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A common problem in various chemical engineering task is to quickly bring
a solution back to a certain pH value. It often happens in industrial application
to have to neutralize large volumes of acids or strong bases in controlled stirred
tank reactors (CSTRs).

Generally a large number of industrial wastes produce extremely alkaline
waters, bringing them back to a pH around 7 (therefore neutral) has the dou-
ble benefit of making the water less toxic and promoting the activity of those
bacteria that are used for chemical demolition of waste (which would otherwise
die in too extreme conditions).

In literature the problem of controlling this neutralization is known to be
rather difficult mainly because of its strong non-linearity, especially as regards
the oscillations around the reference value, and several different control systems
have been proposed to improve its performance.

For this exam project we will first derive a model for pH neutralization in a
very simple reactor of strong-base tritation and then we will try to look the per-
formance of a simple PID controller, a neural network based predictive controller
and fuzzy-logic controller. The implementation is presented in Matlab-Simulink.

Derivation of the plant
There are several ways to build such a reactor and the attention to the detail
of mechanics and dynamics of each component involved in the process can be
made very complex. Also from the chemical point of view there are different
ways in which this neutralization reaction can be carried out with respect also
to the number and type of acids that can be used in the reaction. In our case
we will deal with a very simple problem, in which the process is shown in figure
1.

Figure 1: Model of the process
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As regards the reaction we have a very simple neutralization of a strong base
with a strong acid. In formulas

NAOH + HCL→ NACL + H2O

To have a complete model of the plant we need equations for the dynamics
of the system (which basically tells us how the concentrations change with time)
and a formula for calculating the pH from these concentrations.

To have a complete model of the plant we need equations for the dynamics of
the system (which basically tells us how the concentrations change with time)
and a formula for calculating the pH from these concentrations. As for the
dynamic model, it can be easily obtained using the principle of material balances
[2]:

V
dua

dt
= FaCa − (Fa + Fb)ua

V
dub

dt
= FbCb − (Fa + Fb)ub

where Ca is the concentration of the inflow acid, Cb the concentration of the
inflow base, Fa is the flow of acid, Fb the flow of the base, ua is the concentration
of NA+ in the tank, is the concentration of CL− in the tank and V is the total
volume.

Now that we have a way to calculate ionic concentration for a given t we
need to put this in the context of pH calculation [3]. Remember pH is defined
as:

pH = − log10
[
H+]

Then equilibrium for water is:

kw =
[
H+] [OH−

]
The electroneutrality relation:[

Na+]+
[
H+] =

[
Cl−

]
+
[
OH−

]
So defining the difference ua − ub = ∆ and substituting into the equations

we obtain:

[H+]2 −∆[H+]−Kw = 0

which solution is:

pH = − log10

(
x
2 +

√
x2

4 + Kw

)
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Control and verification
The final implementation is done in Simulink, the version with the classical PID
is in figure 2. It consist in a submodule for getting the difference in concentration
between the two ions in the tank and a pH measurment system. Just note that
the inflow of both acid and base is regulated by a valve (with range 0-100%)
that inject a percentage of the max flow.

Figure 2: Closed-loop PID control

The neural system uses a simple one layer neural net that predicts the output
of the plant and another that acts as a contoller, implemented in the Matlab
Deep Learning toolbox.

Figure 3: Neural network based controller

We have also included a simple fuzzy-controller for comparison which seems
to be the most used in literature.
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Figure 4: Fuzzy logic controller

However all of these three solutions are far from the state of art.

Simulations
Three inputs

• Closed-Open Valve We start from a closed valve and then we open it

• Closed-Open Valve w/t perturbation same as before, but we add a
perturbation in the middle

• Servo Problem we change our PH reference during the simulation
Parameters for the experiments are in the implementation files.

Apart from the performances we also verify those properties

• pH should never be higher then 8.5 after an initial delay (+-2 than the ref-
erence in the servo problem, 9 for the opening valve) G[delay,final] (pH(t) ≤ upperbound)

• pH should never be lower then 5.5 (+-2 than the reference in the servo
problem, 5 for the opening valve) G[delay,final] (pH(t) ≥ lowerbound)

The classic PID is tuned manually starting from from lowering the propor-
tional gain while taking the other measures to 0 and then tweaking Kd, finally
adjust with Ki.

The neural controller is taken from the Matlab Deep Learning Toolbox and
tuned with 2000 samples randomly generated from the plant. The neural part
is actually predicting the plant response whether the next move is chosen min-
imizing this formula .

J =
N2∑

j=N1

(yr(t+ j)− ym(t+ j))2 + ρ

Nu∑
j=1

(u′(t+ j − 1)− u′(t+ j − 2))2

Where N1, N2 and Nu are the horizons over which the tracking error and the
control increments are evaluated. u′ is the tentative response, ρ is the contribu-
tion of the sum of squares of the increments in the formula and yr and ym are
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respectively the reference signal and the network response. More information
at [4] or on the Matlab Deep Learning ToolBox documentation

The fuzzy controller has those discourse variables for inputs and for outputs,
we have two input discourse variable one (with 3 states) describing where we
are in the pH range (0-5,5-9,9-14) and one (with 9 states) describing the error
we are receiving (from negative negative error to positive positive error). The
output (9 states) describes the strength of opening of the valve. For the rules
chekout the file .fip into the implementation.

For the first problem, i.e. simply contrasting a constant flow of base starting
from a closed valve results are in figure 5.

Figure 5: Constant flow of base, starting with the acid valve closed

As we can see the fuzzy controller is more stable but express a particularly
oscillatory behavior in the first seconds. The neural controller achieves the
fastest response while oscillating a lot , the PID is somewhat similar (if we give
a certain delay for the opening valve however all three controllers are able to
maintain the reference position)
Things start to get worse when we add a consistent perturbation, such as sud-
denly close of 40% the inflow valve.
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Figure 6: Constant flow of base, with a closing of 40% of the base valve at time
100

Here no controller is able to stay in decent limits, however the neural one is
able to recover without oscillations, while the others have an inversion in the pH
(to be fair the difference in concentration is kinda big and stays for 10 second, it
is realistically very hard to not reach extremely low pHs with these controllers
that are indeed constructed to work better around 7).

To conclude if we change the reference point the controller are able to adapt
with the same error as before. Even though the neural one seems to underesti-
mate a bit the second reference point.
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Figure 7: Constant base, varying reference

To conclude this is just a merely demonstration of different very basic con-
troller systems dealing with a non linear model. A lot of things need to be
improved, especially the oscillation which are extremely hard to control around
7. There are different directions to explore with more time and skills, for sure a
more complex neural network the the simple 2 layers fully connected used here
can improve a lot the results, also very popular are also fuzzy controllers with
a third variable coding the steepness of the changing in pH [1].

Regarding model checking is pretty obvious that the model in not that robust
and it is easy to find counter-examples, what I have implemented is instead
trying to search the maximum base valve closing that happen to be neutralizable
in the model specification (circa 2% around the steady state value, so if the
previous opening is 50% of the base valve the controllers are able to stay in the
limitis for a change in 48-52 %).
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