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1. Problem statement

The temperature control system is an example of a controller which is largely and daily used. This
project presents the study of an Arduino temperature micro-controller, Temperature Control Lab
(TCLab), which is described in (Park et al., 2020)[2]. The aim of this project is to develop
a temperature controller: given a desirable temperature, the system must reach it. In order to
reach the objective, a Proportional Integral Derivative (PID) controller has been developed. In
addition, an Extended Kalman Filter has been studied to emulate the real sensor. We also stated
some desirable properties of the system using Signal Temporal Logic. We have verified that these
properties are satisfied by the proposed control strategy. Finally we propose the falsification of
one of these properties by varying the parameters of the PID controller.

2. Plant Model

The plant consists of a printed circuit board (PCB) shield connected to an Arduino micro-controller,
two transistors that acts as heaters and two temperature thermistor sensors (figure 1). A quick
description of the plant and its functioning can be found in Appendix A, while more details
can be found in Park et al., 2020[2]. The model is developed assuming the following ipothesis:
the heaters have a uniformly distributed temperature; the sensors have a negligible thermal mass1

and negligible surface areas; temperature changes are driven by heat conduction from the heaters.
The model consists of a lumped parameter model which describes the dynamic input power to
each actuator and the temperature sensed by each sensor; it is represented by equations 1-2-3-4:

mcp
dTH1(t)

dt
= U A (Tamb−TH1(t))+ϵ σ A (T 4

amb−T 4
H1

(t))+QC12(t)+QR12(t)+α1Q1(t),

(1)

mcp
dTH2(t)

dt
= U A (Tamb−TH2(t))+ϵ σ A (T 4

amb−T 4
H2

(t))−QC12(t)−QR12(t)+α2Q2(t),

(2)

1Thermal mass is the ability of a material to absorb, store and release heat

1



Figure 1: Temperature sensors (S) and heater transistors (A) with connections to an Arduino Leonardo.

where QC12 and QR12 are, respectively, the convective heat and the radiative heat transfer be-
tween the two heaters, explained by the following equations:

QC12(t) = U As (TH2(t)− TH1(t)),

QR12(t) = ϵ σ A (T 4
H2

(t)− T 4
H1

(t)).

Furthermore, equations 3-4 represent the dynamic sensor temperature response expression:

τc
dTC1(t)

dt
= TH1(t)− TC1(t), (3)

τc
dTC2(t)

dt
= TH2(t)− TC2(t). (4)

The meaning of the variables is explained in table 4 in Appendix B.

2.1. Simulation result

As we can notice in equations 1-2-3-4, the model depends on the ambient temperature (Tamb)
which is set to 23◦C. The plot in figure 2 is obtained by manually modulating the power per-
centages of the two heaters (Q1 and Q2), which are then provided as inputs to the model. The
initial temperature of the heaters (T0) is set to 23◦C. We have plotted the temperature of the
heaters (TH1 and TH2) and the temperature of the sensors (TC1 and TC2), comparing them with
the percentage of power provided to the heaters.
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Figure 2: Plot of sensors and heaters temperature compared with the percentage of power provided to the
heaters. Initial temperatures are set to 23◦C.

3. PID Control

As control strategy we have implemented a Proportional-Integral-Derivative (PID) controller for
each heater, separately: the influence of each heater on the other is included in the model. In
order to keep the same notation, we recall that the standard form of the PID control function is:

u(t) = Kc

(
e(t) +

1

τi

∫ t

0
e(τ)dτ + τd

de(t)

dt

)
, (5)

where e(t) = ref(t) − TCi is the error calculated as the difference between the reference tem-
perature we aim to obtain and the temperature sensed by the i sensor.

3.1. First-Order Plus Dead-time Model

In addition to the physics-based model, a first-order plus dead-time (FOPDT) model is fit to step
response data. The model is developed in order to obtain initial tuning parameters for the PID
controller, which can be calculated using the parameters of the FOPDT model itself. For the
simple purpose of the FOPDT model, heater 1 (Q1) is varied along the course of the simulation,
while heater 2 (Q2) always remains off. The model is fit on the data that have been calculated by
providing the heater inputs to the previously discussed model (equations 1-2-3-4). In the figures
3 and 4 we compare the plot obtained by carrying out the simulation of the model providing
heater inputs, and the FOPDT model fit on the data calculated in the mentioned simulation. The
FOPDT model is a differential equation:

τp
dTC1(t)

dt
= −TC1(t) +KpQ1(t− θp), (6)
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Figure 3: Simulation carried out providing heater in-
puts. Heater 2 is off.

Figure 4: FOPDT model fit on the data calcu-
lated in the simulation.

Figure 5: PID control, assuming as reference temperature 35◦C.

where τp, Kp and θp are the three parameters called, respectively, gain, time constant and delay
time. As mentioned, the parameters are calculated and their values are: τp = 156.4326 s, Kp =
0.6826 ◦C/% and θp = 16.7952 s.

3.2. PID parameters

Once we have calculated the parameters of the FOPDT model, we can use them to process the
initial parameters to be entered in the PID controller, as shown in [3]. The final parameters tuned
in PID control are: Kc = 10.0438, τi = 164.8303, τd = 7.9698
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Performance Value Heater 1 Value Heater 2

Overshoot 2.583 2.230

Rise Time 49.0 58.0

Steady State Error 0.002 0.024

Settling Time 144.0 161.0

Table 1: Measuring control performances. Reference temperature is 35◦C

3.3. PID result

In the figure 5 we can see one of the simulations tested. As we can see, we have chosen 35◦C
as reference temperature. The controller works correctly: after a first interval in which both
heaters are on and operating at 100% of their power, the temperature is kept constantly around
the reference temperature simply by maintaining the power of the two heaters to about 15%.

4. Extended Kalman Filter

In order to simulate real sensors we have add random normal noises to the states of the system and
we have used an Extended Kalman Filter. The state observer has been implemented linearizing
the dynamic of the system at each step of the simulation.

5. Performances of the controller

We have also implemented some functions to measure control performance. In particular we
have introduced2: rise time, overshoot, settling time and steady state error. In table 1 we can
observe the results obtained assuming 35◦C as reference temperature.

6. Requirements

In this section we analyze some properties that our control system should satisfy and formalize
them in Signal Temporal Logic (STL). The properties are requested for both heaters indepen-
dently:

• Oscillations in the warm up phase: we require the system that the temperature of the heater
warms up without high temperature jumps. We want to avoid large thermal changes that
could affect the materials and the behaviour of the heater. To guarantee this, the oscillations

2Definitions were given during the course, so they are omitted here.
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Requirement Value heater 1 Value heater 2

ϕ1 0.675 0.630

ϕ2 0.100 0.168

ϕ3 0.577 0.697

ϕ4 62.417 62.770

Table 2: Robustness computed using as reference temperature: 35◦C

(o(t) = |TCi(t)− TCi(t− 1)|), during the warm up phase (0− 300 s)3, must be less than
1◦C. In STL:

ϕ1 = G[0,300](o(t) < 1.0).

• Oscillations in the maintenance phase: once a certain temperature is reached, the temper-
ature oscillations (o(t) = |TCi(t)−TCi(t−1)|) should be minimal, in order to ensure that
the system maintains a certain stability. This interval comes after the previously discussed
warm up phase (300−N s). In STL:

ϕ2 = FG[300,N ](o(t) < 0.5).

• Proximity: we require the system that the temperature reached is close to the reference
temperature and that this property is maintained for the entire duration of the simulation.
In STL:

ϕ3 = FG[300,N ](p(t) < 1.0),

where p(t) = ref(t)− TCi(t).

• The mandatory property is that the temperature of the radiators never reaches 100◦C.
Reaching this value would cause irreparable damage to the heaters and to the PCB. In
STL:

ϕ4 = G[1,N ](TCi(t) < 100.0),

In order to verify these properties, we have simulated the model providing 9 values as reference
temperature: 30◦C, 35◦C, 40◦C, 45◦C, 50◦C, 55◦C, 60◦C, 65◦C, 70◦C. The robustness is
then computed for the PID control. Since the results are always positive we can conclude that the
requirements are actually met. We can observe an example in table 2.

3The size of the warm up phase depends on the reference temperature that our heaters must reach. Since there is not
a precise value, we have opted for an approximate interval which in some cases is greater than the phase
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Reference value Value heater 1 Value heater 2

30◦C 68.251 68.594

35◦C 62.200 62.683

40◦C 56.023 56.492

45◦C 49.790 50.129

50◦C 43.301 43.432

55◦C 36.839 36.819

60◦C 30.065 29.894

65◦C 23.192 23.340

70◦C 16.297 17.774

Table 3: Robustness computed using as reference temperature: 35◦C

7. Falsification

Since property ϕ4 is certainly the most important and mandatory, in this section we evaluate its
falsification using the PID controller. We have ran the controller simulation for 10 iterations,
each time varying the noises passed as input to the Extended Kalman Filter and the reference
temperature. The final output is the minimum value of robustness calculated during the sim-
ulation. Since, once again, robustness always takes positive values, we can conclude that the
property can not be falsified. In table 3 we can see an example.

8. Conclusion

In this work we have developed a temperature control system for two small heaters. The system
can easily be adapted to larger complexes such as buildings. The peculiarity lies in controlling
each of the two heaters separately, rather than both at the same time. We developed a PID con-
troller, simulated the sensors with an EKF and finally we verified that the controller met some
indispensable requirements. The work can be expanded by evaluating other requirements and
proposing different strategies. The simulations were proposed using different values as the ref-
erence temperature. All results can be found in the github repository [1].
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Appendix

A. Plant description

The sensors T1 and T2 send temperature readings to the Arduino using a voltage signal (unit
of measure: milliVolts mV ) (values are in range 0 − 3300 mV ). These signals are digitalized
in the Arduino with a 10-bit Analog-to-Digital Converter (ADC), resulting in 1024 Discrete
Levels (DL). Hence the signal is converted again to milliVolts: mV = 3300

1024DL, and then to a
temperature:

T = 0.1 mV − 50.

Sensor accuracy is equal to ±1◦C at 25◦C. It increases, proportionally to the temperature, until
to±2◦C at 150◦C, or at−40◦C. If the temperature sensor exceeds 100◦C, the Arduino firmware
turns off the heaters to protect the equipment and the user.
The two heaters Q1 and Q2 are transistors (less powerful than traditional heaters). They are
controlled through Pulse Width Modulation (PWM). The two transistors can be set to different
power, between 0% and 100%, for a certain period of time. The maximum power output for
the heater, with 5 V power supply is more or less 1 W . A portion of the power supplied to the
heaters is dissipated over the power cable, which has a thickness of 20 AWG.

B. Description of the constants

We can notice that the two heaters have the same mass (m), equal capacity (of the steel) (Cp),
same heat transfer coefficient (U ), same emissivity4 (ϵ) and same Stefan Boltzmann constant (σ).
Moreover, αi represents the amount of power dissipated by the heater; as we can notice in the
table 4, α1 and α2 are not identical: the two heaters do not perform equally. The time constant
τc is a lumped parameter5.

4The emissivity is the effectiveness in emitting energy as thermal radiation
5It comes from a discretized version of Fick’s Law of heat transfer, with τc = ms cps ∆x/kc Acond, where ms is

the mass of the sensor, cps is the heat capacity of the sensor, kc is the thermal conductivity of the thermal epoxy,
and ∆x is the width of the thermal epoxy. It is estimated from the data and set in the model to the value of 23.3 s
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Quantity Value

Ambient temperature (Tamb) 296.15 K (23◦ C)

Heater output (Q1) 0 to 1W

Heater output (Q2) 0 to 0.75 W

Heater factor (α1) 0.01 W/(% heater)

Heater factor (α2) 0.0075 W/(% heater)

Heat capacity (Cp) 500 J
kgK

Suface Area Not Between Heaters (A) 1.0× 10−3 m2

Suface Area Between Heaters (As) 2.0× 10−4 m2

Mass (m) 4× 10−3 kg

Heat Transfer Coefficient (U ) 4.4 W
m2 K

Heat Transfer Coefficient Between Heaters (Us) 24.0 W
m2 K

Emissivity (ϵ) 0.9

Stefan Boltzmann Constant (σ) 5.7× 10−8 W
m2 K4

Time constant (τc) 23.3 s

Table 4: Values
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