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Enhancers encode a huge body of information to determine the

precise tissue specific gene expression pattern during normal

development. Nowadays, enhancers are also considered as

key players in directing disease transcriptional program during

pathogenesis. New genomic technologies allow the

identification, functional characterization and manipulation of

enhancers. The advances in the transcriptional enhancer field

hold great promise in linking developmental or disease

phenotypes to genetic variants and promoting precision

medicine.
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Introduction
Enhancers are regulatory DNA sequences widely dis-
persed throughout the genomes. The first discovery of
promoter activation by remote cis-DNA element was
made by Schaffner and colleagues in 1981 [1!!]. The
small piece of ‘enhancer’ was demonstrated to be func-
tional in gene activation even located thousands of base
pairs away from either side of the transcription start site
(TSS), irrespective of its orientation [1!!,2,3]. By conven-
tional genetics and biochemistry screening approaches,
this type of cis-regulatory element was later also found in
eukaryotic genomes to determine when and where a gene
should be turned on [4!!,5!!,6]. Based on these observa-
tions, enhancers are transcriptional factor binding regions
distal to TSSs but able to remotely stimulate target gene
expression in a spatiotemporal specific manner.

Precise regulation of spatiotemporal gene expression
patterns by enhancers during development endows
metazoans with diverse functional cell types to complete

life cycle. Owing to rapidly developing human cancer and
diseases genomics, it has been gradually realized that
aberrant gene expression led by faulty enhancer function
is one of the main drivers in the pathogenesis of diseases
including cancers. Here we give an overview about en-
hancer associated chromatin signatures and the machin-
eries involved in the dynamic deposition, conversion or
removal of these chromatin modifications. We discuss
current understanding about the functional modes of
enhancer bound factors in mediating enhancer-promoter
communication. We also describe recent advances in
allele specific enhancers and their implications in thera-
peutic decision making.

Chromatin signatures of enhancers
DNA at enhancers, as at other cis-regulatory elements
including promoters, is depleted of nucleosomes and
hypersensitive to DNase treatment [7]. Recent genome
wide studies using the powerful next generation sequenc-
ing (NGS) platform have revealed that nucleosomes
binding to enhancer flanking regions usually bear certain
chromatin modification signatures. Histone H3 lysine
4 monomethylation (H3K4me1) is typically enriched in
the vicinity of enhancers, whereas H3K4 trimethylation
(H3K4me3) is predominantly high in the surrounding
regions of active promoters [8]. However, the two histone
modification marks are not mutually exclusive in the
genome. H3K4me3 is also detectable over the enhancer
regions, and its level was found to correlate with enhancer
activity [9,10]. Therefore, a local ratio of H3K4me1 to
H3K4me3 serves as a more reliable indicator in enhancer
prediction. Additionally, active enhancers and promoters
are also occupied by H3K27 acetylation (H3K27ac)
[11!,12!]. H3K27 trimethylation (H3K27me3), which
cannot coexist with H3K27ac on the same histone H3,
labels the repressed or poised regulatory regions [12!].
Many other histone modifications, including acetylation
on Histone H3 lysine 9 or 18, and phosphorylation on
Histone H3 serine 10 or 28, have been also demonstrated
to be associated with enhancers [13–15].

Chromatin modifiers of enhancers
Genes primed for future activation will be initially book-
marked by pioneer transcription factors at the nucleosome-
occluded enhancer regions [16,17]. Pioneer factors,
through recruiting nucleosome remodelers, can locally
create nucleosome free region (NFR), decompact chroma-
tin and facilitate the sequential binding of other transcrip-
tional regulators, including various epigenetic machineries
[16]. Distinct chromatin signatures of enhancers are estab-
lished through interplay among these epigenetic machin-
eries. Trr or MLL3/4 complexes in complex proteins
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associated with set1 (COMPASS)-like family are required
for the maintenance of H3K4me1 at majority of enhancers
[18–20]. The unique subunit of Trr or MLL3/4 complexes,
the H3K27 demethylase UTX, may be involved in the
removal of the inactive enhancer mark H3K27me3, which
is deposited by Polycomb repressive complex 2 (PRC2) via
the methyltransferase activity of EZH2 [18,21,22]. The
transition from poised enhancer to active enhancer also
requires the histone acetyltransferases CBP and p300 to set
up H3K27ac surrounding the enhancer element [8,21,23].
The H3K4 demethylase KDM1A, also known as LSD1,
functions possibly together with the nucleosome remodel-
ing and histone deacetylation (NuRD) complex in remov-
ing H3K4me1 and H3K27ac and decommissioning
enhancers during stem cell differentiation [24,25]. Genes
encoding the histone modifiers are frequently mutated in
various types of cancers, which has been reviewed else-
where [26–29].

Histone modifications catalyzed by various epigenetic
modifiers reflect the influence of these transcriptional
regulation related modifiers on local chromatin environ-
ment and gene activity. However, most of the modifiers
are able to act on multiple substrates, including both
histone and non-histone proteins, and also involved in
other cellular processes [30]. For example, protein stabil-
ity and transcriptional activity of the tumor suppressor
p53 are dynamically regulated through its methylation
turnover controlled by these modifiers including LSD1
[31]. Therefore, the contribution from the histone mod-
ifications per se on enhancer activity and transcription in
metazoans is not well understood from genetic manipu-
lation of the histone modifiers. In addition, major histones
are encoded by multiple copy genes in most organisms. It
is technically challenging to replace all the wide type
copies with the modification target residue mutants.

Inspired by the discovery that single allele mutation of
Histone H3 lysine 27 to methionine (H3K27M) in human
diffuse intrinsic pontine gliomas (DIPGs) can inhibit
H3K27 methylation in vivo [32], point mutation of the
modification target residue on histone proteins has been
recently employed to investigate the function of histone
modifications [33]. Intriguingly, these histone mutants
were found to mainly affect the activity of histone modi-
fiers [32–34]. Furthermore, interpreting the data obtained
from histone lysine to methionine mutants remains chal-
lenging as some of the residues, such as lysine 4 and lysine
9 of Histone H3, are target residues of multiple modifica-
tions, including mono-methylation, di-methylation and
tri-methylation.

Enhancer–promoter communication
Current researches based on chromatin conformation
capture derived assays and fluorescence in situ hybridiza-
tion (FISH) favor the model that enhancers regulate the
transcription from the target promoters through long

range chromatin looping, which brings enhancers and
promoters into close physical proximity [35–40]. Archi-
tectural proteins CTCF and cohesin are involved in the
gene regulatory chromatin interaction process [41–45].
CTCF is an insulator protein blocking enhancer–promot-
er interaction. Beyond the renowned function in sister
chromatid cohesion, cohesin also regulates transcription
[41]. Together with the Mediator complex at enhancers,
cohesin facilitates the interaction between enhancer and
promoter [46!]. The Hi-C data has suggested that eu-
karyotic genomes are partitioned into different topologi-
cally associating domains (TADs), within each of which
chromatin interactions in regulating gene expression are
highly frequent [47,48]. Together with CTCF at the
borders of TADs, cohesin helps maintain the relatively
insulated chromatin domain. Recent chromatin interac-
tion analysis by paired-end tag sequencing (ChIA-PET)
studies have further demonstrated on a genome-wide
scale that cohesin associated CTCF-CTCF loops are
required for forming the relatively insulated TADs,
which constrain cohesin-mediated enhancer–promoter
interaction within them [49–51]. Additionally, the orien-
tation of CTCF binding sites (CBSs) is critical in estab-
lishing specific chromatin interaction in vertebrates [52–
54]. CTCF-CTCF loops preferentially form between
CBSs that occur in a convergent orientation [55–57].
Inversion of specific CBSs by CRISPR mediated genome
editing leads to reconfiguration of the topology of chro-
matin and transcription change [52,53].

Regulation of RNA polymerase II by
enhanceosome
Transcription by RNA polymerase II (Pol II) is highly
regulated at several steps, including establishment of pre-
initiation complex (PIC), promoter-proximal pausing, and
entry into productive elongation stage [58,59]. In addition
to opening up the local chromatin through sequential
binding of pioneer factors, nucleosome remodelers and
chromatin modifiers, enhancers also regulate the behavior
of RNA Pol II [16,60,61!,62]. The RNA Pol II elongation
factor ELL3 was found specifically occupying enhancers
at different stages in mouse embryonic stem cells [61!].
ELL3 is required for the establishment or stability of
paused Pol II at a group of developmental genes close to
ELL3 bound poised enhancers. ELL3 itself is a compo-
nent of the Super Elongation Complex (SEC) [63,64].
Upon differentiation signal stimulation, ELL3 is able to
recruit the AFF4 centered SEC to its target genes and
activate their expression [61!,65]. The function of ELL3
on paused Pol II has been demonstrated to rely on
cohesin. The depletion of cohesin leads to less efficient
transition from paused Pol II to elongating Pol II at most
of genes in Drosophila cultured neuronal cells [66].
Similarly, in human Cornelia de Lange syndrome (CdLS)
which is caused by mutations of genes involved in cohesin
pathway, Pol II occupancies at both promoters and gene
bodies are impaired [67]. Factors like ELL3 and cohesin
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within the enhanceosome might regulate the processivity
of Pol II at different stages, at least in part through SEC
(Figure 1). This is further substantiated by the recent
finding that AFF4 mutations within the AFF family
member homology domain caused CHOPS syndrome
(Cognitive Impairment, Coarse Facies, Heart Defects,
Obesity, Pulmonary Involvement, Short Stature and
Skeletal Dysplasia), which mirror both the phenotypes
and the transcriptome of CdLS [68]. In CHOPS syn-
drome as well as CdLS, AFF4, cohesin and RNA Pol II
genomic distribution were altered, suggesting that the
SEC and cohesin are involved in the pathogenesis of
CHOPS through enhancer’s function to elongation.

Transcription of active enhancers
On the other hand, transcription by Pol II has been
observed from the regions associated with active enhanc-
er marks. The transcripts from enhancers are named as

enhancer RNAs (eRNAs) [69!,70!,71!]. In general,
eRNAs are non-coding, non-spliced and unstable [72].
Although eRNAs are lowly expressed, their expression
level are usually positively correlated with the level of
mRNA transcripts from neighboring genes [69!]. In a
recent study it has been demonstrated that the Integrator
complex is recruited to enhancers and required for the
biogenesis of eRNAs [73]. Disruption of the Integrator
complex diminishes both the induction of eRNA and
enhancer-promoter communication in the presence of
epidermal growth factor (EGF) stimulus. The Integrator
complex has been shown to recruit the elongation com-
plex SEC to EGF responsive genes to release paused Pol
II [74]. Interestingly, a study in neurons suggested that
eRNAs could also promote paused Pol II release into
productive elongation stage by serving as a decoy factor
for the negative elongation factor (NELF) at immediate
early genes [62]. A functional link from enhancer to
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Model of transcriptional activation by allele specific enhancer. (a) On the active allele, transcription factors bind to enhancer regions through
their DNA binding motifs. Enhancer bound transcription factors are able to recruit epigenetic machineries and enhancer binding factors such as
ELL3, AFF3 to enhancers. Factors within enhanceosome like the Mediator complex and the architectural protein cohesin facilitate the loop
formation between enhancer and promoter. Pre-initiation complex is established at the transcription start site. Enhancer also function in promoting
the transition from promoter proximal pausing to productive elongation stage through recruiting the elongation complex SEC. (b) On the other
allele, transcription factor binding motif is mutated due to SNP. The subsequent transcriptional events do not occur.
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elongation control through eRNAs has been proposed
here. In support of this scenario, eRNA has been shown to
recruit the Mediator complex, which preferentially binds
to cis-regulatory elements including enhancers and pro-
moters [75]. In a separate study it has been shown that the
Mediator complex was able to engage SEC to promote
the transition to productive elongation [76].

However, the general biological function of eRNA still
remains controversial. The newly developed technology
using genomic editing tools, CRISPR-Display, was
employed to target eRNAs, TRERNA1, ncRNA-a3
and HOTTIP to a stably integrated reporter gene [77].
Only slight activation of reporter gene expression was
observed. While arguing that eRNA might be accidental-
ly produced due to the active interaction of Pol II with the
enhancer element, we still need to take into consideration
that eRNAs might have their specificity in selecting their
functional targets.

Disease/traits linked allele specific enhancers
Disease associated Single Nucleotide Polymorphisms
(SNPs) identified by genome wide association studies
(GWAS) are predominantly located outside of the protein
coding regions of the human genome [78–80]. Many of
the non-coding risk SNPs fall within the tissue specific
enhancers that are recently annotated by epigenomic
profiling [13,79,81–85]. For example, 88% of the SNPs
within the known prostate cancer loci lie in the putative
enhancer regions identified in human prostatic carcinoma
cells [84]. SNPs associated with type 2 diabetes are highly
enriched in the clustered pancreatic islet enhancers [85].

SNPs inherited from parents contain allele information.
Recent genome wide studies offer evidence in support of
SNPs’ functions in enhancer activity through demonstrat-
ing strong correlation between allele imbalanced histone
acetylation at enhancers and allele biased gene expression
[86]. Non-coding SNPs or genetic variants could influ-
ence diseases and traits through altering the consensus
sequences of transcription factor binding sites, reshaping
enhancer repertoires, and inducing target gene expression
level polymorphisms [76,87,88] (Figure 1). For instance,
the inherited 8q24 gene desert SNP rs6983267 is in
linkage disequilibrium with the oncogene MYC, function-
ing as an enhancer element recruiting transcription factor
7-like 2 (TCF7L2) to activate MYC expression in an allele
specific manner and conferring risks for multiple cancers
[87,88].

In addition to SNPs, DNA methylation status imbalance
could also give rise to allele specific enhancers. During
early mouse embryonic development, transcription of the
maternally expressed Meg3 polycistron within the pater-
nally imprinted Dlk1-Dio3 locus is stimulated by the active
Meg3 upstream enhancer localized on the unmethylated
maternal allele [89!,90,91]. The allele specific activity of

the Meg3 upstream enhancer is maintained, at least par-
tially, by the allele specific binding of the scaffold protein
of the Super Elongation Complex-like 3 (SEC-L3), AFF3
[89!,92]. DNA methylation and its related chromatin mod-
ifying machineries can inhibit the binding of AFF3 to the
enhancer element and genesis of active enhancer on the
paternal allele to control the allele specific gene expression
profile of this imprinted locus. Not limited to the imprinted
regions, DNA methylation has been shown to affect the
function of regulatory regions genome widely [93–96].
Furthermore, the association of diseases/traits associated
SNPs with the proximal DNA methylation status changing
suggest a functional link between them to drive allele
specific gene expression [97,98].

Non-coding variants are the major genetic origins of
heterogeneity in inherited phenotypes including drug
responsiveness. The anti-diabetic drug rosiglitazone
mediates insulin sensitization through activating PPARg,
a master transcription regulator of adipocyte development
[99]. However, individuals vary widely in their responses
to rosiglitazone. About 20% treated patients experience
with poor glycemic control and even adverse effects.
Recent study shows that SNPs recast the binding motifs
of PPARg and its cofactors, contributing to the heteroge-
neity in drug response [100!]. Thus, identification SNP
enhancer variants, allele specific enhancers or risk alleles
with strong impact on treatment decision making, and
delineation the function modes of these enhancers lay the
foundation of precision medicine.

Concluding marks
Over the past few years, genome wide mapping of his-
tone modifications has already become a prevailing
method in prediction and classification of enhancers en
masse. Importantly, genetic manipulation of the pre-
dicted enhancer element or examination of the impact
of the predicted enhancer on reporter gene expression in
cell/tissue of interest is necessary to validate the func-
tionality of the putative enhancer captured by epige-
nomic profiling.

Newly developed genomic sequencing and editing tools
enable us to locate traits/disease linked cis-regulatory
elements and unravel their functional importance. Cou-
pled with the identification of specific transcription fac-
tors functioning on disease driving enhancer, knowledge
gained from enhancer studies paves the way for building
up a systematic roadmap of disease driving enhancers. We
are eager to see the revolution of precision medicine
through pushing the development of therapeutic strate-
gies designed to disrupt or enhance the association of
transcriptional machinery to disease driving enhancers.
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