VIRTUAL OUTCROP MODELS

Examples of application




The context in which VOMs can be used in Geology are many and are
Increasing.

This 1s happening because 3D models are becoming ever easier to realize
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Some tipes of possible uses of a VOM are

Extraction Structural measurements (e.g. fracture and bedding orientation)

Extraction of other geometrical features (e.g. depositional surfaces)

Facies mapping

Integration of other data (e.g. hyperspectral imaging)




Example 1: Syndepositional fracturing and architecture of a carbonate platform
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Example 1: Syndepositional fracturing and architecture of a carbonate platform
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Example 1: Syndepositional fracturing and architecture of a carbonate platform

The outcrop is about 1.5 X 3 km and
features vertical walls several hunderd
meters-high that cannot be easily accessed
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Example 1: Syndepositional fracturing and architecture of a carbonate platform
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Example 1: Syndepositional fracturing and architecture of a carbonate platform
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Example 1: Syndepositional fracturing and architecture of a carbonate platform
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Example 1: Syndepositional fracturing and architecture of a carbonate platform
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Example 1: Syndepositional fracturing and architecture of a carbonate platform

— San Cassiano Fm = —__lBaéinal compé&tionlﬁ- =

Syndepositional fractures that are orthogonal to the direction of progradation are interpreted as due to Inama et al., 2021

differential compaction of the more compressible basinal sediments of the San Cassiano Formation caused
by the increment in load due to the progradation of the Cassian Dolomite carbonate platform.




Example 2: Hyperspectral imaging
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VOM can be associated to hyperspectral imaging. In this example
from Thiele et al. (2022), hyperspectral imaging was acquired on the
outcrop of the Lastoni di Formin with the purpose of mapping in 3D
variations in minearlogical characteristics of the rocks.

Thiele et al., 202




Example 2: Hyperspectral imaging
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Thiele et al. (2022) propose a method for geometric calibration of the hyperspectral data on the
VOM.




Example 2: Hyperspectral imaging
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Once correction is carried out, an hyperspectral cloud can be
generated that carries all the spectral information collected
by the hyperspectral camera correctly positioned on the

VOM
Thiele et al., 2022




Example 2: Hyperspectral imaging
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Reflectance spectra (above) in three points sampled on the

hyperspectral point cloud (left).
The position of absorption bands typical of clay minerals, Dolomite

and Calcite are highlighted by grey lines.




Example 3: Facies mapping and analysis.
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Example 3: Facies mapping and analysis.

The Gola della Rossa quarry (left) near
Serra San Quirico (AN), features a
spectacular exposure of the Calcare
Massiccio.
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Example 3: Facies mapping and analysis. compies cyl Nt Bunds
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Example 3: Facies mapping and analysis.

A photogrammetric model was built using photos taken from the ground.

On the model, main beds were recognized, traced and correlated in order to identify overlapping regions of
interest (ROIs) where the cyclicity was clearly visible.

Photogrammetric VOM _ - Main beds i1dentified and traced




Example 3: Facies mapping and analysis.

From the VOM point cloud with associated RGB texture grayscale logs vere extracted that represent
variations of the RGB average channels along the succession.

Direct inspection in an accessible area of the quarry allowed establishing that deeper facies correspond to
lighter grayscale colors and shallower facies correspond to shallower water facies.
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Example 3: Facies mapping and analysis.
On the right, the grayscale log with the color variations can be seen.
The cyclicity is clearly visible and appears organized in larger cyclothems
in turn characterized by smaller scale variations in grayscale values.
Such grayscale log, being correctly oriented in the stratigraphic space, 1s

also a time series and therefore can be analyzed using time series analysis
methods.
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Example 3: Facies mapping and analysis.

Time series analyses reveals that spectral power is concentrated in 5 frequencies bands.

Independent estimation of the sedimentation rate of the average sedimentation rate in the Calcare Massiccio
(Brandano et al., 2015) is 5 cm/kyr.
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Example 4: terrestrial laser scanning intensity analysis

The Scaglia Rossa is a
pelagic unit typical that is
found in many
stratigraphic contexts both
in the Sothern Alps and in
the Apennines.

The age of the Scaglia
Rossa ranges from the
Cretaceous to the Eocene.

To the right, an abandoned
quarry near Cagli (Umbria
Marche Basin) exposing
Scaglia Rossa which here
is Eocene in age.

Franceschi et al., 2015




Example 4: terrestrial laser scanning intensity analysis
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Example 4: terrestrial laser scanning intensity analysis
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Example 4: terrestrial laser scanning intensity analysis

Construction of intensity series
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TLS intensity depends on the reflectance of the surface with respect to the laser beam.
Reflectance 1s also determined by the lithological characteristics of the rock




Example 4: terrestrial laser scanning intensity analysis
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Spectral Power

Example 4: terrestrial laser scanning intensity analysis
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Time series analysis of data extracted from the Smirra outcrop. The TLS intensity derives from the Smirra outcrop

virtual outcrop model.




spectral power

Example 4: terrestrial laser scanning intensity analysis
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Time series analysis of data extracted from the Smirra outcrop (blue line) expressed in time domain. Passage to the
time domain has been obtained assigning the sedimentation rate of 9 mm/Myr estimated by Coccioni et al. (2012).
The dark gray spectrum refers to the La2021 astronomical solution for the Eocene.




Example 5: Comet 67P/Churyumov-Gerasimenko
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The Rosetta spacecraft Comet 67P Churyumov-Gerasimenko




Example 5: Comet 67P/Churyumov-Gerasimenko

VIRTIS

OSIRIS narrow angle camera (NAC) NAC images of 67P surface




Example 5: Comet 67P/Churyumov-Gerasimenko

High resolution shape model of comet 67P




Example 5: Comet 67P/Churyumov-Gerasimenko

Analysis of the photogrammetric shape model revealed that the
comet 1s layered and the two lobes are characterized by two
independent concentric set of layers.

The origin of the layers is still unclear and matter of debate.
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Example 5: Comet 67P/Churyumov-Gerasimenko
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Franceschi et al., 2020

Further observation of the lobe highlighted that nearby the area
of junaction of the two lobes there are sectors of the Small
Lobe where layers display centre of curvature external to the
lobe (i.e. concavity opposite to that expected)




Example 5: Comet 67P/Churyumov-Gerasimenko

Bedding planes on 67P reconstructed in 3D and

normals to bedding planes Ellipsoidal models reconstructed by Penasa et al., 2017




Example 5: Comet 67P/Churyumov-Gerasimenko

3D model of the layered structure reconstructed using an Implicit layerinng model compared to the ellipsoidal
implicit modeling approach. models




Example 5: Comet 67P/Churyumov-Gerasimenko

Franceschi et al., 2020

The «average shell» of the implicit layered model of the Small Lobe colored in function of its distance between the «average
shell» of the ellipsidal model




Example 5: Comet 67P/Churyumov-Gerasimenko

Franceschi et al., 2020

The «average shell» of the implicit layered model of the Big Lobe colored in function of its distance between the «average
shell» of the ellipsidal model




Example 5: Comet 67P/Churyumov-Gerasimenko

Asymmetrical folding of expansion belt Fold in the neck area indicating dextral
indicating dextral strike-slip strike-slip

Franceschi et al., 2020




Example 6: outcrop preservation and promotion

VOMs hold great potential for the documentation and digital preservation of significant outcrop that may undergo changes or
being destroied.

2007 JExposure EEVegetaion T “—~__ |

D | —e———

43%  57%

Burnham et al., 2022




Example 6: outcrop preservation and promotion
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