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1 Introduction

This short note gives an introduction to the Riemann-Stieltjes integral on R and Rn. Some
natural and important applications in probability theory are discussed. The reason for dis-
cussing the Riemann-Stieltjes integral instead of the more general Lebesgue and Lebesgue-
Stieltjes integrals are that most applications in elementary probability theory are satisfac-
torily covered by the Riemann-Stieltjes integral. In particular there is no need for invoking
the standard machinery of monotone convergence and dominated convergence that hold for
the Lebesgue integrals but typically do not for the Riemann integrals.

The reason for introducing Stieltjes integrals is to get a more unified approach to the
theory of random variables, in particular for the expectation operator, as opposed to treating
discrete and continuous random variables separately. Also it makes it possible to treat
mixtures of discrete and continuous random variables: It is for instance not possible to
show that the expectation of the sum of a discrete and a continuous r.v. is the sum of the
expectations, without using Stieltjes integrals. There are also many advantages in inference
theory, for instance in the discussion of plug-in estimators.

In Section 2 we introduce the Riemann-Stieltjes integral on R. In Section 3 we discuss
some important applications to probability theory. In Section ?? we introduce the Riemann-
Stieltjes integral on Rn. Section 3 contains applications to probability theory.

2 The Riemann-Stieltjes integral on R

The Reimann integral corresponds to making no transformation of the x-axis in the Reimann
sum

n∑
i=1

g(ξi)(xi−1 − xi).

Sometimes one would like to make such a transformation.
Thus let F be a monotone real-valued transformation of I ⊂ R, so

F : I 7→ F (I).

Now assume that h is a real-valued step-function on the interval I, so that we can write

h(t) =
n∑
i=1

ci1{t ∈ Ii},
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for some constants c1, . . . , cn, and with I = ∪ni=1Ii a partition, and with Ij intervals. Then
we define the Reimann-Stieltjes integral of h as∫

h(u) dF (u) =
n∑
i=1

ci|F (Ii)|.

Note that |F (I)| = F (max(Ii))−F (min(Ii)), and that if Ii = (ai, bi) then |F (Ii)| = F (bi)−
F (bi), and that then ∫

I
h(u) dF (u) =

n∑
i=1

ci(F (bi)− F (ai)).

We can next make the following definition.

Definition 1 Let F be an increasing function defined on the interval I, and let g be a
function defined on I. Then g is called Riemann-Stieltjes integrable, w.r.t. F , if for every
ε > 0, there are stepfunctions h1, h2 such that h1 ≤ g ≤ h2 and∫

I
h2(u) dF (u)−

∫
I
h1(u) dF (u) < ε.

If g is Riemann-Stieltjes integrable, we define the Riemann-Stieltjes integral of g as∫
I
g(u) dF (u) = sup{

∫
I
h(u) dF (u) : h ≤ g, h step function.}

2

One can check that the integral is well defined, similarly to the Riemann integral.

Note 1 The Riemann integral is a special case of the Riemann-Stieltjes integral, when
F (x) = id(x) = x is the identity map. Thus in that case, if g is Riemann integrable,∫

g(x) dF (x) =

∫
g(x) dx

when F (x) = x. 2

Theorem 1 If g is continuous and bounded, and F is increasing and bounded on the interval
I, then g is Riemann-Stieltjes integrable on I.

Proof. That F is increasing and bounded on I = [a, b] means that

−∞ < c := F (a) = inf
I
F ≤ sup

I
F = F (b) =: C <∞.

(i): Assume first that I is finite. Thus since g is continuous on the compact interval I it
is uniformly continuous so there are ε, δ such that

|x− y| ≤ δ ⇒ |g(y)− g(x)| ≤ ε.
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for ε, δ not depending on x, y. Next let ∪ni=1Ii = I be an arbitrary finite partition of I, with
Ii intervals that satisfy |F (Ii)| ≤ δ (this is possible to obtain since F is bounded), and let

mi = inf
t∈Ii

g(t),

Mi = sup
t∈Ii

g(t).

and note that Mi −mi < ε, by the uniform continuity of g. The step functions

h1(t) =
n∑
i=1

mi1{t ∈ Ii},

h2(t) =
n∑
i=1

Mi1{t ∈ Ii},

satisfy h1 ≤ g ≤ h2. Furthermore∫
I
h1(u) dF (u) =

n∑
i=1

mi|F (Ii)| ≤
n∑
i=1

Mi|F (Ii)| =
∫
I
h2(u) dF (u),

so that∫
I
h2(u) dF (u)−

∫
I
h1(u) dF (u) ≤

n∑
i=1

(Mi −mi)|F (Ii)| ≤ ε
n∑
i=1

|F (Ii)| = ε|F (I)|,

where the last equality follows since the sets F (Ii) are disjoint (by the monotonicity of F
together with the fact that Ii are disjoint). Since for every ε > 0 we can get h1, h2 step
functions so that this holds, we have shown that g is Riemann-Stieltjes integrable.

(ii): Next, assume I not finite. Then since F is increasing it is also piecewise continuous.
Therefore for every ε̃ > 0 there is finite Ĩ ⊂ I such that

max(sup
I
F − sup

Ĩ

F, inf
Ĩ
F − inf

I
F ) < ε̃.

Also, since g is absolutely bounded,

sup
I\Ĩ
|g| ≤ G

so that

−G ≤ g ≤ G on I \ Ĩ ,∫
I\Ĩ

GdF (u)−
∫
I\Ĩ
−GdF (u) ≤ 2Gε̃.

Thus we can use the construction under (i) on Ĩ, and concatenate to get the step functions
h̃1 = conc(−G, h1,−G), h̃2 = conc(G, h2, G) bounding g on all of I and such that∫

I
h̃2 dF (u)−

∫
I
h̃1 dF (u) =

∫
Ĩ
h2(u) dF (u)−

∫
Ĩ
h1(u) dF (u)

+

∫
I\Ĩ

GdF (u)−
∫
I\Ĩ
−GdF (u)

≤ ε|F (Ĩ)|+ 2Gε̃.

3



Since ε, ε̃ are arbitrary we have shown that g is Riemann-Stieltjes integrable. 2

The Riemann-Stieltjes integral can be obtained as a limit of Riemann-Stieltjes sums. We
prove the statements for continuous functions g:

Theorem 2 Assume g is continuous and F increasing on the interval I. Then∫
I
g(x) dFx = lim

max1≤i≤n |xi−xi−1|→0

n∑
i=1

g(ξi)(F (xi)− F (xi−1)),

where min I = x0 < x1 < . . . < xn < max I are partitions of I, and ξ are arbitrary points in
[xi−1, xi).

Proof. Use a similar construction of h1, h2 as in the proof of Theorem 1. Thus we have

h1 ≤ g ≤ h2.

and ∫
I
h1(u) dF (u) ≤

n∑
i=1

g(ξi)(F (xi)− F (xi−1)) ≤
∫
I
h2(u) dFu.

Since g is integrable, we can let ε ↓ 0, and make the partition finer and finer as n→∞, so
that the difference between the right hand side and the left hand side (which is smaller than
ε) goes to zero, which shows the result. 2

We note the following two important special cases.

Lemma 1 Assume F is (an increasing) step function on I, so that

F (t) =
N∑
i=1

ai1{t ≤ ti},

with t0 = min(I) < t1 . . . < tN = max(I), and ai ≥ 01. Then, if g is contiunous,

∫
I
g(x) dF (x) =

N∑
i

g(ti)ai.

Proof. When forming the Riemann-Stieltjes sum

n∑
i=1

g(ξi)(F (xi)− F (xi−1))

1The condition ai ≥ 0 ensures that F is increasing. An equivalent way to write F is

F (x) =

N∑
i=1

(ai − ai−1)1{t ∈ (ti−1, ti)}.
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in Theorem 4, the factor F (xi)− F (xi−1) is

F (xi)− F (xi−1) =

{
ak if < xi−1 < tk < xi, and xi − xi−1 small enough,
0 if (xi−1, xi) 6 3tk for any k.

Thus for large enough n

n∑
i=1

g(ξi)(F (xi)− F (xi−1)) =
N∑
i=1

g(ξi)ai,

Since g is continuous, and ξ → ti as n→∞, we obtain g(ξ)→ g(ti), so that

lim
n→∞

n∑
i=1

g(ξi)(F (xi)− F (xi−1)) = lim
n→∞

N∑
i=1

g(ξi)ai

=
N∑
i

g(ti)ai,

which ends the proof. 2

Lemma 2 Assume F if differentiable with F ′ = f continuous. Then if g is integrable∫
I
g(u) dF (u) =

∫
I
g(u)f(u) du.

Proof. We derive the result via Riemann-Stiltjes sums: In the sum

n∑
i=1

g(ξi)(F (xi)− F (xi−1))

the factor (F (xi)− F (xi−1)) = f(ηi)(xi − xi−1) for some ηi ∈ (xi−1, xi), by the mean value
theorem. Therefore

n∑
i=1

g(ξi)(F (xi)− F (xi−1)) =
n∑
i=1

g(ξi)f(ηi)(xi − xi−1),

which we recognize as a Riemann sum for the integral
∫
gf du, and the result is proven. 2
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3 Application to probability theory

In probability theory the basic setup is a probability space (Ω,F , P ). Here Ω is the outcome
space, i.e. the set of all possible outcomes for the random experiment we want to model.
The set F is a collection of subsets of Ω, satisfying the three following conditions, making
it into a σ-algebra:

(i) ∅ ∈ F ,
(ii) A ∈ F ⇒ Ac ∈ F ,

(iii) Ai ∈ F for i = 1, 2, . . .⇒ ∪∞i=1Ai ∈ F .

The function P is a probability measure defined on F , i.e. a function P : F → [0, 1] such
that:

(i) P (∅) = 0,

(ii) P (Ac) = 1− P (A),

(iii) P (∪∞i=1Ai) =
∞∑
i=1

P (Ai), if Ai ∩Aj = ∅ when i 6= j.

We suppose in (ii) that A ∈ F , and in (iii) that Ai ∈ F for every i for us to be able to
apply P to the resulting sets; the corresponding conditions (ii), (iii) in the definition of a
σ-algebra ensures that this is alright.

A r.v. X is a function Ω→ R, such that

{ω : X(ω) ≤ x} ∈ F

for every x ∈ R; this condition is called measurability. It ensures that one can define the
distribution function F of X, which is defined as

F (x) = P (ω : X(ω) ≤ x),

since the set {(ω : X(ω) ≤ x} is in F , and therefore we can apply P on it.

Definition 2 Assume that X is a r.v. with distribution function F . The expectation E(X)
of X is defined, if it exists, as

E(X) =

∫
x dF (x).

2

Note 2 The interpretation of the expectation E(X) is clear from the Riemann-Stieltjes ap-
proximation

E(X) ≈
n∑
i=1

ξi(F (xi)− F (xi−1))

with ξ ∈ (xi−1, xi]. Namely one takes a value that X can take, ξi, and multiplies it with
(F (xi) − F (xi−1)), which if xi − xi−1 is small is close to P (X = ξi), and sums over all
possible such values ξi. 2
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This can be simplified in the following two (extreme) cases, that can be derived by
Lemmas 1 and 2.

(i) F a step function with jumps at the points xi. Then

E(X) =
∞∑
k=1

xi(F (xi)− F (xi−))

(ii) F is differentiable with derivative f = F ′. Then

E(X) =

∫
xf(x) dx.

Exercise 1 Prove the previous statement, using Lemmas 1 and 2. 2

Let g be a function g : R→ R such that
∫
g(x) dF (x) <∞ and such that

{ω : g(X(ω)) ≤ u} ∈ F ,

for every u ∈ R.2 This implies that we can define the distribution function of Y , FY by

FY (y) = P (ω : Y (ω) ≤ y).

Then we can of course define the expectation of Y as

E(Y ) =

∫
y dFY (y),

if it exists. The next theorem tells us that it is not necessary to derive the distribution of
Y , in order to calculate the expectation E(Y ).

Theorem 3 If X is a r.v. and g as above then the r.v. Y = g(X) has expectation

E(Y ) =

∫
g(x) dF (x).

Proof. A Riemann-Stieltjes sum for the left hand side is∑
i

ηi(FY (yi)− FY (yi−1)) =
∑
i

ηiP (Y ∈ (yi−1, yi])

=
∑
i

ηiP (g(X) ∈ (yi−1, yi])

=
∑
i

ηiP (X ∈ g−1{(yi−1, yi]}),

with ηi ∈ (yi−1, yi]. Note that

ηi ∈ (yi−1, yi] ⇔ ξi := g−1(ηi) ∈ g−1{(yi−1, yi]}
⇔ g(ξi) ∈ (yi−1, yi].

2This means that g(X) is measurable.
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Therefore the above is equal to∑
i

g(ξi)P (X ∈ g−1{(yi−1, yi]}),

with ξi ∈ g−1{(yi−1, yi]}.
Note furthermore that if the intervals (yi−1, yi] form a partition (so are disjoint and

have as union the whole interval), then the intervals (xi−1, xi] = g−1{(yi−1, yi]} also form a
partition. Therefore the above can be written as∑

i

g(ξi)P (X ∈ (xi−1, xi]),

with ξi ∈ (xi−1, xi], which is a Riemann-Stieltjes sum for the right hand side, and we are
done. 2

The statement of the theorem, can be written, in the two special cases of F a step
function and F differentiable with derivative f = F ′

E(g(X)) =

{ ∫
g(x)f(x) dx,∑
g(xi)(F (xi)− F (xi−1)).

The special case of g(X) = 1{X ∈ A} for A a set in R is of particular interest. This is a
Bernoulli random variable, it’s distribution function is a step function with jumps at 0 and
1, so that

E(1{X ∈ A}) = 0(F (0)− F (0−)) + 1(F (1)− F (1−))

= F (1)− F (1−)

= P (g(X) = 1)

= P (X ∈ A).

Note also that the left hand side of this is

E(1{X ∈ A}) =

∫
1{x ∈ A} dF (x)

=

∫
A
dF (x),

and thus we get the very useful (and important!) formula

P (X ∈ A) =

∫
A
dF (x).

Note that in particular 1 = P (X ∈ R) =
∫
R dF (x).
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Lemma 3 Let X be a r.v. with distribution function F . Then

E(aX + b) = aE(X) + b.

Proof. We have that

E(aX + b) =

∫
(ax+ b) dF (x)

= a

∫
x dF (x) + b

∫
dF (x)

= aE(X) + b.

2

We next define the variance of a random varible.

Definition 3 The variance of a r.v. X with distribution function is defined (if it exists) as

Var(X) = E((X − µ)2),

with µ = E(X). 2

We immediately get the following easy (and very important) formula for calculating the
variance:

Var(X) = E((X − µ)2) = E(X2 − 2Xµ+ µ2) = E(X2)− 2µE(X) + µ2

= E(X2)− 2µ2 + µ2 = E(X2)− µ2 = E(X2)− (E(X))2.

We state this as a simple Lemma.

Lemma 4 If Var(X) exists then

Var(X) = E(X2)− (E(X))2.

2

Note 3 The expectation E(X) of a random variable is a measure of where the distribution
is concentrated. Compare for instance the two distributions Un(0, 1) and Un(1, 2) A random
variable X1 which is distributed according to Un(0, 1) has expection E(X) =

∫
x1{0 ≤ x ≤

1}dx = 1/2. A r.v. X1 distributed according to Un(1, 2) has expectation E(X) =
∫
x1{1 ≤

2}dx = 3/2. Check that the two variables X1, X2have the same variance!
The variance Var(X) of a random variable is a measure of how spread out the distri-

bution of X is. The two random variables Y1 ∈ Un(−1, 1) and Y2 ∈ Un(−2, 2) have the
same expectation E(Y1) = E(Y2) = 0. Check that Var(Y1) < Var(Y2). Draw a graph of the
distribution functions. Does this make sense? 2
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Example 1 We calculate the expectation and variance of X ∈ Bern(p), Y ∈ Exp(θ).
Since

E(X) =

∫
xdFX(x) =

∑
xi

xif(xi) = 0f(0) + 1f(1) = 0(1− p) + 1p = p

E(X2) =

∫
x2dFx =

∑
xi

x2i f(xi) = 02f(0) + 12f(1) = 0(1− p) + 1p = p.

we have

Var(X) = E(X2)− (E(X))2 = p− p2 = p(1− p).

Also

E(Y ) =

∫
ydFY (y) =

∫
yf(y) =

∫ ∞
0

y
1

θ
e−y/θ dy = . . . = θ,

E(Y 2) =

∫
y2dFY (y) =

∫ ∞
0

y2
1

θ
e−y/θ = . . . = 2θ2,

so that

Var(Y ) = E(Y 2)− (E(Y ))2 = 2θ2 − θ2 = θ2.

2

Lemma 5 Let X be a r.v. with distribution function F . Then

Var(aX + b) = a2Var(X).

Proof. Note first that E(aX + b) = aE(X) + b. Therefore

Var(aX + b) = E((aX + b− aE(X)− b)2)
= E((aX − aE(X))2)

= E(a2(X − µ)2)

= a2E((X − µ)2).

2

Note that since the variance has an another dimension than X, namely the dimension of
Var(X) is dim(X)2, we introduce the standard deviation D(X) as

D(X) =
√

Var(X),

which exists if the variance exists.

Example 2 If X ∈ Exp(θ) then D(X) = θ. 2
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4 The Riemann-Stieltjes integral on Rn

In analogy with integration over R, assume F : Rn → R is a function that is increasing in
each variable (when the others are kept fixed). Let h be a step function that is piecewise
constant (equal to ci say) on the rectangles Ii = [ai1, b

i
1]× . . .× [ain, b

i
n] in Rn, and I = ∪ni Ii

is a partition. Then we can define the integral∫
I
h(x) dF (x) =

n∑
i=1

ci|F (Ii)|,

with |F (Ii)| the area of the transformed rectangle F (Ii). To see how we should define the
area of the rectangle let us remind ourselves that the area of the rectangle Ii is

|Ii| = (bi1 − ai1) · . . . · (bin − ain).

We would like to write the transformed area, in analogy with this and in increments of F .
Recall that in one dimension the area of a interval I = [a, b] is

|I| = b− a,

and the area of the transformed interval is

|F (I)| = F (b)− F (a).

In two dimensions the area of the rectangle Ii = [ai1, b
i
1]× [ai2, b

i
2] is

|Ii| = (bi1 − ai1)(bi2 − ai2)
= bi1b

i
2 − ai1bi2 − bi1ai2 + ai1a

i
2,

and we define the area of the transformed rectangle F (Ii) as

|F (Ii)| = F (bi1, b
i
2)− F (ai1, b

i
2)− F (bi1, a

i
2) + F (ai1, a

i
2)

Note that in using F we are making a generalization of the ordinary area measure, for which
the area of the interval I = [0, b1] · · · [0, bn] ⊂ Rn is |I| = b1 · · · bn, to the area measure
|F (I)| = F (b1, . . . , bn).

For general dimension, let us use the notation

∆jF (Ii) = F (xi1, . . . , xj−1, b
i
j , xj+1, xn)− F (x1, . . . , xj−1, a

i
j , xj+1, xn).

(Note that the argument is fixed at all positions except at position j where we have the
increment). Then we define the area by

|F (Ii)| = ∆1 . . .∆nF (Ii)

Definition 4 Let F be an increasing function defined on the interval I ⊂ Rn, and let g be
a function defined on I. Then g is called Riemann-Stieltjes integrable, w.r.t. F , if for every
ε > 0, there are stepfunctions h1, h2 such that h1 ≤ g ≤ h2 and∫

I
h2(u) dF (u)−

∫
I
h1(u) dF (u) < ε.
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If g is Riemann-Stieltjes integrable, the Riemann-Stieltjes integral of g is defined as∫
I
g(u) dF (u) = sup{

∫
I
h(u) dF (u) : h ≤ g, h step function.}

2

We start by noting that this is indeed an generalization of the ordinary Riemann integral in
several dimensions.

Note 4 The Riemann integral on Rn is a special case of the Riemann-Stieltjes integral, with
F (I) = |I|, for every interval I, the ordinary area length. In that case, if g is integrable, we
write ∫

g(x) dF (x) =

∫
g(x) dx.

To see this more explicit, let us look at the case of dimension n = 2. Then for Ii =
[ai1, b

i
1]× [ai2, b

i
2] the area of F (I) becomes

∆1∆2F (Ii) = |(bi1, bi2)| − |(ai1, bi2)| − |(bi1, ai2)|+ |(ai1, ai2)|
= (bi1 − ai1)(bi2 − ai2)
= |Ii|.

Therefore the Riemann-Stieltjes integral of step functions g as above becomes in this case∫
gdF =

n∑
i=1

ci|Ii|

=

∫
gdx.

Thus to check that a function g is Riemann-Stieltjes integrable over Rn is the same as check-
ing that it is Riemann integrable over Rn. 2

Similarly to for one-dimensional case, the Riemann-Stieltjes integral can be obtained as
a limit of a Riemann-Stieltjes sum.

Theorem 4 Assume that g is integrable and F is bounded. Then∫
I
gdF = lim

maxi |Ii|→0

n∑
i=1

g(ξi)|F (Ii)|,

where ∪ni=1Ii = I is a partition and with ξ ∈ Ii.

Proof. The proof is similar to the proof of Theorem 2. 2

We will mainly use Theorem 4 as a convenient device to prove nice results. The following
two special cases are of particular importance.
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Lemma 6 Assume that F : Rn → R is such that ∂n

∂1...∂n
F =: f exists and is continuous,

and assume that g is R-S integrable. Then∫
gdF =

∫
gfdx.

Proof. We can approximate the area in the Riemann-Stieltjes sum, with the use of e.g. an
intermediate value theorem, to obtain

n∑
i=1

g(ξi)|F (Ii)| =
n∑
i=1

g(ξi)
∂n

∂1 . . . ∂n
F (ηi)|Ii|

=
n∑
i=1

g(ξi)f(ηi)|Ii|

with ηi ∈ Ii. We see that this is (approximately) an ordinary Riemann-sum for the integral∫
gfdx and this together with the fact that f is continuous, implies that the sum converges

to the integral
∫
gfdx. 2

Lemma 7 Assume F is a step function, with jumps on the grid G ⊂ I, of size

∆1 . . .∆nF ({γ}) = fγ .

Then, if g is continuous, ∫
gdF =

∑
γ∈G

g(γ)fγ .

Proof. If I = ∪mi Ii is a partition fine enough, each interval Ik will contain at most one point
γ ∈ G. Let J be the indices for those Ik’s that contain one grid point. Then ∆1 . . .∆nF (Ij) =
fγ for some g ∈ G, if j ∈ J . For all other j 6∈ J , ∆1 . . .∆nF (Ij) = 0. Thus, if the partition
is fine enough, the Riemann-Stieltjes sum is

m∑
i=1

g(ξi)∆1 . . .∆nF (Ij) =
∑
γ∈G

g(ξγ)fγ ,

which converges to the right hand side in the statement of the Lemma, if g is continuous. 2

3

5 Applications to probability theory

Let X1, . . . , Xn be a random vector with distribution function F = FX1,...,Xn . Assume
g : Rn → R is a function (nice enough) such Y = g(X1, . . . , Xn) is a random variable. Then
Y has a distribution function Fy and we can of course define (if it exists) it’s expectation
E(Y ). The next result however is often handy.

3Skriv ner fÃűr resultatet fÃűr blandningar av diskreta och kontinuerliga s.v.
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Theorem 5 If X = (X1, . . . , Xn) is a random vector with distribution function F , and
g : Rn → R a function, then the r.v. Y = g(X1, . . . , Xn) has expectation

E(Y ) =

∫
g(x1, . . . , xn)dF (x1 . . . , xn).

Proof. The proof is similar to the one-dimensional case. Thus a Riemann-Stieltjes sum for
the left hand side is∑

i

ηi(FY (yi)− FY (yi−1)) =
∑
i

ηiP (Y ∈ (yi−1, yi])

=
∑
i

ηiP (g(X) ∈ (yi−1, yi])

=
∑
i

ηiP (X ∈ g−1{(yi−1, yi]}),

with ηi ∈ (yi−1, yi]. Since

ηi ∈ (yi−1, yi] ⇔ ξi := g−1(ηi) ∈ g−1{(yi−1, yi]}
⇔ g(ξi) ∈ (yi−1, yi].

Therefore the above is equal to∑
i

g(ξi)P (X ∈ g−1{(yi−1, yi]}),

with ξi ∈ g−1{(yi−1, yi]}.
If the intervals (yi−1, yi] form a partition of an interval in R (so are disjoint and have

as union the whole interval), then the intervals Ii = g−1{(yi−1, yi]} form a partition in Rn.
Therefore the above sum can be written as∑

i

g(ξi)P (X ∈ Ii),

with ξi ∈ Ii, which is a Riemann-Stieltjes sum for the right hand side, and the theorem is
proved. 2

In particular if g is an indicator function X beeing in a subset A ⊂ Rn we get as a
consequence that

P (X ∈ A) = E(1{X ∈ A}) =

∫
1{x ∈ A}dF (x) =

∫
A
dF.

Further consequences are summarized in the following Lemma.

Lemma 8 If X1, X2 are random variables, and a1, a2 are real numbers then

(i) E(a1X1 + a2X2) = a1E(X1) + a2E(X2).

(ii) Var(a1X1 + a2X2) = a21Var(X1) + a22Var(X2) + 2a1a2Cov(X1, X2).

In particular if X1, X2 are independent then

Var(X1 +X2) = Var(X1) + Var(X2).

14



Proof. To show (i),

E(a1X1 + a2X2) =

∫
(a1x! + a2x2)dF (x1, x2)

=

∫
a1x1dF (x1, x2) +

∫
a2x2dF (x1, x2)

= E(a1X1) + E(a2X2)

= a1E(X1) + a2E(X2).

For (ii), let µ1 = E(X1), µ2 = E(X2). Then

Var(a1X1 + a2X2) = E[(a1X1 + a2X2 − a1µ1 − a2µ2)2]
= E[(a1X1 − a1µ1)2 + (a2X2 − a2µ2)2

+2(a1X1 − a1µ1)(a2X2 − a2µ2)]
= E[(a1X1 − a1µ1)2] + E[(a2X2 − a2µ2)2]

+2E[(a1X1 − a1µ1)(a2X2 − a2µ2)]
= a21Var(X1) + a22Var(X2) + 2a1a2Cov(X1, X2),

where the third equality follows from the linearity of the Riemann-Stieltjes integral. 2

Note 5 Since we have define expectation using the Riemann-Stieltjes integral, and thus ob-
taining a general formula that holds for continuous and discrete r.v.’s as well as for mixtures,
we can define the expectation of a sum X + Y where X is continuous and Y is discrete.

The expectation of X + Y as above is not possible to define if we define (only) the
expectation of discrete and continuous r.v. cases separately, as sums and ordinary Riemann
integrals respectively. This is a flaw with most introductory texts on Probability Theory, and
is one of the main reasons that we define and use the Riemann-Stieltjes integral in this text.
2

15



5.1 Integration on R

Let I be a finite or infinite interval in R and assume that h : R→ R is a step function, i.e.
a function that can be written

h(t) =
n∑
i=1

ci1{t ∈ Ai},

where ∪ni=1Ai = I is a partition of I, so Ai∩Aj = ∅ if i 6= j, and {ci}ni=1 are finite constants.
Then we can define the integral of h over the interval I by∫

I
h(u) du =

n∑
i=1

ci|Ai|

with |A| the length of A.
Recall the elementary definition of integrability of a function g : R → R over a finite

interval I.

Definition 5 Assume that for every ε > 0 there are step functions h1, h2 such that h1 ≤
g ≤ h2, and such that ∫

I
h2(u) du−

∫
I
h1(u) du < ε.

Then we say that g is (Riemann) integrable. 2

If g is integrable, we next define
∫
I g du.

Definition 6 Assume g is Riemann integrable. Then we define∫
I
g(u) du = sup{

∫
I
h(u) du : h step function, h ≤ g}

2

To see that the definition makes sense, note that if h∗ is a fixed but arbitrary stepfunction
such that h∗ ≥ g then ∫

I
h∗ du ≥

∫
I
g du ≥

∫
I
h du

for every step function h ≤ g. This means that the set

C := {
∫
I
h du : h step function, h ≤ g}

is a set of real numbers that is bounded from above, by
∫
I h
∗ du, and therefore it has a least

upper bound, i.e. supC exists, and this is what we define as
∫
I g du.

It is easy to see (reasoning as above), that if g is integrable then also∫
I
g du = inf{

∫
h du : h step function, h ≥ g}.

16



Exercise 2 Prove this!

What functions are Riemann integrable?

Theorem 6 Assume that I is a finite interval, and that g is a continuous function. Then
g is Riemann integrable.

Proof. Since g is continuous on I, it is uniformly continuous, i.e. for every ε > 0 there is a
δ > 0 such that

|x− y| ≤ δ ⇒ |g(y)− g(x)| ≤ ε,

and the same δ, ε can be used for every x, y. With this choice of ε, δ, now let ∪ni=1Ii = I be
an arbitrary partition of I, with Ii intervals of length |Ii| ≤ δ, and define

mi = inf
t∈Ii

g(t),

Mi = sup
t∈Ii

g(t).

Then we have Mi −mi < ε. Define the step functions

h1(t) =
n∑
i=1

mi1{t ∈ Ii},

h2(t) =
n∑
i=1

Mi1{t ∈ Ii},

and note that h1 ≤ g ≤ h2. Then∫
I
h1(u) du =

n∑
i=1

miδ ≤
n∑
i=1

Miδ =

∫
I
h2(u) du,

and ∫
I
h2(u) du−

∫
I
h1(u) du = δ

n∑
i=1

(Mi −mi) ≤ δεn ≤ ε|I|.

Since for every ε > 0 we can get h1, h2 step functions so that this holds, we thus have shown
that g is integrable. 2

Corollary 1 Assume that g is piecewise continuous on I. Then g is Riemann integrable.

Proof. Let I = ∪ki=1Jk be a partition of I such that g is continuous on each Jk. Then g is
integrable on each Jk and we can define∫

I
g(x) dx =

k∑
i=1

∫
Jk

g(x) dx.

(To explicitly exhibit upper and lower step functions h1, h2 that satisfy the condition in the
definition of integrability on all of I choose

h1 = conc(h
(1)
1 , . . . , h

(k)
1 ),

h2 = conc(h
(1)
2 , . . . , h

(k)
2 ),

17



with conc denoting the concatenation of functions.) 2

If g is Riemann-integrable one can obtain the integral
∫
I g dx as a limit of Riemann sums.

We prove the result for continuous functions:

Theorem 7 Assume g is continuous. Then4

∫
I
g(x) dx = lim

max1≤i≤n |xi−xi−1|→0

n∑
i=1

g(ξi)(xi − xi−1),

where min I = x0 < x1 < . . . < xn < max I are partitions of I, and ξ are arbitrary points in
[xi−1, xi).

Proof. Since g is continuous is it Riemann integrable. Let x1 < . . . < xn be a partition
of I. Form the (upper and lower) step functions h1, h2, (via the bounds Mi,mi,) using
Ii = [xi−1, xi) as in the proof of the previous theorem. Note that mi ≤ g(ξi) ≤ Mi for
arbitrary ξi ∈ [xi−1, xi) and every i such that

h1 ≤ g ≤ h2.

Therefore ∫
I
h1(u) du ≤

n∑
i=1

g(ξi)(xi − xi−1) ≤
∫
I
h2(u) du.

Since g is integrable, letting ε ↓ 0, i.e. making the partition finer and finer as n → ∞, the
difference between the right hand side and the left hand side (which is smaller than ε) goes
to zero which shows the result. 2

5.2 Integration on Rn

What has been covered for R can be readily extended to Rn
Indeed, if I is a finite or infinite interval in Rn and h : Rn → R is a step function,

h(t) =
n∑
i=1

ci1{t ∈ Ai},

with ∪ni=1Ai = I a partition of I and ci constants, then we can define the integral of h over
the interval I by ∫

I
h(u) du =

n∑
i=1

ci|Ai|

with |A| the Euclidian length of A.
As for the univariate we can define integrability of g : Rn → R.

4The limit is a limit as n→∞ if we with the extra condition that the maximum grid length max |xi−xi−1|
goes to zero.
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Definition 7 Assume that for every ε > 0 there are step functions h1, h2 such that h1 ≤
g ≤ h2, and such that ∫

I
h2(u) du−

∫
I
h1(u) du < ε.

Then we say that g is (Riemann) integrable. 2

If g is integrable, we next define
∫
I g du.

Definition 8 Assume g is Riemann integrable. Then we define∫
I
g(u) du = sup{

∫
I
h(u) du : h step function, h ≤ g}

2

As for the univariate case it is easy to see that the definition is sensible. The next theorem
has a proof that is analogous to the univariate case.

Theorem 8 Assume that I is a finite interval, and that g is a (piecewise) continuous func-
tion. Then g is Riemann integrable.
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