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Determinism and predictability

Deterministic chaos and absolute chaos



Determinism

Determinism indicates that every event is
determined by a chain of prior occurrences.

Pierre Simon de Laplace (1749-1827) strongly believed in causal
determinism:

“We ought to regard the present state of the universe as the effect of its
antecedent state and as the cause of the state that is to follow. An
intelligence knowing all the forces acting in nature at a given instant, as well
as the momentary positions of all things in the universe, would be able to
comprehend in one single formula the motions of the largest bodies

as well as the lightest atoms in the world, provided that its intellect were

sufficiently powerful to subject all data to analysis; to it nothing would

be uncertain, the future as well as the past would be present to its eyes."
(from: "Essai philosophique sur les probabilites”)




Predictability

Determinism * predictability
The world could be highly predictable, in some senses, and
yet not deterministic; and it could be deterministic yet
highly unpredictable...

Determinism: related to the nature of the physical system

Predictability: related to what we can do (observe, analyze, calculate);
to predict something we need:

- knowledge of initial conditions

- capability of solving exactly the equation of evolution




Chaos and determinism

a system is chaotic if its trajectory through

the configuration space is sensitively
dependent on the initial conditions, that is, if
very small causes can produce large effects

(in meteorology: "butterfly effect”)
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In the last few decades, physicists have become aware
that even systems studied by classical mechanics can
behave in an intrinsically unpredictable manner. Although
such a system may be perfectly deterministic in principle,
its behavior is completely unpredictable in practice. This
phenomenon was called deterministic chaos.
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Deterministic chaos
is not randomness

Deterministic chaos is not the same as absolute
chaos. Absolute chaos or randomness is when you
don't know nothing at all of what will be the next

value: it can be any value!

Another important difference is that for deterministic
chaos we have a simple law that will produce all the
values in the “attractor”. Instead for randomness there is

no known recipe to produce past and future values.
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Chaos and determinism:
logistic map;
Mandelbrot function and fractals



Chaos and determinism

Deterministic chaos described by
intrinsically NON LINEAR equations.
E.g., dynamics of population:

Tpai1 = 4rz, (1 —x,)

x,, 18 the ratio of the population in the nth generation to a reference population.

WHICH DYNAMICAL BEHAVIOR!?



The logistic map

realistic model in which the population is bounded

rescale the population by letting P, = (a/b)x,

Tpi1 = axn(l — x,)

define the parameter r = a/4 and obtain

Tni1 = f(x,) = 4ra, (1 — x,)

e f is called a one-dimensional map
e The sequence of values zg, =1, To, --- is called the trajectory or the orbit.

e =¥ is a fixed point if x,,.1 =z, = x*, i.e., f(z¥) ="
I



The logistic map

Tpi1 = 4dra, (1 —x,)
0<zx<1;, O0<r<1 (¥
(*): condition (f(%))maer <1 = r <1; x*=fixed point < 1 = r >0

1.0 1.0

| D plots: x(n)

examples of
convergent 0.5 0.5 L
trajectories:

0.0 adececccoeeooees 0.0 L
0 15 n 30 0 15 n 30
(a) (b)
r=0.2 and ¢ = 0.6 r = 0.7 and xg = 0.1.
( stable fixed point is & = ()) initial transient behavior
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The logistic map
Condition is given by f(z*) = x*

Tni1 = 4dre, (1 —x,)

1
B -0 ad o —1-L
ZEl all X Ay

stable fizred point
or sufficiently small r, the iterated values of & converge

to x = 0 independently of the value of xg

if for almost all £y near the fixed point, the trajectories diverge from it

It can be demonstrated that:

xr” = 0 is stable for 0 <r < 1/4

1 1
a:jzl—g is stable for Z<T<”'? (< 1)

. .
13 (condition 7 > 0)



The logistic map

i1 =4rT,(1 — z,) =P y(r)=4rz(l - 2)

y(x):' y'(r =0) =4r

R

"

Graphical interpretation of the logistic map: intersection

with the diagonal (solution other than x=0) for 1/4 <r <1
14



The logistic map

Tpt+1 = 4T:Un(1 — :I:n) =N y(x) = 4rx(l — x)

: y'(x =0) =4r
/
R
v !
y J T
[ O y(xp)
05| &
N
i (x; =y (xg), y(xp)) (xg, y(xp))
r = 0.7
0.0 . . . xo = 0.9
0.0 0.5 L0 19

X
Graphical representation of the iteration of the logistic map
(cobweb plot) : the graphical solution converges to the fixed point z* ~ 0.643

Note: the graphical intersection between y(x) and the diagonal gives the fixed point, but it is not

sufficient to determine whether it is stable or unstable
15



The logistic map

A L s Map Cobwveb Pict 1) 1/4 ' Logints Mao Cobbwe® Mot re2 7 /4. C LOogati Map Cobweb Mt 102 T /4

Cobweb plots of the logistic map pulling initial population values of 0. |
(A), 0.5 (B) and 0.9 (C) into the same fixed-point attractor over time.

From: G. Boeing, DOI: 10.3390/systems4040037



https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.3390%2Fsystems4040037?_sg%5B0%5D=Pg2c7dgRXU6E2XMhsYAz1hPQMTUxbyApuMq5GH7LdlCzPDtHQ4yol2RQTpo0sDHZzV3evvpWLDYfm8aTGMrQpHHNAw.KbmULbYcZ571nh1GdNuMJTc7FKAC36xyXrvb7pOhIOUvuWcvrgwsrFiPK8UakLvZgyTojeHKCkrvZkgY3UZHYw

The logistic map

Tnt1 = 4rzp(l — zy)
0<z<1 0<r<l1

r————

o i




The logistic map

zoom on the bifurcation diagram
L ' '

08!

o
. -

iterated values of x
»

o
.

G2

OL_

075 08 0.85

Bifurcation diagram of the logistic map. For each value of r, the iterated values of
x, are plotted after the first 1000 iterations are discarded. Note the transition from periodic to
chaotic behavior and the narrow windows of periodic behavior within the region of chaos.
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The logistic map

Logistic Model Results by initial Conditions, r=3.9/4

Al

.

87

Wt ol Pogedat o
e 05
050001

o " ~ » - 0

Generabion

In the chaotic region, the trajectory is extremely sensitive to
the initial conditions

From: G. Boeing, DOI: 10.3390/systems4040037



https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.3390%2Fsystems4040037?_sg%5B0%5D=Pg2c7dgRXU6E2XMhsYAz1hPQMTUxbyApuMq5GH7LdlCzPDtHQ4yol2RQTpo0sDHZzV3evvpWLDYfm8aTGMrQpHHNAw.KbmULbYcZ571nh1GdNuMJTc7FKAC36xyXrvb7pOhIOUvuWcvrgwsrFiPK8UakLvZgyTojeHKCkrvZkgY3UZHYw

The logistic map

state-space

reconstruction:

plot (Xi+1, X)

(each plot:
fix r, consider
different xo)
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Lo B Logistic Map Attractor, r=3.5/4
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The logistic map

A Logistic Map Attractor, r = 0.975 B Logistic Map Attractor, r from 0.9 to |
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Figure 11. Two different viewing perspectives of a single three-dimensional phase diagram of the

logistic map over 200 generations for 50 growth rate parameter values between 0.9 to 1, each with its
own colored line.
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A0S or randomness’

Lo TimeT Series, Dete(ministic Chaqs vs Random Data
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The logistic map

Numerics:

for a given parameter r:

- for a given Xo, iterate the map and plot the trajectory (n, Xxn);
- verify whether it converges and, in case, to which value(s)

- verify numerically if the analytically predicted fixed points
X1", X2" are stable or unstable fixed points

23



Other unimodal maps

Consider the so-called tent map Consider the sine map x,41 = rsinmxy, for
<r<1an <z <l1.
re 0<z<1/2 O<r<land 0<z<
f@) =1

—rx 1/2<x<1 !
r
(foro<r<2and 0<xz<1). i
1
i
2
0
Xn+1
Q.W‘
©.5™000 |
\
0750000 | o .
sine map
0 25000 —%
0 1 ‘
x" 9.900000 =
U ©.57%000
- ©.250000,
DX 0,125000
J 0.000000
LN 1,000000
. 0.87%00 ’/ 3
N — )
L 0,700 // .
" R / logistic
1 oz map
a2 \
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0.3M%000
an
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> 2800000 0D 3.290000 3520000 LR 00000
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Chaos and fractals

25



Another famous example

other equations intrinsically NON LINEAR can show a
chaotic behavior for certain values of the parameters.

E.s.
quadratic recurrence equation
MandEIbrOt fu I‘ICtiOI‘I (in general in the complex field):

Z(ntl)=2Z(n)2 + C with C constant (also negative)
andn=0,1,2,...

Start with an initial value Z(0), then calculate:
Z(1) = Z(0)2 + C

then:

Z(2) = 2(1)2 + C

etc etc ... 26


http://mathworld.wolfram.com/QuadraticRecurrenceEquation.html

Some examples in the real field

Z(n+1) =Z(n)2 + C n Z1(n)

0.0000
C=0.2and Z(0) =0

0.2000
Convergence to Z*= 0.2764 0.2400

0.2576
0.2664
0.2709
0.2734
0.2748
0.2755
0.2759
0.2761
0.2762
0.2763
0.2763
0.2764
0.2764
0.2764
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Some examples in the real field
Z(ntl)=2Z(n)2 + C
Previous example: C = 0.2 and Z(0) = 0 => Convergence to Z*= 0.2764

In general:
Starting from Z(0) = O:

For 0<C<= 0.25 : convergence to a fixed point, solution of z=272+C
(attractor)

For C<~ -0.75 : convergence with damped oscillation
For C~-0.76 : bifurcation (two-values attractor)
Decreasing C: further bifurcations

Further decreasing, at C~-1.42: chaotic behavior

(infinite points of attraction; and very small change of Z(0)=> very
different behavior of the sequence - “butterfly effect”) 28



Some examples in the
Z(n+1) =2(n)2 + C

Chaotic sequence at C = -1.7:

The values of the sequence do not repeat
However they are within a certain range

Range including all points of the series:
chaotic attractor or strange attractor

29

real field

Z1(n)

0.0000

-1.7000

1.1900

-0.2839

-1.6194

0.9225

-0.8491

-0.9791

-0.7414

Ol NOLOh| bW~ |O

-1.1503

RN
o

-0.3768

—
—

-1.5581

AKX
N

0.7275

RN
w

-1.1707

—
o

-0.3295

—\
@)

-1.5914

RN
(o))

0.8326




Some examples in the complex field - fractal sets

Remainder: Z(n+1) = Z(n)2 + C;in general, C and Z(n) are complex numbers.

Repeat the iteration either until |z| > 2 or until a maximum number of iterations is
reached.

For fixed C complex, the set of the values Z(0) whose “evolution” Z(n—«x)
tends to a finite value: such set produces a fractal figure (Z(0) is represented in
black if Z(n— ) is finite). In general, if Z(n—x)—«x, color the corresponding pixel; better,
use a color derived from the number of iterations keeping Z(n) within a certain value.

Maps of Z(0) in the complex plane for three different values of C:

c=—0.123 + 0.74512 c=—0.75

Douady rabbit Dendrite San Marco fractal

extreme points on x axis: Z(0)=0, |

30



“The” Mandelbrot set

the set of those points C in the
complex plane for which the
“evolution” of Z(0)=0 under iteration of
Z(n) remains “bounded”, i.e., |Z(n)| never
diverges as n grows.

The Mandelbrot set can be plotted: in practice, a
maximum number of iterations nmax and a maximum
value of |Z|=rmax=2 is considered (it can be
demonstrated that if there is a |Z,|>2, then the
sequence diverges)

one-color plots: black pixel: C is in the Mandelbrot set (|Z| remains
limited)/ white: C is NOT

=> FRACTAL CHARACTERISTICS

http://mathworld.wolfram.com/MandelbrotSet.html

31


http://mathworld.wolfram.com/MandelbrotSet.html

“The” Mandelbrot set

the set of those points C in the
complex plane for which the
“evolution” of Z(0)=0 under iteration of
Z(n) remains “bounded”, i.e., |Z(n)| never
diverges as n grows.

The Mandelbrot set can be plotted: in practice, a
maximum number of iterations nmax and a maximum
value of |Z|=rmax=2 is considered (it can be
demonstrated that if there is a |Z,|>2, then the
sequence diverges)

one-color plots: black pixel: C is in the Mandelbrot set (|Z| remains
limited)/ white: C is NOT

multicolor plots: C points are colored according to the number of
iterations n<nmax required to have |Zn|>rmax

=> FRACTAL CHARACTERISTICS

http://mathworld.wolfram.com/MandelbrotSet.html 32



http://mathworld.wolfram.com/MandelbrotSet.html

Measuring chaos

33



Measuring chaos

important characteristic of chaos
sensitivity to initial conditions

Logistic Model Results by Initial Conditions, r=0,975

T

Axy = 0.00001, Ax,4=777? ’ V

»
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Measuring chaos

important characteristic of chaos
sensitivity to initial conditions

%> The difference between two trajectories may diverge

exponentially :

Axy = 0.00001, Ax, = 2?7

Ax,| = |A:130\e>‘”

Lyapunov exponent
(LE)

35

Logistic Model Results by Initial Conditions, r=0,975
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Measuring chaos

1.0

2. L I
0.7 0.8 0.9 r 1.0

Ax,| = |Axg PV

Lyapunov exponent

36

The Lyapunov exponent
as a function of the
control parameter r

for the logistic map

Tnt1 = dre, (1 — x,)

08}
(<o
04l

62!
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Measuring chaos

A PROBLEM in a numerical approach:

ROUNDOFF:

small initial errors are exponentially amplified in time;
after some (?) iterations the trajectories can diverge!

How to calculate A?
FIT over several trajectories

37



Measuring chaos

According to the previous definition, |Ax,| = |Axg|e™"

the Lyapunov parameter A is given by:

; 1 | Ax, 1 Ax, Axn | Axn_z Axl
= — In = — . .
n Axy n Ax,_; Axn_z Axn_3 AxO

| =l
=;2

i=0

Axl+1

l

If we consider the map as a function, we have:

Ax.
X1 =f) = Axy = Af(xy) = il ) = 1'(x;)

Ax; AXx; T
if the Ax; are sufficiently small, which is true
in case of convergence towards fixed points

n—1
hence: A = Iim (12 |n|f,(33i))
RS N vy
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Measuring chaos

For the so-called tent map
0<z<1/2 (for0<r<2and 0<z<1)

rT <z <
f(x):{r—rx 1/2<x<1

Since f'(x) = 4r for all z, we find
1TL—]_
il B EDWLIT(CD]
_ Inr "
nl|_>moo( Z 1)

= |nr

T his suggests that the tent map has chaotic "_.:
solutions for all r > 1, since A = Inr > 0.
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Other ID chaotlc maps

......

X,y = rsin(zx;)

1
/\/W /wf /

(here ft of 2in
ftf)

Fig. 1. Bifurcation dagrams (top row) and LEs (bottom row) of (a) the
logistic map, (b) sine map, and (c) tant map.




As can be observed, the logistic, sine, and tent maps have chaotic
behaviors when r € [0.89, 1], € [0.87,1],andr € (1,2) ,re-
spectively. Even the logistic and sine maps are two different
maps with totally different definitions, they have similar behav-
1ors, which can be seen from their bifurcation diagrams and LEs.
Moreover, the logistic and sine maps do not have robust chaos
as periodic windows exist 1n their chaotic ranges, but the tent
map has robust chaos when its control parameter r € (1, 2) .

41



(Finally, some physics...!)

Chaos in classical billiards



Billiards

MODEL BILLIARDS

(conservation of energy law,
reflection law of geometric optics)

calculate trajectories
(which depend on:
shape of the billiard;
initial position and velocity)

43



Billiards

Circular billiards support regular (periodic or non - periodic)
trajectories, but in any case hon - ergodic.

(note also:

conservation of angular momentum, incidence angle constant)

In phase space (q(t),p(t)):
limited region (a line: q(t) varies, p(t) constant)

44



Billiards

Also elliptical billiards support regular trajectories:

O
(O

The convolution of a trajectory can be: ellipse, hyperbole, regular polygon

45



Billiards

Rectangular billiards also support regular (periodic or non -
periodic) trajectories, which in this case can be also ergodic

> IR e T e

46



Billiards
N\

In perfectly rectangular/square/elliptic billiards the trajectories are regular but
also stable, i.e. changing the initial conditions, they remain close each other

47



Billiards

In perfectly rectangular/square/elliptic billiards the trajectories are regular but
also stable, i.e. changing the initial conditions, they remain close each other

By inserting a circle in a rectangular or square billiard, chaotic
trajectories, strongly dependent on the initial conditions, are
generated

(“dynamical billiard” or “Sinai billiard”, 1963)

48
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Billiards

Stadium (Bunimovich) billiard has a geometry simpler
than Sinai billiard, also resulting in chaotic trajectories

GF L ﬂ>
(a)

. (a) Geometry of the stadium billiard model. (b) Geometry of the Sinai billiard model.

- L -

(b)
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Billiards

NON Ergodicity Ergodicity
of circular of chaotic

billiards billiards

51



Conservation of the energy,

but in some cases (stable trajectories):

- another physical constant
(e.g.angular momentum in case of circular billiards;
x and y “components” of the kinetic energy
in rectangular billiards)

- no physical constant for stadium billiards

52



our model

point-like spheres

no friction:
forces normal to the boundaries

oo |

perfectly elastic collisions:
energy conservation: [V’| = |v|

53



the algorithm

given X,y,vx,vy attimet

calculate :

time to the next collision

the position of collision

velocity after the collision (reflection)

Iterate N times (N collisions)

54



collision time

Calculation of time to the next collision:

X(t) = xo + vxt /< \
y(t) = yo + vyt \_ /’

boundaries: f(x,y)=0 : (e.g.: yo+ vytc=0)

at the collision time tc:

f(X(te),y(tc))=t(X0 + Vx te, Yo + vy tc)=0

55



collision point

Specify f. here (half) circular boundary, with equation:
[X(tc) - XcJ* + [y (fe) -ye]* = 1

l.e.:
(Xo + Vx tc - Xc)2 + (Yo+ vytc-yc)2 = 1

=> (0, 1 o 2 solutions:

(0 sol.) no collision

(1 sol.) collision (tangent line)

(2 sol.) collision (consider only the larger tc)

56



velocity after collision

For reflection off of a circular boundary:
(x-xc )2 +y2 = 1

Vix = (Y2 = (X-Xc)?) Vx = 2 (X = Xo)y Vy
Vly = -2 (X-Xe) Y Vx + ((X - Xc)? - ¥2) vy

(validif vi2+wvy2=1)

57



Lyapunov exponent

Dynamics is chaotic:
start with two particles with almost identical positions

and/or momenta (varying by say 10-%); compute the
difference As of the two phase space trajectories as a
function of the number of reflections n, where:

2

Asn — \/|r1,n — r2,n‘2 =+ |p1,n — P2,n
Lyapunov exponent can be calculated by a semilog plot
of As versus n (of course, consider only the initial part,

since As is limited!)
- L dependence?

- role of single/double precision?
- Time inversion symmetry’?



recommendation:

don’t forget roundoff errors...

Analytically:

log(1l + x)
m =1

x—0 X

.. but... numerically?
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Some programs and materials:
on moodle2:

map.f90
billiard.f90
and

b| I |ard i2.Zi P (material in java, from the Lab activity with

High School students, with G. Pastore)

And also:

julia.f90

Mandelbrot.f90

(taken somewhere from the web, Author unknown)

From ICTP web site:
https://www.ictp.it/about-ictp/media-centre/news/2018/6/yorke-

interview.aspx
60



