

Corso di Laurea in Scienze e Tecnologie Biologiche Corso di Fisica AA 2021/2022

Esercitazione 11 TERMODINAMICA – PARTE I

Stefania Baronio stefania.baronio@phd.units.it

#1 II maniscalco

Un maniscalco ha portato a elevata temperatura un ferro di cavallo, di massa 1.0 kg, e, dopo averlo lavorato, lo ha lasciato cadere in un secchio contenente 15 l di acqua alla temperatura iniziale di 20°C; di conseguenza, nell'acqua si è determinato un innalzamento termico di 3.2°C. Assegnando al calore specifico del ferro il valore di 0.11 cal/g·°C e trascurando la capacità termica del secchio e le dispersioni di calore verso l'ambiente esterno, determinare la temperatura che l'oggetto aveva un istante prima di cadere in acqua.

$$Q = M \cdot C_{S} \cdot \Delta T$$

$$C_{0} = I \text{ col}/g \cdot C$$

$$Q = m_{0} \cdot C_{0} \cdot \Delta T_{0}$$

$$M_{0} = Q \cdot V = ISK_{0}$$

$$M_{0} = T_{0} \cdot \Delta T_{0} = T_{0} \cdot \Delta T_{0}$$

$$M_{0} = T_{0} \cdot \Delta T_{0} = T_{0} \cdot \Delta T_{0}$$

$$M_{0} = T_{0} \cdot \Delta T_{0} = T_{0} \cdot$$

$$T_{F}-T_{0} = \frac{Q^{1}}{M_{F}} \cdot Q = \frac{Q}{M_{F}} \cdot Q = T_{F} + \frac{M_{A} C_{A} \Delta T_{A}}{M_{F}} \cdot Q = T_{F} + \frac{M_{A} C_{A} \Delta T_{A}}{M_{F}} \cdot Q = T_{F} + \frac{M_{A} C_{A} \Delta T_{A}}{M_{F}} \cdot Q = \frac{23.2^{\circ}C}{1.04} + \frac{1549}{36} \cdot \frac{104}{36} \cdot \frac{3.2^{\circ}C}{1.04} \cdot \frac{104}{36} \cdot \frac{104}{36$$

#2 Coca-Cola ghiacciata

In una calda giornata primaverile, un individuo vuole raffreddare un bicchiere di Coca-Cola usando del ghiaccio. Due cubetti di ghiaccio di 50 g ciascuno, sono posti in 0.200 Kg di Coca-Cola in un bicchiere. Inizialmente la bevanda si trova alla temperatura di 25°C e il ghiaccio a −15°C.

- Assimilando la Coca-Cola ad acqua e sapendo che il calore specifico del ghiaccio è 2.05 kJ/ Kg·K, quello latente di fusione è 333.7 KJ/Kg, determinare la temperatura finale del contenuto del bicchiere;
- b) Determinare la temperatura finale nel caso in cui si utilizzi un solo cubetto.

DIVIDO IN 3 PASSAGGI: 1) PORTO IL GHIACCIO A 0°C

2) SCHOIGO IL BHIACCIO

3) SE SI È SCIOLTO, EQUILIBRIO

TERMICO

a)
$$C_g = 2.05 \text{ KJ/kg/k}$$
 $C_a = 4.186 \text{ KJ/kg/k}$
 $C_f = 333.7 \text{ KJ/kg}$
 $T_f = ?$

a)
$$C_g = 2.05 \text{ KJ/kg/k}$$
 $T_g = -15^{\circ}C$, $M_g = 100 \text{ g}$
 $C_a = 4.186 \text{ KS/kg/k}$ $T_a = 25^{\circ}C$, $M_a = 200 \text{ g}$
 $C_f = 333.7 \text{ KS/kg}$
 $T_f = ?$

(1) CARDER PER PORTA REIL GHIACUD A $O^{\circ}C = 1.05 \text{ KS}$ $O_{1} \text{ Kg/k}$ $O_{2} \text{ MS/k} = 3.1 \text{ KJ}$
 $O_{3} \text{ KG} \text{ MG/K}$

CALORE CROSTO MALL' KRIJA $O^{\circ}C = 1.05 \text{ KS}$ $O_{2} \text{ MG/K}$ $O^{\circ}C = 1.05 \text{ MG/K}$
 $O^{\circ}C = 1.05 \text{ KS}$ $O_{3} \text{ MG/K}$ $O^{\circ}C = 1.05 \text{ MG/K}$
 $O^{\circ}C = 1.05 \text{ MG/K}$ $O^{\circ}C = 1.05 \text{ MG$

Q2 = 'Ma Ca AT2, AT2 = (0-25) 2 = -25 c (=-20.9 KJ)=> 1921>1011 => RIESCO AD ARREVARE A O°C | (=) COL GHACELO ' = DEUD CAPIPE SE Saloro IL GHACUO ONO! - Q1 = Ma Ca : LT1, ACQUA & ATIACOUA = -3.7°C => TA,1 = 21.3°C) 2) CHORE PER SCIOGUERE IL GHIACUO: QF = Mg. CF = 0.1 /g. 333.7 / 333.4 antes > Porto tetto A OC, mon scioles il contacció! 1) ROPTAREIL CHIACUO A O°C. $Q_1 = 3.1 \text{ kJ} = 0^{\circ} \text{ c}$ Tg = OC Ta = 21C) ** SIWRAMENTE 2) CALORE PER SUDGUEREIL GHACUD: |Qf| > (QA), QA = Colore ceduto per a T=02 = Ca. Ma. DTA
= Ca. Ma. (OC = Ta)

b)
$$Mg = 50g$$

(1) $Q_1 = Mg_1 \cdot G_2 \cdot \Delta T_1 = META \cdot DEL PUNTO (2)$

Chopse PER SUDGUEGE = 1.5 KJ

(2) SUAGO?

 $Q_1 = Mg_2 \cdot G_2 \cdot \Delta T_1 = META \cdot DEL PUNTO (2)$
 $Q_2 = Mg_2 \cdot G_2 = META \cdot DEL PUNTO (2)$

CONE PRIMA, PER PORTARE ACQUA A O°C, DEUD CEDERES 20.9 KJ MA ! QF+QN=18.2 KS < 20.9 KJ!! => Schools tutto!

mg (a (7-0/2) = = ma. Ga (3.3°C-Te) = mg Tf + ma Tf = ma -3.3° Q3 = QF + Q1 = 18.2 KJ - 43 = ma Ca (ATA) = - 21.7°C = | Mg, o°C = +Q | Ma, 33°C = -Q = 3.3°C SI SAMBIANO Q $Q = Mg.Ca.(T_4 - 0\%) > 0$ $Q = Ma.Ca.(T_4 - 3.3\%) < 0$

E = W1. T7 + W2. T2 MI + MZ Tt = 0.2 kg. 33°C + 0.05 kg. 0°C a 2.6°C (0.2 + 0.05) Kg

#3 Il pistone mobile – prova scritta 15/07/2016

Una quantità n=0.100 mol di un gas ideale monoatomico è contenuta in un cilindro verticale di raggio r=2.00 cm, chiuso superiormente da un pistone scorrevole senza attrito di massa M=10.0 kg. La pressione esterna è p_0 =1.00 atm e la temperatura iniziale è T_0 =293 K.

- a) Calcolare la pressione e il volume iniziali del gas;
- Al gas viene fornita, in modo reversibile, una quantità di calore Q=200 J. Ricordando che per il gas in questione $E_{int} = nC_VT$, $C_V = 3R/2$, $C_P = 5R/2$ e R=8.31 J/(mol K), si calcolino la temperatura finale e il lavoro compiuto sul gas durante la trasformazione.

$$M = 0.100 \text{ mol}$$
 $\Gamma = 1 \text{ cum}$
 $M = 10 \text{ l/g}$

a) $P_{i} = 2$, $V_{i} = 2$
 $P_{i} = P_{0} + P_{M} = P_{0} + \frac{M_{0}}{m_{1}} = 1.79 \cdot 10^{5} \text{ fa}$
 $P_{i} = P_{0} + P_{M} = P_{0} + \frac{M_{0}}{m_{1}} = 1.36 \text{ l} \left(1.36 \text{ dm}^{3}\right)$
 $P_{i} = MRT$
 $P_{i} = MRT$
 $P_{i} = MRT$
 $P_{i} = MRT$
 $P_{i} = MRT$

b) +Q = 200 J P,V,T P. COSTANTE =) PERCHE SONO IN EQUIUBRIO CON PRESSIONE ESTERNA, CHE & COSTANTE Stimt = Q+L

#4 Pistone e molla

Un recipiente cilindrico chiuso con asse orizzontale di sezione S=50 cm^2 e di lunghezza L=1.0 m, è diviso in due sezioni da un pistone P che scorre nel cilindro a tenuta e senza attrito. Siano A e B le basi del cilindro. Tra la base A e il pistone P è contenuto un gas perfetto biatomico. Tra la base B e il pistone è interposta una molla di lunghezza a riposo l_0 =40 cm e di costante elastica K=500 N/m. Tra la base B e il pistone è stato fatto il vuoto. Inizialmente la temperatura del sistema è T_i =27°C e la lunghezza della molla è pari a l_i =20 cm. In questa configurazione iniziale si calcolino:

- a) La pressione iniziale P_i ; \longrightarrow FORZE \longrightarrow
- b) Il numero di moli n del gas.

Successivamente la temperatura del gas viene fatta diminuire fino a quando la molla raggiunge la lunghezza l_f =30 cm. Con riferimento a questo stato finale, ed alla trasformazione termodinamica dallo stato iniziale allo stato finale, si calcolino:

- c) La temperatura finale T_f ; \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc
- d) La variazione dell'energia interna del gas;
- e) Il lavoro L fatto sul gas (o dal gas, specificare);
- f) Il calore Q ceduto (o assorbito, specificare) dal gas.

DEMA NOUS (MENTI AUT X2!)

Soluzioni

#1 Il maniscalco

460°C

#2 Coca-Cola ghiacciata

- a) 0°C
- b) 2.6°C

#3 Il pistone mobile

- a) 179 kPa, 1.36 l
- b) 389 K, -80.3 J

#4 Pistone e molla

- a) $2.0 \cdot 10^4 \text{ Pa}$
- b) 0.032 moli
- c) -142°C
- d) -112 J
- e) 7.5 J (sul sistema)
- f) -119.5 J (ceduti)