longer range attractive interaction, we first investigate a model of hard disks with the interparticle
interaction

V (r) =

{
+∞ r < σ

0 r ≥σ.
(17.38)

Such an interaction has been extensively studied in one dimension (hard rods), two dimensions
(hard disks), and in three dimensions (hard spheres). Hard sphere systems were the first systems
studied by Metropolis and coworkers.

Because there is no attractive interaction present in (17.38), there is no transition from a gas
to a liquid. Is there a phase transition between a fluid phase at low densities and a solid at high

case of Hard Disks (Spheres):

βP

ρ
= 1 +

2

3
πρσ3g(σ) (d = 3)

βP

ρ
= 1 +

1

2
πρσ2g(σ) (d = 2)

βP

ρ
= 1 + ρσg(σ) (d = 1)

dr = 4πr
2
dr

dr = 2πr dr

dr = 2 dr
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are averages over the trajectories, rather than the trajectories themselves. Questions such as these
are addressed by statistical mechanics and many of the ideas of statistical mechanics are discussed
in this chapter. However, the only background needed for this chapter is a knowledge of Newton’s
laws of motion.

8.2 The Intermolecular Potential

The first step is to specify the model system we wish to simulate. For simplicity, we assume that
the dynamics can be treated classically and that the molecules are spherical and chemically inert.
We also assume that the force between any pair of molecules depends only on the distance between
them. In this case the total potential energy U is a sum of two-particle interactions:

U = u(r12) + u(r13) + · · · + u(r23) + · · · =
N−1
∑

i=1

N
∑

j=i+1

u(rij), (8.1)

where u(rij) depends only on the magnitude of the distance rij between particles i and j. The
pairwise interaction form (8.1) is appropriate for simple liquids such as liquid argon.

In principle, the form of u(r) for electrically neutral molecules can be constructed by a first
principles quantum mechanical calculation. Such a calculation is very difficult, and it usually is
sufficient to choose a simple phenomenological form for u(r). The most important features of u(r)
for simple liquids are a strong repulsion for small r and a weak attraction at large r. The repulsion
for small r is a consequence of the Pauli exclusion principle. That is, the electron clouds of two
molecules must distort to avoid overlap, causing some of the electrons to be in different quantum
states. The net effect is an increase in kinetic energy and an effective repulsive force between the
electrons, known as core repulsion. The dominant weak attraction at larger r is due to the
mutual polarization of each molecule; the resultant attractive force is called the van der Waals
force.

One of the most common phenomenological forms of u(r) is the Lennard-Jones potential:

u(r) = 4 ϵ

[

(σ

r

)
12

−
(σ

r

)
6
]

. (8.2)

A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
occurs at a separation r = 21/6σ. The parameters ϵ and σ of the Lennard-Jones potential which
give good agreement with the experimental properties of liquid argon are ϵ = 1.65 × 10−21 J and
σ = 3.4 Å.
Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
magnitude of the corresponding force:

f(r) = −∇u(r) =
24 ϵ

r

[

2
(σ

r
)12 −

(σ

r

)6
]

r̂. (8.3)
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u

r
ε

σ

Figure 8.1: Plot of the Lennard-Jones potential u(r). Note that the potential is characterized by
a length σ and an energy ϵ.

What is the value of u(r) for r = 0.8σ? How much does u increase if r is decreased to r = 0.72σ,
a decrease of 10%? What is the value of u at r = 2.5σ? At what value of r does the force equal
zero?

8.3 The Numerical Algorithm

Now that we have specified the interaction between the particles, we need to introduce a numerical
integration method for computing the trajectory of each particle. As might be expected, we need
to use at least a second-order algorithm to maintain conservation of energy for the times of interest
in molecular dynamics simulations. We adopt the commonly used algorithm:

xn+1 = xn + vn∆t + 1
2an(∆t)2 (8.4a)

vn+1 = vn + 1
2 (an+1 + an)∆t. (8.4b)

To simplify the notation, we have written the algorithm for only one component of the particle’s
motion. The new position is used to find the new acceleration an+1 which is used together with
an to obtain the new velocity vn+1. The algorithm represented by (8.4) is a convenient form of
the Verlet algorithm (see Appendix 5A).

repulsion

attraction

minimum
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A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
occurs at a separation r = 21/6σ. The parameters ϵ and σ of the Lennard-Jones potential which
give good agreement with the experimental properties of liquid argon are ϵ = 1.65 × 10−21 J and
σ = 3.4 Å.
Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
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A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
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Figure 8.1: Plot of the Lennard-Jones potential u(r). Note that the potential is characterized by
a length σ and an energy ϵ.

What is the value of u(r) for r = 0.8σ? How much does u increase if r is decreased to r = 0.72σ,
a decrease of 10%? What is the value of u at r = 2.5σ? At what value of r does the force equal
zero?

8.3 The Numerical Algorithm

Now that we have specified the interaction between the particles, we need to introduce a numerical
integration method for computing the trajectory of each particle. As might be expected, we need
to use at least a second-order algorithm to maintain conservation of energy for the times of interest
in molecular dynamics simulations. We adopt the commonly used algorithm:

xn+1 = xn + vn∆t + 1
2an(∆t)2 (8.4a)

vn+1 = vn + 1
2 (an+1 + an)∆t. (8.4b)

To simplify the notation, we have written the algorithm for only one component of the particle’s
motion. The new position is used to find the new acceleration an+1 which is used together with
an to obtain the new velocity vn+1. The algorithm represented by (8.4) is a convenient form of
the Verlet algorithm (see Appendix 5A).
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:

ϵ: depth of u(r) at the minimum
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quantity unit value for argon
length σ 3.4 × 10 −10 m
energy ϵ 1.65 × 10 −21 J
mass m 6.69 × 10 −26 kg
time σ(m/ϵ)1/2 2.17 × 10 −12 s
velocity (ϵ/m)1/2 1.57 × 10 2 m/s
force ϵ/σ 4.85 × 10 −12 N
pressure ϵ/σ2 1.43 × 10 −2 N · m−1

temperature ϵ/k 120 K

Table 8.1: The system of units used in the molecular dynamics simulations of particles interacting
via the Lennard-Jones potential. The numerical values of σ, ϵ, and m are for argon. The quantity
k is Boltzmann’s constant and has the value k = 1.38 × 10 −23 J/K. The unit of pressure is for a
two-dimensional system.

LIBRARY "csgraphics"
CALL initial(t,ke,kecum,pecum,vcum,area)
CALL set_up_windows(#1,#2)
CALL accel(pe,virial)
LET E = ke + pe ! total energy
LET ncum = 0 ! number of times data accumulated
LET flag$ = ""
DO

CALL show_positions(flag$,#2)
CALL Verlet(t,ke,pe,virial)
CALL show_output(t,ke,pe,virial,kecum,vcum,ncum,area,#1)

LOOP until flag$ = "stop"
CALL save_config
END

The x- and y-components of the positions, velocities, and accelerations are represented by arrays
and are declared as public variables (cf. Appendix 3C) because they are used in almost all of the
subroutines. These arrays are dimensioned in a PUBLIC statement and are declared in a DECLARE
PUBLIC statement in each subroutine in which they are used. An array that is declared in a
PUBLIC statement is not dimensioned in a DIM statement. The nature of the passed variables and
the subroutines are discussed in the following.

Because the system is deterministic, the nature of the motion is determined by the initial
conditions. An appropriate choice of the initial conditions is more difficult than might first appear.
For example, how do we choose the initial configuration (a set of positions and velocities) to
correspond to a fluid at a desired temperature? We postpone a discussion of such questions until
Section 8.7 , and instead we use initial conditions that have been computed previously.

The initial conditions can be incorporated into the program by either reading a data file or
storing the information within a program using DATA and READ statements. The following program
illustrates the use of the DATA and READ statements:

Units
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Figure 8.2: (a) Two particles at x = 0 and x = 3 on a line of length L = 4 ; the distance between the
particles is 3. (b) The application of periodic boundary conditions for short range interactions is
equivalent to thinking of the line as forming a circle of circumference L. In this case the minimum
distance between the two particles is 1.

in the central cell. These boundary conditions also imply that every point in the cell is equivalent
and that there is no surface. The shape of the central cell must be such that the cell fills space
under successive translations.

As a particle moves in the original cell, its periodic images move in the image cells. Hence
only the motion of the particles in the central cell needs to be followed. When a particle enters or
leaves the central cell, the move is accompanied by an image of that particle leaving or entering a
neighboring cell through the opposite face.

The total force on a given particle i is due to the force from every other particle j within the
central cell and from the periodic images of particle j. That is, if particle i interacts with particle
j in the central cell, then particle i interacts with all the periodic replicas of particle j. Hence in
general, there are an infinite number of contributions to the force on any given particle. For long
range interactions such as the Coulomb potential, these contributions have to be included using
special methods. However, for short range interactions, we may reduce the number of contributions
by adopting the minimum image or nearest image approximation. This approximation implies that
particle i in the central cell interacts only with the nearest image of particle j; the interaction is
set equal to zero if the distance of the image from particle i is greater than L/2. An example of the
minimum image condition is shown in Figure 8.3. Note that the minimum image approximation
implies that the calculation of the total force on all N particles due to pairwise interactions involves
a maximum of N(N − 1)/2 contributions.

8.5 Units

To reduce the possibility of roundoff error, it is useful to choose units so that the computed
quantities are neither too small nor too large. Because the values of the distance and the energy
associated with typical liquids are very small in SI units, we choose the Lennard-Jones parameters
σ and ϵ to be the units of distance and energy, respectively. (The values of σ and ϵ for argon are
given in Table 8.1.) We also choose the unit of mass to be the mass of one atom, m. We can
express all other quantities in terms of σ, ϵ, and m. For example, we measure velocities in units
of (ϵ/m)1/2, and the time in units of σ(m/ϵ)1/2. If we take m = 6.69 × 10 −26 kg, the mass of an
argon atom, then the unit of time is 2.17 × 10 −12 s. The units of some of the physical quantities
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To reduce the possibility of roundoff error, it is useful to choose units so that the computed
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∆t = 0.01 =⇒ 2.17 × 10
−14

sUnit of time is derived: e.g., for Ar:

(d=2)
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• periodic boundary conditions

• minimum image

Generalities in  
many-body simulations
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Periodic Boundary Conditions

function pbc(pos,L) result (f_pbc)
    .......   
    if (pos < 0.0) then
        f_pbc = pos + L
    else if (pos > L) then
        f_pbc = pos - L
    else
        f_pbc = pos
    end if
end function pbc

for the positions

(OK
in the hypothesis that 

-L < pos <2L )

(here: in the continuum;
before: only in discretized conditions - Ising and lattice models)
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8.4 Boundary Conditions

A useful simulation must incorporate all the relevant features of the physical system of interest.
The ultimate goal of our simulations is to understand the behavior of bulk systems—systems of
the order of N ∼ 10 23 – 10 25 particles. In bulk systems the fraction of particles near the walls
of the container is negligibly small. However, the number of particles that can be studied in a
molecular dynamics simulation is typically 10 3 – 10 5, although as many as 10 6 particles or more,
can be studied on present-day supercomputers. For these small systems the fraction of particles
near the walls of the container is significant, and hence the behavior of such a system would be
dominated by surface effects.

The most common way of minimizing surface effects and to simulate more closely the properties
of a bulk system is to use what are known as periodic boundary conditions. First consider
a one-dimensional “box”of N particles that are constrained to move on a line of length L. The
ends of the line serve as imaginary walls. The usual application of periodic boundary conditions is
equivalent to considering the line to be a circle (see Figure 8.2). The distance between the particles
is measured along the arc, and hence the maximum separation between any two particles is L/2.

The computer code for periodic boundary conditions is straightforward. If a particle leaves
the box by crossing a boundary, we add or subtract L to the coordinate. One simple way is to use
an IF statement after the particles have been moved:

IF x > L then
LET x = x - L

ELSE IF x < 0 then
LET x = x + L

END IF

To compute the minimum distance dx between particles 1 and 2 at x(1) and x(2) respectively, we
can write

LET dx = x(1) - x(2)
IF dx > 0.5*L then

LET dx = dx - L
ELSE IF dx < -0.5*L then

LET dx = dx + L
END IF

The generalization of this application of periodic boundary conditions to two dimensions is straight-
forward if we imagine a box with opposite edges joined so that the box becomes the surface of a
torus (the shape of a doughnut and a bagel).

We now discuss the motivation for this choice of boundary conditions. Imagine a set of N
particles in a two-dimensional cell. The use of periodic boundary conditions implies that this
central cell is duplicated an infinite number of times to fill two-dimensional space. Each image cell
contains the original particles in the same relative positions as the central cell. Figure 8.3 shows
the first several image cells for N = 2 particles. Periodic boundary conditions yield an infinite
system, although the motion of particles in the image cells is identical to the motion of the particles
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Figure 8.3: Example of the minimum image approximation in two dimensions. The minimum
image distance convention implies that the separation between particles 1 and 2 is given by the
shorter of the two distances shown.

of interest are shown in Table 8.1. All program variables are in reduced units, e.g., the time in
our molecular dynamics program is expressed in units of σ(m/ϵ)1/2. As an example, suppose that
we run our molecular dynamics program for 2000 time steps with a time step t. = 0.01. The total
time of our run is 2000 × 0.01 = 20 in reduced units or 4 .34 × 10−11 s for argon (see Table 8.1).
The total time of a typical molecular dynamics simulation is in the range of 10 – 104 in reduced
units, corresponding to a duration of approximately 10−11 – 10−9 s.

8.6 A Molecular Dynamics Program

In the following, we develop a molecular dynamics simulation of a two-dimensional system of
particles interacting via the Lennard-Jones potential. We choose two rather than three dimensions
because it is easier to visualize the results and the calculations are not as time consuming. The
structure of Program md is given in the following:

PROGRAM md
PUBLIC x(36),y(36),vx(36),vy(36),ax(36),ay(36)
PUBLIC N,Lx,Ly,dt,dt2

Minimum Image convention 
for the interactions

Only the interactions with the nearest images are considered

new!
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function separation(ds,L) result (separation_result)
    .......    
    if (ds > 0.5*L) then
        separation_result = ds - L
    else if (ds < -0.5*L) then
        separation_result = ds + L
    else
        separation_result = ds
    end if
end function separation
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Minimum Image convention 
for the interactions

(OK if distances do not 
exceed L)
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     subroutine correl()
            ...
      do i=1,N-1
         do j=i+1,N
            dx = x(i) - x(j)
            dy = y(i) - y(j)
            call separation(dx,dy)
            r2 = dx*dx + dy*dy
            ibin = int(sqrt(r2)/dr)+1
            if (ibin<=nbin) then

gcum(ibin) = gcum(ibin) + 1 
            end if
          end do
      end do

      xnorm = 2./(rho*nmcs*N)       ! rho : average density = N/V
       ...
            r    = ir*dr + 0.5*dr           ! r in the middle of the circular shell
            area = 2.0*pi*r*dr              ! area of the shell
            g    = gcum(ir)*xnorm/area
        ...

Radial distribution function

implementation of 
the counting algorithm 

g(r)
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Two approaches to simulate 
the evolution of the system 

(to sample the configuration space)

• stochastic (Metropolis Monte Carlo)

• deterministic (integration of the eq. of motion)

 42



on moodle2

hd-MC.f90
hd-MD.f90
LJ-MD.f90

Programs: 
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Classical fluids:  
Metropolis Monte Carlo method 

canonical ensemble (NVT)  

- calculate Etot 

   

- displace an individual particle by a small amount: calculate ΔE
  (variation of the interaction of that particle with all the others) 

- accept/reject the new position with the usual Metropolis factor:
  w = min [1, exp (-ΔE/kT)]
                  

- iterate

- accumulate distances to calculate g(r)

 44



Metropolis Monte Carlo method  
for Hard Disks (Spheres)

displace an individual particle by a small amount:
if overlap with another particle: REJECTED

if no overlap with any other particle: ACCEPTED

-Metropolis algorithm with                     ∆E = 0 or ∞

-ergodicity: obvious at low densities;
complicated at high densities

 45
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Figure 8.5: Each particle has six nearest neighbors in a triangular lattice.

choose the central cell of the triangular lattice to be a rhombus, it is more convenient to choose
the cell to be rectangular. We take the linear dimensions of the cell to be Lx and Ly =

√
3Lx/2

respectively. For simplicity, we assume that
√

N is an integer so that the lattice spacings in the
horizontal and vertical directions are ax = Lx/

√
N and ay = Ly/

√
N , respectively. The lattice

sites in each row are displaced by 1
2ax from the preceding row. The following code generates a

triangular lattice.

LET i = 0
FOR col = 1 to nx

FOR row = 1 to ny
LET i = i + 1
IF (mod(row,2) = 0) then

LET x(i) = (col - 0.75)*ax
ELSE

LET x(i) = (col - 0.25)*ax
END IF
LET y(i) = (row - 0.5)*ay

NEXT row
NEXT col

Write a program to compute the potential energy per particle of a system of N particles interacting
via the Lennard-Jones potential. Consider both the triangular and square lattices, and choose the
linear dimension of the square lattice to be L =

√

LxLy, so that both lattices have the same
density. Choose N = 36 and determine the energy for Lx = 5 and Lx = 7 . What is the density
of the system for each case? Do your results for E/N depend on the size of the lattice? Which
lattice symmetry has a lower energy? Explain your results in terms of the ability of the triangular
lattice to pack the particles closer together.
Problem 8.9. The solid state and melting

1. Choose N = 16, Lx = 4 , and Ly =
√

3Lx/2, and place the particles on a triangular lattice.
Give each particle zero initial velocity. What is the total energy of the system? Do a

Maximum package
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Problem 8.9. The solid state and melting

1. Choose N = 16, Lx = 4 , and Ly =
√

3Lx/2, and place the particles on a triangular lattice.
Give each particle zero initial velocity. What is the total energy of the system? Do a
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Figure 8.5: Each particle has six nearest neighbors in a triangular lattice.

choose the central cell of the triangular lattice to be a rhombus, it is more convenient to choose
the cell to be rectangular. We take the linear dimensions of the cell to be Lx and Ly =

√
3Lx/2

respectively. For simplicity, we assume that
√

N is an integer so that the lattice spacings in the
horizontal and vertical directions are ax = Lx/

√
N and ay = Ly/

√
N , respectively. The lattice

sites in each row are displaced by 1
2ax from the preceding row. The following code generates a

triangular lattice.

LET i = 0
FOR col = 1 to nx

FOR row = 1 to ny
LET i = i + 1
IF (mod(row,2) = 0) then

LET x(i) = (col - 0.75)*ax
ELSE

LET x(i) = (col - 0.25)*ax
END IF
LET y(i) = (row - 0.5)*ay

NEXT row
NEXT col

Write a program to compute the potential energy per particle of a system of N particles interacting
via the Lennard-Jones potential. Consider both the triangular and square lattices, and choose the
linear dimension of the square lattice to be L =

√

LxLy, so that both lattices have the same
density. Choose N = 36 and determine the energy for Lx = 5 and Lx = 7 . What is the density
of the system for each case? Do your results for E/N depend on the size of the lattice? Which
lattice symmetry has a lower energy? Explain your results in terms of the ability of the triangular
lattice to pack the particles closer together.
Problem 8.9. The solid state and melting

1. Choose N = 16, Lx = 4 , and Ly =
√

3Lx/2, and place the particles on a triangular lattice.
Give each particle zero initial velocity. What is the total energy of the system? Do a

(here: N=16)
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1) choose Nx (even or odd); Lxmin=Nx 

2) choose Ny even (and not too different 
from Ny in order to have a cell not too 
elongated) (here = 4); Lymin=Ny*(√3)/2

3) This gives the maximum packing and the 
maximum density ρmax

4) Calculate the individual positions:
x(i)=integer/semi-integer for even/odd rows; 
y(i)=multiple of (√3)/2

Initializing the positions
Ly

m
in
=

N
y*

(√
3)

/2

Lxmin=Nx

1) choose ρ
2) Determine the new Lx and Ly by scaling: 

Lx=κLxmin and Ly=κLymin,  where k2= ρmax/ρ
3) Rescale individual positions 
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Convenient to start from maximum packing
and then reduce the density:



some useful gnuplot commands:

set size ratio {Ly/Lx}
unset key     (to avoid the label)
p [0:Lx][0:Ly] 'file_of_positions' u 1:2:(0.5) w circles

(the radius could be given in the 3rd column; here it is set 
to 0.5)
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MD generates the dynamical trajectories of a 
system of N particles by integrating Newton’s 
equations of motion 
- with suitable initial and boundary conditions 
- proper interatomic potentials 
- while satisfying thermodynamical (macroscopic) constraints 

- and with a ‘smart’ algorithm for numerical integration

Molecular dynamics
a deterministic approach to the dynamics of a system
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Molecular dynamics

Analytical solution for constant forces;
but in general not always possible 

=> different possible algorithms for 
numerical integration
of the eqs. of motion

and Newton’s equations of motion
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d2x
dt2

= a(x, t, . . . ) =
F(x, t, . . . )

m

F = ma
But not always easy to solve… In general: 



x(t) = x(0) + v(0)t +
1
2

F

m
t2

x(2) v(2) x(3) v(3)x(0) v(0) F(0) ... ...

F
F

F

F

v

v
v

v

x(1) v(1) F(1) x(2) v(2) F(2)

Basic idea: discretization - e.g. consider uniformly acc. motion

x(t + ∆t) = x(t) + v(t) · ∆t +
1

2
a(t) · ∆t

2
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x(t + ∆t) = x(t) + v(t)∆t +
1

2
a(t)∆t

2

EULER algorithm

Uniformly accelerated motion in each time interval                                               

then iterate!
t ÷ t + ∆t

x(t) =⇒ x(t + ∆t) =⇒ x(t + 2∆t) =⇒ x(t + 3∆t) =⇒ . . .

iterate

v(t) =⇒ v(t + ∆t) =⇒ v(t + 2∆t) =⇒ v(t + 3∆t) =⇒ . . .

v(t + ∆t) = v(t) + a(t)∆t
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Velocity-VERLET algorithm

DO BETTER: instead of choosing the value of the acceleration 
at the beginning of each time interval, take its average value in 
the interval                         for the update of the velocity

iterate

t ÷ t + ∆t

x(t + ∆t) = x(t) + v(t)∆t +
1

2
a(t)∆t

2

v(t + ∆t) = v(t) +
1

2

(

a(t) + a(t + ∆t)
)

∆t

Remark: the new acceleration can be calculated as soon as the new 
position is calculated, so that the algorithm is explicit!
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Choice of an integration algorithm

•  Accuracy - does it give an accurate description of the motion?
•  Stability - does it conserve the system energy and temperature (in case of 

conservative forces)?
•  Simplicity - is it easy to implement it in a computer code?
•  Speed - does it require only few or a lot of operations?
•  Economy - how much memory does it require?

Velocity- Verlet algorithm
a second-order algorithm allows a good energy conservation

if forces are NOT dependent on velocities (*)

(*)

 54



Thermodynamical ensemble

IF POTENTIAL ENERGY does not depend on velocities
(conservative potentials), the TOTAL ENERGY of the system 

should be conserved!

Therefore, since Verlet’s integration of the Newton’s equations will: 

Conserve total energy (E=const.)  

Keep number of particles constant (N=const.)  

Keep volume constant (V=const.)  

Thus: Yields an NVE ensemble (“microcanonical ensemble”) 
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the TOTAL ENERGY of the system should be conserved!

TO BE CHECKED during simulations
(it may not be conserved because 

of a bad integration algorithm)

Energy
in MD - NVE simulations

In practice there could be small fluctuations in the total energy, tolerance ~ 1%

It is common practice to compute it at each time step in order to check that it is indeed 
constant with time. 
During the run energy flows back and forth between kinetic and potential: they fluctuate while 
their sum remains fixed.
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Temperature 
in MD - NVE simulations

T is related to (and therefore can be estimated from) 
the kinetic energy:

T =
2

3

Ekin

NkB

Ekin =
1

2
m

N∑

i

v
2

i

It is not a constant !

Pressure
It can also be calculated at each time step from kinetic energy, 
forces and positions  (Virial theorem) 
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Choices of: 
- Initial conditions 

- time step

INITIAL CONDITIONS: Important in case of deterministic evolutions 

TIME STEP:  
too short => phase space is sampled inefficiently, 
too long => energy will fluctuate wildly and simulation may become  
catastrophically unstable (“blow up”).  
Instabilities are caused e.g. by the motion of particles (atoms, planets...) being 
extrapolated into regions where the potential energy is prohibitively high (e.g. 
overlapping or too much close particles). 
E.g.  in atomic fluids simulations:  choose time step comparable to the mean time 
between ionic collisions (about 5 fs for Ar at 298K) (a good rule of thumb)

 A good integration algorithm is not enough:
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- Long range potentials (electrostatic) and also VdW 
interactions are often truncated at a finite cut-off distance. 

- They are sometimes shifted so that the potential is zero at 
the cut-off, thus avoiding a discontinuity which can give rise 
to poor energy conservation. 

- Truncations with periodic boundaries introduce the need 
for a long-range correction term (“tail corrections”)

Further details
 Truncated and shifted potentials :
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MD has a kinetic energy contribution to the total energy,  
whereas in MC the total energy is determined solely by  the 
potential energy function.  

MD samples naturally from the microcanonical (NVE)  
ensemble, whereas Metropolis MC samples from the  
canonical (NVT) ensemble.  

However, both MC and MD can be modified to sample from 
different ensembles. 

MD vs MC simulations
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Sampling other  
thermodynamical ensambles with MD

Other thermodynamical ensembles can be realized by 
changing the equations of motion (e.g. NVT –coupling to  

heat bath…, “canonical ensemble”). Since:

T =
2

3

Ekin

NkB

Ekin =
1

2
m

N∑

i

v
2

i

rescale velocities (use a “thermostat”) to keep T~constant 
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Collisions and PBC
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Figure 8.7: The positions and velocities of disks 1 and 2 are such that disk 1 collides with an image
of disk 2 that is not the image closest to disk 1. The periodic images of disk 2 are not shown.

DECLARE DEF pbc
FOR k = 1 to N

LET collision_time(k) = collision_time(k) - tij
LET x(k) = x(k) + vx(k)*tij
LET y(k) = y(k) + vy(k)*tij
LET x(k) = pbc(x(k),Lx)
LET y(k) = pbc(y(k),Ly)

NEXT k
END SUB

The function pbc allows for the possibility that a disk has moved further than the linear
dimension of the central cell between a collision. We have written it as a separate function to
emphasize its purpose.

DEF pbc(pos,L)
LET pbc = mod(pos,L)

END DEF

The function separation is identical to the function listed in Program md and is not listed here.

CHAPTER 8. THE DYNAMICS OF MANY PARTICLE SYSTEMS 249

1 1 1

1 1

1 1 1

L y

L x

1

2

Figure 8.7: The positions and velocities of disks 1 and 2 are such that disk 1 collides with an image
of disk 2 that is not the image closest to disk 1. The periodic images of disk 2 are not shown.

DECLARE DEF pbc
FOR k = 1 to N

LET collision_time(k) = collision_time(k) - tij
LET x(k) = x(k) + vx(k)*tij
LET y(k) = y(k) + vy(k)*tij
LET x(k) = pbc(x(k),Lx)
LET y(k) = pbc(y(k),Ly)

NEXT k
END SUB

The function pbc allows for the possibility that a disk has moved further than the linear
dimension of the central cell between a collision. We have written it as a separate function to
emphasize its purpose.

DEF pbc(pos,L)
LET pbc = mod(pos,L)

END DEF

The function separation is identical to the function listed in Program md and is not listed here.

CHAPTER 8. THE DYNAMICS OF MANY PARTICLE SYSTEMS 249

1 1 1

1 1

1 1 1

L y

L x

1

2

Figure 8.7: The positions and velocities of disks 1 and 2 are such that disk 1 collides with an image
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DECLARE DEF pbc
FOR k = 1 to N

LET collision_time(k) = collision_time(k) - tij
LET x(k) = x(k) + vx(k)*tij
LET y(k) = y(k) + vy(k)*tij
LET x(k) = pbc(x(k),Lx)
LET y(k) = pbc(y(k),Ly)

NEXT k
END SUB

The function pbc allows for the possibility that a disk has moved further than the linear
dimension of the central cell between a collision. We have written it as a separate function to
emphasize its purpose.

DEF pbc(pos,L)
LET pbc = mod(pos,L)

END DEF

The function separation is identical to the function listed in Program md and is not listed here.

check collisions!
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two examples  
for the interaction potential: 

HD and LJ
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A few basic references
The molecular dynamics method was first introduced by Alder and Wainwright in 
the late 1950's (AW) to study the interactions of hard spheres. Many important 
insights concerning the behavior of simple liquids emerged from their studies. The 
next major advance was in 1964, when Rahman carried out the first simulation 
using a realistic potential for liquid argon (R). 

(AW) B. J. Alder and T. E. Wainwright
Phase Transition for a Hard Sphere System
J. Chem. Phys. 27, 1208 (1957); ibid. 31, 459 (1959)

- more recently: Truskett et al., Phys. Rev. E 58, 3082 (1998) (see slide 25)

(R) A. Rahman
Correlations in the Motion of Atoms in Liquid Argon
A. Phys. Rev. A136, 405 (1964)

- more recently: S. Ranganathan et al., Phys. Rev. A 45, 5793 (1992) (next slides)
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A more recent case study (1992): 
2D with Lennard-Jones potential
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are averages over the trajectories, rather than the trajectories themselves. Questions such as these
are addressed by statistical mechanics and many of the ideas of statistical mechanics are discussed
in this chapter. However, the only background needed for this chapter is a knowledge of Newton’s
laws of motion.

8.2 The Intermolecular Potential

The first step is to specify the model system we wish to simulate. For simplicity, we assume that
the dynamics can be treated classically and that the molecules are spherical and chemically inert.
We also assume that the force between any pair of molecules depends only on the distance between
them. In this case the total potential energy U is a sum of two-particle interactions:

U = u(r12) + u(r13) + · · · + u(r23) + · · · =
N−1
∑

i=1

N
∑

j=i+1

u(rij), (8.1)

where u(rij) depends only on the magnitude of the distance rij between particles i and j. The
pairwise interaction form (8.1) is appropriate for simple liquids such as liquid argon.

In principle, the form of u(r) for electrically neutral molecules can be constructed by a first
principles quantum mechanical calculation. Such a calculation is very difficult, and it usually is
sufficient to choose a simple phenomenological form for u(r). The most important features of u(r)
for simple liquids are a strong repulsion for small r and a weak attraction at large r. The repulsion
for small r is a consequence of the Pauli exclusion principle. That is, the electron clouds of two
molecules must distort to avoid overlap, causing some of the electrons to be in different quantum
states. The net effect is an increase in kinetic energy and an effective repulsive force between the
electrons, known as core repulsion. The dominant weak attraction at larger r is due to the
mutual polarization of each molecule; the resultant attractive force is called the van der Waals
force.

One of the most common phenomenological forms of u(r) is the Lennard-Jones potential:

u(r) = 4 ϵ

[

(σ

r

)
12

−
(σ

r

)
6
]

. (8.2)

A plot of the Lennard-Jones potential is shown in Figure 8.1. The r−12 form of the repulsive part of
the interaction has been chosen for convenience only. The Lennard-Jones potential is parameterized
by a length σ and an energy ϵ. Note that u(r) = 0 at r = σ, and that u(r) is essentially zero
for r > 3 σ. The parameter ϵ is the depth of the potential at the minimum of u(r); the minimum
occurs at a separation r = 21/6σ. The parameters ϵ and σ of the Lennard-Jones potential which
give good agreement with the experimental properties of liquid argon are ϵ = 1.65 × 10−21 J and
σ = 3.4 Å.
Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
magnitude of the corresponding force:

f(r) = −∇u(r) =
24 ϵ

r

[

2
(σ

r
)12 −

(σ

r

)6
]

r̂. (8.3)
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u

r
ε

σ

Figure 8.1: Plot of the Lennard-Jones potential u(r). Note that the potential is characterized by
a length σ and an energy ϵ.

What is the value of u(r) for r = 0.8σ? How much does u increase if r is decreased to r = 0.72σ,
a decrease of 10%? What is the value of u at r = 2.5σ? At what value of r does the force equal
zero?

8.3 The Numerical Algorithm

Now that we have specified the interaction between the particles, we need to introduce a numerical
integration method for computing the trajectory of each particle. As might be expected, we need
to use at least a second-order algorithm to maintain conservation of energy for the times of interest
in molecular dynamics simulations. We adopt the commonly used algorithm:

xn+1 = xn + vn∆t + 1
2an(∆t)2 (8.4a)

vn+1 = vn + 1
2 (an+1 + an)∆t. (8.4b)

To simplify the notation, we have written the algorithm for only one component of the particle’s
motion. The new position is used to find the new acceleration an+1 which is used together with
an to obtain the new velocity vn+1. The algorithm represented by (8.4) is a convenient form of
the Verlet algorithm (see Appendix 5A).
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Problem 8.1. Qualitative properties of the Lennard-Jones interaction
Write a short program or use a graphics package to plot the Lennard-Jones potential (8.1) and the
magnitude of the corresponding force:

f(r) = −∇u(r) =
24 ϵ

r

[

2
(σ

r
)12 −

(σ

r

)6
]

r̂. (8.3)

:

 65



128 particles confined in a square box with length L = σ
√

128/ρ∗
MD simulation with

nmcs = 6000; ∆t
∗ = 0.032

appearance of a shoulder:
amorphization

Liquid-to-glass transition in 2D LJ fluids
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 more evident shoulder:
amorphization

S(q0) rapidly increases

The structure factor S(q0) can amplify characteristic features of g(r)
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x

Figura 5: Un’immagine (ottenuta con VMD) di una tipica configurazione del
sistema per uno stato a n� elevata. Il numero di coordinazione è 6 (i vicini si
dispongono ad esagono attorno ad una data particella). Per questo motivo le
particelle si trovano mediamente a distanze precise l’una dalle altre: (definita
la distanza minima come unitaria) 1,

�
3, 2,... che però non hanno un divisore

comune.

6

Alta densità

Si è e�ettuata infine una simulazione con 128 particelle e parametri:
n� = 1
T � = 1
Numero passi equilibratura = 2 · 105

Numero passi produzione = 2 · 105

Sampling ogni 20 passi
Spostamento MC iniziale = 0.25
rc = 5.65 . . .

Si è ottenuta la g(r) in Figura 4.

 0

 1

 2

 3

 4

 5

 6

 0  1  2  3  4  5  6

g

r

n* = 1 T* = 1

’g.out’

Figura 4: g(r) nel caso n� = 1 T � = 1, L/2 diviso in 500 bin.

La spiegazione di questo andamento è facilmente comprensibile se si esamina
l’aspetto delle configurazioni che il sistema assume in questo stato ad alta densità
(vedi Figura 5). Il suddetto andamento comincia a vedersi già nella Figura 2.

5

dNNN = σ
√

3

dIII−NN = 2σ
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More details:
in the course by E. Smargiassi,

“Classical simulations of many-body systems”
(Simulazioni classiche di sistemi a molti corpi)
Ist semester
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