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Introduction

We are interested in how dependence between the components of a
random vector X ∈ Rd , d ≥ 2, can be investigated and modeled.

::::

The usual Pearson linear correlation has a number of limitations,
particularly when moving away from elliptical models, whereas rank
correlations and coefficients of tail dependence are alternative
dependence measures derived from copulas.

::::

Tail dependence is an important concept to address the phenomenon of
joint extreme values in several risk factors, which is one of the major
concerns in financial risk management.
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Preliminaries

Literature

The copula approach provides a convenient way of isolating the
description of the dependence structure of individual risk factors from
their marginal behaviour.

::::

Since their introduction (Sklar (1959)), the literature on copulas has
considerably grew. Major references include

Nelsen (2006)

Durante and Sempi (2016)

Hofert et al. (2018)

Kojadinovic (2010)
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Preliminaries

Background

The following two notions are fundamental:

Quantile transform (QT). If U ∼ U(0, 1), then
P(F←(U) ≤ x) = F (x), where F← is the generalized inverse of the
df of X , F .

Proof. For x ∈ R, U ∼ U(0, 1): P(F←(U) ≤ x) = P(U ≤ F (x)) = F (x).

Probability transform (PT). If X ∼ F , and F is continuous, then
F (X ) ∼ U(0, 1).

Proof. For u ∈ (0, 1), P(F (X ) ≤ u) = P(F←(F (X )) ≤ F←(u)) = P(X ≤
F←(u)) = F (F←(u)) = u.
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A motivating Example
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The Fréchet-Hoeffding Bounds
Sklar’s Theorem
Random vectors and copulas
Examples of Copulas
Further properties

Dependence modeling with copulas June 8, 2022 8



A motivating Example

Two bivariate data sets
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For which data is the dependence between the two variables larger?
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A motivating Example

Data transformation

The empirical cdf F̂n,j of the j-th margin is applied to Xij , i ∈ {1, . . . , n}:

Uij = F̂n,j(Xij) = (1/n)
n∑

k=1

I{Xkj≤Xij} = Rij/n,

where Rij denotes the rank of Xij among X1j , . . . ,Xnj

Function pobs() uses the
scaled version Rij/(n + 1).
As shown in the plots,
new margins are
approximately U(0,1): 0 200 400 600 800 1000
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A motivating Example

Pseudo-observations

Pseudo-observations for X = (X1,X2) and Y = (Y1,Y2)
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The pseudo observations give us insight in the actual dependence structure
(copula) underlying our data sets x and y.
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Characterization

Definition: d-dimensional copula

Definition (Copula)

A d-dimensional copula is a distribution function on [0, 1]d with standard
uniform marginal distributions.

Hence, the copula
C (u) = C (u1, . . . , ud)

is a mapping of the unit hypercube into the unit interval

C : [0, 1]d → [0, 1].
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Characterization

Example: Independence Copula

One of the simplest copulas is the independence copula

Πd(u) =
d∏

j=1

uj , u ∈ [0, 1]d

Πd is the df which is the df of a random vector U = (U1, . . . ,Ud) with
independent components U1, . . . ,Ud ∼ U(0, 1):

For any u ∈ [0, 1]d ,

P(U ≤ u) = P(U1 ≤ u1, . . . ,Ud ≤ ud) =
d∏

j=1

P(Uj ≤ uj) =
d∏

j=1

uj = Πd(u)
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Characterization

Example: Independence Copula/ 2
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Figure: (Left) Surface (or perspective) plot and (right) contour plot of the
independence copula for d = 2.

Remark: Π2 is zero on all edges of the unit square which start at (0, 0),
Π2(u1, 1) = u1 and Π2(1, u2) = u2 ∀u1, u2 ∈ [0, 1]; this means that the copula is
grounded (C (u) = 0 if uj = 0 for at least one j) and has standard uniform
univariate margins (C (1, . . . , 1, uj , 1, . . . , 1) = uj , ∀uj)
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Characterization

C-volumes

In order to obtain a characterization of copulas we need the following
additional definitions.

C-volume. For any a,b ∈ [0, 1]d , a ≤ b, let (a,b] denote the hyperrectangle
defined by u ∈ [0, 1]d : a < u ≤ b. Then, for any hyperrectangle (a,b], define its
C-volume as

∆(a,b]C =
∑

i∈{0,1}d
(−1)

∑d
j=1 ijC (ai11 b

1−i1
1 , . . . , aidd b

1−id
d ) (1)

where the summation is taken over all 2d vectors (i1, . . . , id), ij ∈ 0, 1. If

∆(a,b]C ≥ 0 for all a,b ∈ [0, 1]d , a ≤ b

then C is called d-increasing. When d = 2, (1) becomes

∆(a,b]C = C (b1, b2)− C (b1, a2)− C (a1, b2) + C (a1, a2)
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Characterization

C-volume: Example

Let C = Π2 = u1u2. We will verify that
∆(a,b]C = P(U ∈ (a,b]). Using (1),

∆(a1,a2),(b1,b2)]C

= b1b2 − b1a2 − a1b2 + a1a2

= (b1 − a1)(b2 − a2)

On the other hand,

P(U ∈ (a,b])

= P(a1 < U1 ≤ b1)P(a2 < U2 ≤ b2)

= (b1 − a1)(b2 − a2)
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Approximation of the Π2-volume
of the hyperrectangle with lower
end point a = (1/4, 1/2) and
upper end point b = (1/3, 1)
based on 1000 independent
observations of U ∼ Π2.
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Characterization

Characterization

The function C : [0, 1]d → [0, 1] is a copula if and only if

1 C is grounded, that is,

C (u1, . . . , ud) = 0 if uj = 0 for at least one j ∈ {1, . . . , d}

2 C has standard uniform univariate margins, that is,

C (1, . . . , 1, uj , 1, . . . , 1) = uj for all uj ∈ [0, 1] and j ∈ {1, . . . , d}

3 C is d-increasing, that is, any C-volume ∆(a,b]C is nonnegative, for

all a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ [0, 1]d , ai ≤ bi

Note that, for 2 ≤ k < d , the k-dimensional margins of a d-dimensional
copula are themselves copulas.
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Characterization

Copula density

A copula C is called absolutely continuous if it admits a density, that is, if

c(u) = c(u1, . . . , ud) =
∂d

∂ud . . . ∂u1
C (u1, . . . , ud), u ∈ (0, 1)d

exists and is integrable.

Remark: If the density c is nonnegative for all u ∈ (0, 1)d then C is
d-increasing.
Example: the independence copula Πd is absolutely continuous with
constant density c(u) = 1,u ∈ (0, 1)d .
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The Fréchet-Hoeffding Bounds

Theorem: Fréchet-Hoeffding Bounds

Any d-dimensional copula C is pointwise bounded from below by the
lower Fréchet-Hoeffding bound W and from above by the upper
Fréchet-Hoeffding bound M

W (u) ≤ C (u) ≤ M(u), u ∈ [0, 1]d

where

W (u) = max


d∑

j=1

uj − d + 1, 0

 and M(u) = min
1≤j≤d

(uj)

Note that W is a copula only if d = 2 whereas M is a copula for all
d ≥ 2.
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The Fréchet-Hoeffding Bounds

Stochastic representations

Let U ∼ U(0, 1).

the countermonotone copula W (in dimension two only) is the
copula of the vector (U, 1− U)

. the dependence between the components of (U, 1− U) is referred
to as perfect negative dependence (cannot be extended to the case
d ≥ 3)

the comonotone copula M is the copula of the vector (U,U, . . . ,U)

. the dependence between the components of (U, . . . ,U) is referred
to as perfect positive dependence
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The Fréchet-Hoeffding Bounds

Fréchet-Hoeffding Bounds
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Figure: Scatter plot of n = 100 independent observations and perspective plot of
W (left) and M (right) for d = 2.

Dependence modeling with copulas June 8, 2022 24



The Fréchet-Hoeffding Bounds

Singular copulas

From the scatter plot, it can be seen that neither W nor M is absolutely
continuous:

Copulas such as W and M which put all probability mass on a set of
(Lebesgue) measure 0 (the secondary and the primary diagonal for
W and M, respectively) are called singular

Copulas which put some probability mass in (0, 1) on a set of
(Lebesgue) measure 0 have a singular component

Example: Marshall–Olkin copulas
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The Fréchet-Hoeffding Bounds

Marshall–Olkin Copulas

The bivariate Marshall–Olkin family of copulas is given by

C (u1, u2) = min{u1u
1−α2
2 , u1−α1

1 u2}, u1, u2 ∈ [0, 1] (2)

with α1, α2 ∈ [0, 1]

if α1 = 0 or α2 = 0, then C = Π

A random vector (U1,U2) ∼ C admits the stochastic representation

(U1,U2) =
(

max
{
V

1/(1−α1)
1 ,V

1/α1

12

}
,max

{
V

1/(1−α2)
2 ,V

1/α2

12

})
where V1,V2,V12 are independent U(0, 1) (for any v ∈ (0, 1),
v1/0 = 0 by convention)
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The Fréchet-Hoeffding Bounds

Example: Marshall–Olkin copula
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Figure: (Left) Density of a Marshall–Olkin copula. (Right) Corresponding
scatter plot of a sample of size n = 1000. The singular component in the latter
which is reflected by a kink in the former.
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Sklar’s Theorem

Sklar’s Theorem: preliminaries

Sklar’s Theorem Sklar (1959) is the main result of copula theory: it
explains how copulas determine the dependence between the components
of a random vector.

Some notation:

given a univariate df F , ranF = {F (x) : x ∈ R} denotes the range of
F

F← denotes the quantile function associated with F (this is the
ordinary inverse F−1 if F is continuous and strictly increasing.
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Sklar’s Theorem

Sklar’s Theorem

Theorem (Sklar)

1 For any d-dimensional df H with univariate margins F1, . . . ,Fd ,
there exists a d-dimensional copula C such that

H(x) = C (F1(x1), . . . ,Fd(xd)), x ∈ Rd . (3)

The copula C is uniquely defined on ranF1× · · · × ranFd =
∏

j ranFj :

C (u) = H(F←1 (u1), . . . ,F←d (ud)), u ∈
d∏

j=1

ranFj (4)

2 Conversely, given a d-dimensional copula C and univariate dfs
F1, . . . ,Fd ,H defined by (3) is a d-dimensional df with margins
F1, . . . ,Fd .

An analytical proof can be found in Sklar (1996), a probabilistic one in
Rüschendorf (2009)
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Sklar’s Theorem

Sklar’s Theorem: remarks

Part [1] of Sklar’s Theorem states the decomposition of any
d-dimensional df H into its univariate margins F1, . . . ,Fd and a copula C .

Thus, copulas link (or couple) multivariate dfs to their univariate margins.

Let X = (X1, . . . ,Xd) ∼ H and continuous margins F1, . . . ,Fd . Hence,
Ui = Fi (Xi ) ∼ U(0, 1) (PT). Let C denote the df of (U1, . . . ,Ud). For
any x ∈ R̄ = [−∞,∞] we have

H(x1, . . . , xd) = P(X1 ≤ x1, . . . ,Xd ≤ xd)

= P(F←1 (U1) ≤ x1, . . . ,F
←
d (Ud) ≤ xd)

= P(U1 ≤ F1(x1), . . . ,Ud ≤ Fd(xd))

= C (F1(x1), . . . ,Fd(xd))

If the margins are continuous, then C is unique; otherwise C is uniquely
determined on ranF1 × · · · × ranFd .
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Sklar’s Theorem

Sklar’s Theorem: remarks

The explicit representation of the copula of X can be obtained by
evaluating (3) at the arguments xi = F←i (ui ), 0 ≤ ui ≤ 1, i = 1, . . . , d

C (u1, . . . , ud) = C (F1(F←1 (u1)), . . . ,Fd(F←d (ud)))

= H(F←1 (u1), . . . ,F←d (ud))

For a given continuous multivariate df, part [1] of Sklar’s Theorem
implies that the underlying unknown copula is unique, which justifies its
estimation from available data.

If X ∼ H with margins Fj and the decomposition (3) holds, we say that
X (or H) has copula C . Moreover, the copula expresses the dependence
on a quantile scale

C (u1, . . . , ud) = P(X1 ≤ F←1 (u1), . . . ,Xd ≤ F←d (ud))
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Sklar’s Theorem

Sklar’s Theorem: remarks

From [1] , it also follows that H is absolutely continuous if and only if C
and the Fi s are absolutely continuous. In that case, the density of H
satisfies

h(x) = c(F1(x1), . . . ,Fd(xd))
d∏

j=1

fj(xj), x ∈
d∏

j=1

ranXj

where, for any j ∈ {1, . . . , d}, ranXj is the range of the rv Xj , fj denotes
the density of Fj and c denotes the density of C . Hence, c can be
recovered from h via

c(u) = h(F←1 (u1), . . . ,F←d (ud))

 d∏
j=1

fj(F
←
j (uj))

−1

, u ∈ (0, 1)d

and used in likelihood-based copula estimation methods.
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Sklar’s Theorem

Sklar’s Theorem: remarks

Part [2] of Sklar’s Theorem:

Given any copula C and univariate dfs F1, . . . ,Fd , a multivariate df H
can be composed via (3) which then has univariate margins F1, . . . ,Fd
(continuous if H is continuous) and ’dependence structure’ C

Let U ∼ C and set X := (F←1 (U1), . . . ,F←d (Ud)). Then

P(X ≤ x) = P(F←1 (U1) ≤ x1, . . . ,F
←
d (Ud) ≤ xd)

= P(U1 ≤ F1(x1), . . . ,Ud ≤ Fd(xd)) (QT )

= C (F1(x1), . . . ,Fd(xd)) = H(x), x ∈ Rd

New multivariate dfs can be constructed with given univariate
margins

Copulas can be used to formulate dependence scenarios and to
evaluate risk measures of interest by means of simulation.
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Sklar’s Theorem

Sklar’s Theorem: remarks

Let X = (X1, . . . ,Xd); a copula model

H(x) = C (F1(x1), . . . ,Fd(xd)), x ∈ Rd

may belong to

(i) the class of all multivariate dfs with given margins F1, . . . ,Fd known
as a Fréchet class

(ii) the class of all dfs obtained from a given d-dimensional copula C
known as meta-C models

Example 1 The meta-Π model consists of all multivariate df H such that
H(x) = F1(x1) · · ·Fd(xd). For fixed univariate dfs Fj (j ∈ {1, . . . , d}), H
is a member of the Fréchet class
Example 2 The meta-Gaussian model originates from the Gaussian copula
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Random vectors and copulas
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Random vectors and copulas

Invariance property

Let X ∼ H with continuous margins Fj (j ∈ {1, . . . , d}) and (unique)
copula C . If T1, . . . ,Td are strictly increasing functions, then

(T1(X1), . . . ,Td(Xd)) ∼ C

that is, copulas are invariant under strictly increasing transformations (on
the ranges) of the underlying random variables.

We show that C is also the unique copula of (T1(X1), . . . ,Td(Xd)) :

C (u1, . . . , ud) = P(X1 ≤ F←1 (u1), . . . ,Xd ≤ F←d (ud))

= P(T1(X1) ≤ T1(F←1 (u1)), . . . ,Td(Xd) ≤ Td(F←d (ud)))

= P
(
T1(X1) ≤ F←T1(X1)(u1), . . . ,Td(Xd) ≤ F←Td (Xd )(ud)

)
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Random vectors and copulas

Invariance property/ 2

The invariance property allows us to transform X = (X1, . . . ,Xd) to
U = (F1(X1), . . . ,Fd(Xd)) without changing the underlying copula

X has copula C ⇐⇒ (F1(X1), . . . ,Fd(Xd)) ∼ C .

that is, X and U have the same copula!
Hence, regardless of the marginals, we can study the dependence between
X1, . . . ,Xd by studying the dependence between the components of U

::::

Assume d = 2, and (X1,X2) ∼ H with continuous margins F1,F2. Then

(U,V ) = (F1(X1),F2(X2))

gives the corresponding copula defined on [0, 1]2.
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Random vectors and copulas

Invariance property: Examples

From bivariate normal to normal copula
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Figure: (Left) Scatter plot of n = 1000 independent observations from (X1,X2)

having a joint bivariate Gaussian distribution N2(0,P), P =

(
1 0.7

0.7 1

)
.

(Right) The corresponding (probability transformed) sample from the Gaussian
copula is obtained by applying the df Φ (the Fj ’s here) to each pair of points.
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Random vectors and copulas

Simulation of Implicit Copulas

Algorithm 1 can be used to sample implicit copulas (that is, copulas
defined by (4) in Sklar’s Theorem) such as the normal and t copulas (as
in the previous example)

Algorithm 1

1 Sample X ∼ H, where H is a d-dimensional df with continuous
margins F1, . . . ,Fd

2 Return U = (F1(X1), . . . ,Fd(Xd))

Dependence modeling with copulas June 8, 2022 40



Random vectors and copulas

Invariance property: Examples

From normal copula to meta-Gaussian sample with exponential
margins
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Figure: (Left) Same Gaussian copula scatter plot as before. (Right) The
corresponding (quantile transformed) sample having a Gaussian copula and
exponentially distributed marginals Fj ∼ exp(2) (apply F−1

j (u) = −log(1− u)/2
to each pair of points on the left plot.)
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Random vectors and copulas

Simulation of Meta-C Models

Algorithm 2 can be used to sample meta-C models (as done in the
previous example)

Algorithm 2

1 Sample U ∼ C

2 Return X = (F←1 (U1), . . . ,F←d (Ud))
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Random vectors and copulas

Simulation: R code

R code: from a multivariate Gaussian distribution to a normal copula
to a Meta-C Model

> set.seed(332)

> d<-2

> rho<-0.7

> P<-matrix(rho, nrow=d, ncol=d) # correlation matrix

> diag(P)<-1

> X<-rmvnorm(1000, sigma = P) # bivariate normal obs.

> U<-pnorm(X) # copula sample

> # same as

> set.seed(332)

> U.<-rCopula(1000, normalCopula(rho, dim=2))

> Y<-qexp(U, 2) # transform U to exp(2) margins
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Examples of Copulas
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Examples of Copulas

Some parametric copula families

Parametric copula families play a key role in the applications of copulas:

Implicit copula families arise from well-known multivariate
distributions via Sklar’s Theorem

→ Elliptical copulas Gaussian copulas and t copulas from the
Gaussian and t distributions, respectively

Explicit (or closed-form) parametric copula families

→ Archimedean copulas: Clayton, Frank, Gumbel
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Examples of Copulas

Gaussian copulas

If Y ∼ Nd(µ,Σ), then its copula is the same as the copula of
X ∼ Nd(µ,P), where P is the correlation matrix of Y, and is the
so-called Gaussian Copula (family)

CGa
P (u) = P(Φ(X1) ≤ u1, . . . ,Φ(Xd) ≤ ud)

= P(X1 ≤ Φ−1(u1), . . . ,Xd ≤ Φ−1(ud))

= ΦP(Φ−1(u1), . . . ,Φ−1(ud))

where ΦP is the joint df of X, and Φ is the cdf of N (0, 1).

if d = 2, then CGa
P ≡ CGa

ρ , where ρ = corr(X1,X2)

P = Id gives independence

If P = Jd , a d × d matrix of ones, then C is the comonotonicity
copula (M)

For d = 2 and ρ = −1, CGa
ρ is the countermonotonicity copula (W )
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Examples of Copulas

Gaussian copulas /2

The Gaussian copula does not have a simple closed form, but can be
expressed as an integral over the density of X; in two dimensions, we
have the distribution function

CGa
ρ (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

a
exp

(
−s2

1 + s2
2 − 2ρs1s2

2(1− ρ2)

)
ds1ds2

where a = 2π(1− ρ2)1/2; the copula density is

c(u1, u2) =
hP(Φ−1

1 (u1),Φ−1
2 (u2))

φ(Φ−1
1 (u1))φ(Φ−1

2 (u2))

where hP is the density of the bivariate standard normal distribution
whose correlation matrix P has off-diagonal elements ρ; φ and Φ are the
density and cdf of a standard normal N (0, 1).
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Examples of Copulas

Gaussian copulas /3
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Figure: (Top) Density of the bivariate normal df with ρ = 0.5 (left), perspective
plot of CGa

ρ (middle), and corresponding copula density cGaρ (right). (Bottom)

Sample of size 1000 from CGa
ρ with ρ = 0.1, 0.5, 0.7 (from left to right).
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Examples of Copulas

t copulas

The d-dimensional t copula (family) C t
P,ρ arises from Sklar’s Theorem

applied to the multivariate t distribution, tP,ν , with location vector 0,
scale matrix P, and ν > 0 degrees of freedom:

C t
P,ν(u) = tP,ν(t−1

ν (u1), . . . , t−1
ν (ud))

=

∫ t−1
ν (ud )

−∞
· · ·
∫ t−1

ν (u1)

−∞

Γ((ν + d)/2)

Γ
(
ν
2

)
(πν)

d
2

√
detP

(
1 +

x′P−1x

ν

)− ν+d
2

dx1 . . . dxd

where t−1
ν denotes the quantile function of the df tν of the univariate Student t

distribution with ν degrees of freedom.

For d = 2, C t
−1,ν is the lower Fréchet-Hoeffding bound W ,

For d ≥ 2, if P only consists of entries equal to 1, C t
P,ν is the upper

Fréchet–Hoeffding bound M

P = Id does not lead to the independence copula
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Examples of Copulas

t copulas /2
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Wireframe plot of density
ctρ,ν for ρ ≈ 0.81
(Kendall’tau τ = 0.6) and
ν = 4 degrees of freedom,
contour plots of C t

ρ,ν (top
right) and ctρ,ν (bottom
left); scatter plot of a
sample of size n = 1000
from C t

ρ,ν .
Notice that bivariate t
copulas are both radially
symmetric and exchangeable
(will be discussed later)
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Examples of Copulas

Explicit copulas

A number of copula families have simple closed forms.

Some examples:

Gumbel-Hougaard Copula

(d=2) CGu
θ (u1, u2) = exp(−((−log(u1))θ + (−log(u2))θ)1/θ)

θ ≥ 1: θ = 1 gives independence; θ →∞ gives
comonotonicity

Clayton copula (d=2) CC
θ (u1, u2) = (u−θ1 + u−θ2 − 1)−1/θ, θ > 0

θ → 0 gives independence; θ →∞ gives comonotonicity

Frank copula CF
θ (u1, u2) = −1

θ log
(

1 + (e−θu1−1)(e−θu2−1)
e−θ−1

)
θ → 0 gives independence; θ →∞ gives comonotonicity
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Examples of Copulas

Comparison of some copulas
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Figure: Copula parameters are chosen such that linear correlation between the
(quantile transformed) N(0, 1) margins is roughly 0.7
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Examples of Copulas

Comparison of some copulas/ 2
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Figure: Copula parameters are chosen such that linear correlation between the
(quantile transformed) N(0, 1) margins is roughly 0.7
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Examples of Copulas

Comparison of some copulas/ 3

Meta−Frank density − N(0,1) margins
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Figure: Copula parameters are chosen such that linear correlation between the
(quantile transformed) N(0, 1) margins is roughly 0.7
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Examples of Copulas

Comparison of some copulas/ 4

Meta−Frank contours − N(0,1) margins
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Figure: Copula parameters are chosen such that linear correlation between the
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Examples of Copulas

A trivariate example
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Figure: (Left) 3d cloud plot and (right) scatter-plot matrix of n = 1000
independent observations from a trivariate Student t copula with ν = 5 and
correlation ρ ≈ 0.71.
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Further properties
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Further properties

Survival copula

Let X be a random vector with multivariate survival function F̄ , marginal
dfs Fi , and marginal survival functions F̄i = 1− Fi , i ∈ {1, . . . , d}. Then

F̄ (x1, . . . , xd) = Ĉ (F̄1(x1), . . . , F̄d(xd))

where Ĉ is the survival copula.

Remark: Let x ∈ R, if d > 1, F̄ (x) 6= 1− H(x) in general.
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Further properties

Survival copula/ 2

Suppose the marginal dfs Fi are continuous and strictly increasing. Then

F̄ (x1, . . . , xd) = P(X1 > x1, . . . ,Xd > xd)

= P(1− F1(X1) ≤ F̄1(x1), . . . , 1− Fd(Xd) ≤ F̄d(xd))

= Ĉ (F̄1(x1), . . . , F̄d(xd))

where Ĉ is the df of 1−U, U = (F1(x1), . . . ,Fd(xd)) and U ∼ C . A
representation of Ĉ is

Ĉ (u1, . . . , ud) = F̄ (F̄ −1
1 (u1), . . . , F̄ −1

d (ud))

Note that Ĉ is a copula (and thus a df). However, neither F̄ nor
F̄1, . . . , F̄d are dfs.
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Further properties

Survival copula/ 3

For d = 2 the following relationships holds:

Ĉ (1− u1, 1− u2) = 1− u1 − u2 + C (u1, u2)

::::

Survival copulas should not be confused with survival functions of
copulas. We denote the survival function of a copula C by C̄ . Then, if
U ∼ C and the survival copula of U is Ĉ (the df of 1−U), we have

C̄ (u1, . . . , ud) = P(U1 > u1, . . . ,Ud > ud)

= P(1− U1 ≤ 1− u1, . . . , 1− Ud ≤ ud)

= Ĉ (1− u1, . . . , 1− ud)
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Further properties

Survival copula: example

Bivariate Marshall-Olkin copulas as in Eq.(2) were originally constructed
as survival copulas of lifetimes of the form

X1 = min{Z1,Z12} X2 = min{Z2,Z12}

where Z1,Z2,Z12 are independent exponential rvs with parameters
λ1, λ2, λ12, respectively, representing arrival times of two individual and
one joint fatal shock to a system.
By using the parametrization αj = λj/(λj + λ12), j ∈ {1, 2},
Marshall-Olkin copulas arise as survival copulas of (X1,X2).
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Further properties

Sampling from survival copulas

R code: Sampling from a Clayton and a survival Clayton copula with
parameter θ = 2

> set.seed(332)

> cop<-claytonCopula(2)

> U<-rCopula(1000, copula=cop)

> V<-1-U #sample from the survival Clayton copula

> plot(U, xlab = quote(U[1]), ylab = quote(U[2]))

> plot(V, xlab = quote(V[1]), ylab = quote(V[2]))

> wireframe2(rotCopula(cop), FUN=dCopula, delta=0.025)
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Further properties

Survival Clayton copula
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Figure: Scatter plots of a Clayton copula CC
θ (left) and survival Clayton copula

ĈC
θ (right) with parameter θ = 2.
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Further properties

Radial Symmetry and Exchangeability

1 A random vector X is called radially symmetric about a ∈ Rd if

X− a
d
= a− X, that is, if X− a and a− X are equal in distribution

If Xj is symmetric about aj , then X is radially symmetric about a if

and only if C = Ĉ (C radially symmetric)

2 The random vector X is called exchangeable if

(Xj1, . . . ,Xjd)
d
= (X1, . . . ,Xd) for all permutations (j1, . . . , jd) of

{1, . . . , d}

If C (uj1, . . . , ujd) = C (u1, . . . , ud) for all u1, . . . , ud ∈ [0, 1] and all
permutations (j1, . . . , jd) of {1, . . . , , d}, we call C exchangeable

elliptical distributions are radially symmetric

Wd=2, Π, and M are both radially symmetric and exchangeable
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permutations (j1, . . . , jd) of {1, . . . , , d}, we call C exchangeable

elliptical distributions are radially symmetric

Wd=2, Π, and M are both radially symmetric and exchangeable
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Further properties

Visually Assessing Symmetry and Exchangeability
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Bivariate t copulas
(ρ = 0.7, ν = 3.5) are
both radially symmet-
ric (symmetry wrt the
point (1/2, 1/2)) and
exchangeable;

The copulas in the
Gumbel-Hougaard
family (here θ = 2)
are exchangeable
(symmetry of the
density with respect
to the main diagonal)
but not radially
symmetric
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Further properties

Conditional distributions of copulas

Suppose (U1,U2) ∼ C . Recall that a copula is an increasing continuous
function in each argument. Hence

CU2|U1
(u2|u1) = P(U2 ≤ u2|U1 = u1)

= lim
δ→0

C (u1 + δ, u2)− C (u1, u2)

δ
=

∂

∂u1
C (u1, u2)

(see Nelsen (2006)). The conditional distribution CU2|U1
(u2|u1) is a df on

[0, 1] which is uniform only in the case C = Π.
Interpretation in Risk management. (X1,X2) is a pair of two
continuous risks having (unique) copula C . Then

1− CU2|U1
(q|p) = 1− P(U2 ≤ q|U1 = p)

= P(U2 > q|U1 = p)

= P(X2 > F−1
2 (q)|X1 = F−1

1 (p))
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