Ipocorticosurrenalismo

Ipocorticosurrenalismo: introduzione (I)

Nel 1855 *Thomas Addison* descrisse il quadro clinico (anemia, ipotensione, calo ponderale e iperpigmentazione) di 11 donne che riportavano alterazioni patologiche alle ghiandole surrenaliche (6 TBC, 3 neoplasie, 1 emorragia, 1 atrofia) ipotizzando una relazione tra questo riscontro e il decesso delle pazienti.

In corrispondenza di tale osservazione si pone l'inizio dell'endocrinologia clinica

Morbo di Addision ipocorticosurrenalismo primario

Ipocorticosurrenalismo: classificazione (II)

PRIMARIO (Morbo di Addison)

Da distruzione/disfunzione del surrene

Prevalenza: 100/milione

Cause: **AUTOIMMUNE** (80-90%, F 2.5x, <40aa)

INFETTIVA (10%, F=M, >40 aa)

Altre cause emorragie, neoplasie, malattie infiltrative, cause iatrogene,

GENETICHE

NO CORTISOLO NO ALDOSTERONE ↑↑↑↑ACTH

SECONDARIO

Da distruzione o disfunzione dell'ipotalamo/ipofisi

Prevalenza: >280/milione

Cause: TERAPIA GLUCOCORTICOIDI ESOGENI

INFETTIVA (10%, F=M, >40 aa)

Altre cause: patologie sellari, iatrogena, autoimmune, malattie granulomatose,

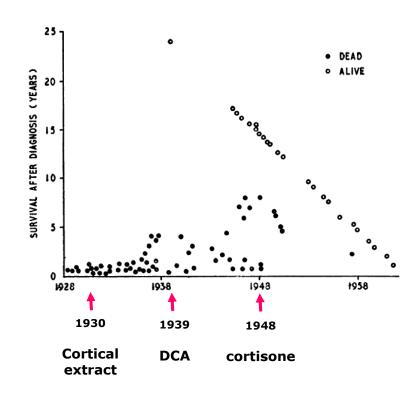
genetiche

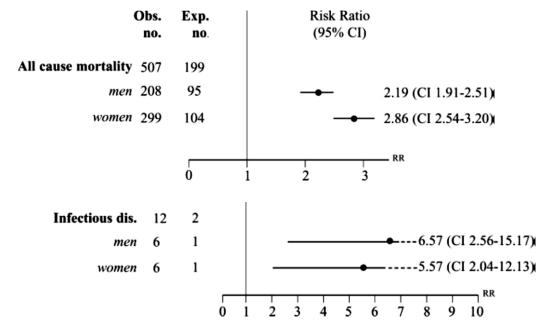
NO CORTISOLO SI ALDOSTERONE ↓ 0 N ACTH

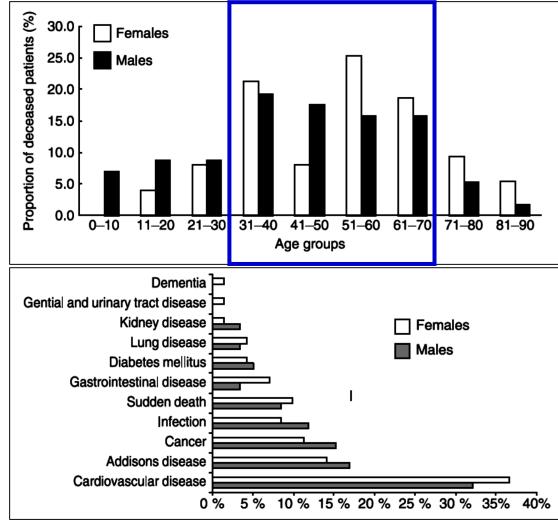
Sintomi	Prevalenza	Meccanismo patogenetico
Astenia, anoressia, calo ponderale	100%	Deficit di glucocorticoidi
Nausea, vomito, gastralgie	92%	Deficit di glucocorticoidi/mineralcorticoidi
Mialgie, dolori articolari	6-13%	Deficit di glucocorticoidi
Fame di sale (solo nella forma primaria)	16%	Deficit di glucocorticoidi
Vertigini	12%	Deficit di mineralcorticoidi
Calo della libido, cute secca		Deficit di androgeni (solo nella donna)
Segni		
lperpigmentazione cutanea (solo nella forma primaria)	94%	Eccesso di pro-opiomelanocortina
Ipotensione ortostatica (più comune nella forma primaria)	88-94%	Deficit di glucocorticoidi/mineralcorticoidi
Perdita di peli pubici	-	Deficit di androgeni (solo nella donna)
Rilievi biochimici		
Iponatriemia	88%	Deficit di glucocorticoidi/mineralcorticoidi
Iperpotassiemia (solo nella forma primaria)	64%	Deficit di mineralcorticoidi
Anemia, linfocitosi, eosinofilia	Variabile	Deficit di glucocorticoidi
Ipercalcemia (solo nella forma primaria)	6%	Deficit di glucocorticoidi
lpoglicemia (soprattutto nella forma secondaria)		Deficit di glucocorticoidi
Aumento creatinina sierica		Deficit di mineralcorticoidi
Aumento del TSH (solo nella forma primaria)		Deficit di glucocorticoidi

QUALI SEGNI SONO PRESENTI SOLO NELLA FORMA PRIMARIA?

Iposurrenalismo primario	Valori iposurrenalismo	Valori normali
Cortisolo ore 8	<80 nmol/l (<30 μg/l)	165-680 nmol/l (60-246 µg/l)
ACTH ore 8	>22 pmol/l (>100 ng/l)	4,5-12 pmol/l (1,5-4 ng/l)
Cortisolo dopo 250 µg ACTH e.v.	<500 nmol/l (<180 μg/l)	>500 nmol/l (>180 μg/l)
lposurrenalismo secondario		
Cortisolo ore 8	<100 nmol/l (<36 µg/l)	165-680 nmol/l (60-246 μg/l)
ACTH ore 8	<12 pmol/l (<54 ng/l)	4,5-12 pmol/l (1,5-4 ng/l)
Cortisolo dopo 30' (1 µg ACTH e.v.)	<500 nmol/l (<180 μg/l)	>500 nmol/l (>180 µg/l)


British Medical Journal


Papers and Originals


EIGHTY-SIX CASES OF ADDISON'S DISEASE*

BY

Sir DERRICK DUNLOP, B.A., M.D., F.R.C.P., F.R.C.P.Ed.
Formerly Professor of Therapeutics and Clinical Medicine, University of Edinburgh

Difetto di glicocorticoidi: la crisi surrenalica

Difetto glicocorticoidi

- → alterazione metabolismo glucidico ipoglicemia
- → perdita dell'azione permissiva su recettori adrenergici ipotensione
- \rightarrow mancato blocco della flogosi e del controllo della produzione di citochine ($\uparrow\uparrow\uparrow\uparrow$ TNF- α) che diventano letali

Difetto mineralocorticoidi

- → incapacità a riassorbire sodio a livello tubulare iponatriemia e ipovolemia
- → incapacità ad eliminare potassio e idrogenioni iperkaliemia e acidosi

Caso clinico di Morbo di Addison

Elisa, F, 37 anni

27/08/2020 giunge in P.S. per NAUSEA e VOMITO, ANORESSIA, ASTENIA.

Alle analisi del P.S. creatinina 2.56 mg/dL, sodio 126 mEq/L, potassio 7.76 mEq/L, acidosi metabolica Ricovero presso la Medicina d'Urgenza da dove viene dimessa con diagnosi di «Insufficienza renale acuta pre-renale in disidratazione, con iperpotasiemia ed acidosi metabolica»

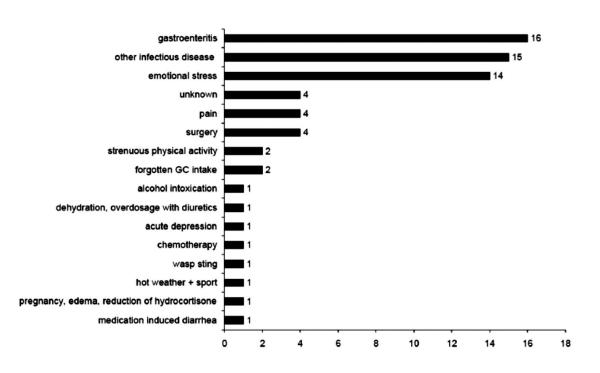
19/11/2020 ritorna in P.S. per **DOLORE LOMBARE**, **VOMITO**, **ASTENIA**

Alle analisi di P.S. creatinina 2.65 mg/dL, sodio 128 mEq/L, potassio 7.72 mEq/L, acidosi metabolica (pH 7.2 con $HCO_3=15$ mmol/L)

Ricovero presso la Medicina d'Urgenza.

20/11/2020 gli esami ematochimici documentano **Cortisolo 57 nmol/L** (valore diagnostico < 140 nmol/L) e **ACTH 2844 pg/mL** (valore diagnostico >100 pg/mL).

20/11/2020 diagnosi di CRISI SURRENALICA, prescrizione di idrocortisone 100 mg ev in bolo e 200 mg nelle 24 ore con idratazione.


05/12/2020 dimessa con diagnosi di ipocorticosurrenalismo primario e prescrizione della terapia sostitutiva con cortone acetato 25 mg 1 + ½ CP e fludrocortisone 0.1 mg 1 CP (che sa di dover aumentare o sostituire con idrocortisone im in caso di stress)

Dalla dimissione ad oggi prosegue regolari controlli endocrinologici, **Ab anti surrene positivi** (diagnosi di APS di tipo 2 per coesistenza di tiroidite di Hashimoto), 11/03/2021 ritorna al controllo endocrinologico periodico con esami che documentano livelli di **creatinina 1.08 mg/dL**, **sodio 141 mEq/L** e **potassio 4.5 mEq/L** e sta bene.

La crisi surrenalica: il problema è (ri)conoscerla!

EMERGENZA MEDICA

Incidenza 6-8 pazienti/100 all'anno

DETERIORAMENTO dello STATO di SALUTE

con (2 dei seguenti):

IPOTENSIONE

NAUSEA o VOMITO

ASTENIA PROFONDA

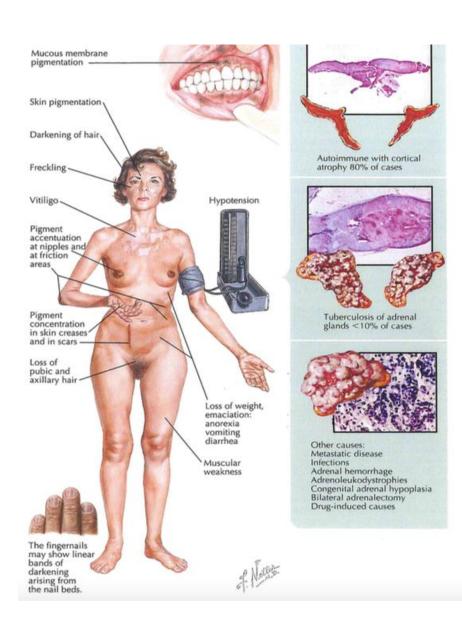
FEBBRE

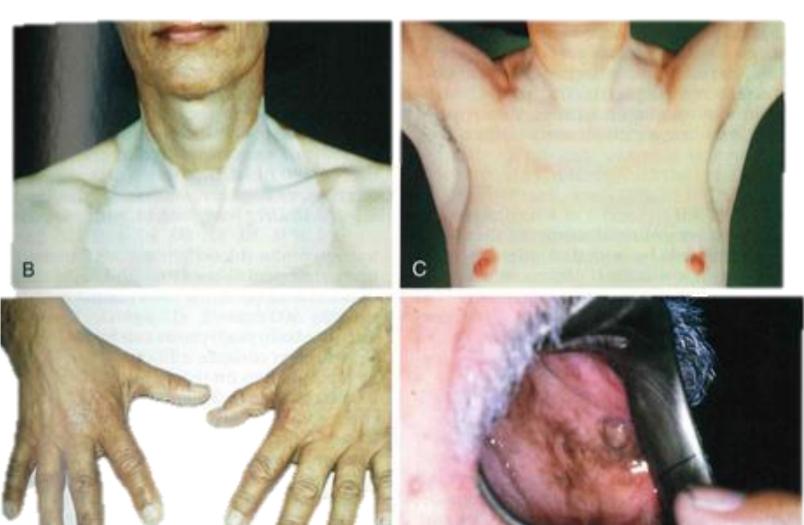
SONNOLENZA/STATO SOPOROSO

IPONATRIEMIA

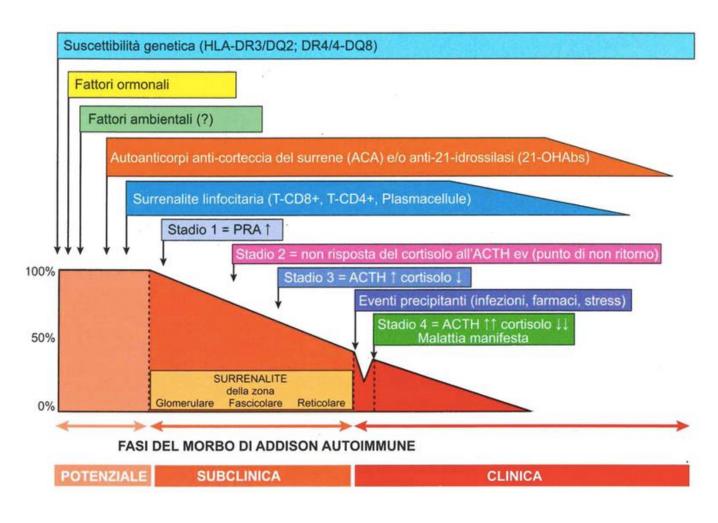
IPERKALIEMIA

IPOGLICEMIA

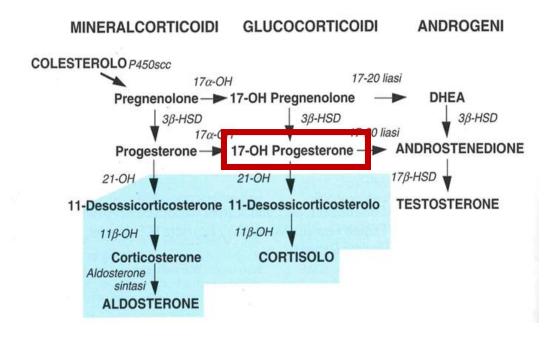



CRISI SURRENALICA

IDROCORTISONE 100 mg


Forma primaria

Morbo di Addison - AUTOIMMUNE


- Forma autoimmune è la più frequente nei paesi industrializzati
- 80% dei casi associata ad altre malattie autoimmuni (POF, ipoparatiroidismo, candidiasi).
- Esordio 30-40 anni, femmine.
- Distruzione linfomonocitaria ghiandole.
- Presenti Ab contro corteccia e enzima 21-idrossilasi (no patogenetici).
- 3 FASI POTENZIALE; SUBCLINICA e CLINICA.
- Diagnosi laboratorio compatibile con Morbo di Addison + Ab anti surrene

Morbo di Addison - GENETICO (I)

 Iperplasia surrenalica congenita comprende disordini a trasmissione AR che risultano dal deficit di uno o più enzimi necessari per la sintesi di cortisolo da parte della corteccia. 1/10.000-1/20.000

- Deficit di 21-idrossilasi (95% casi)
- Deficit di 11β-idrossilasi
- Deficit di 17α-idrossilasi
- Deficit di 3β-HSD

Morbo di Addison - GENETICO (II)

- Adrenoleucodistrofia patologia ereditaria legata al cromosoma X
- 1/20.000 maschi
- Si manifesta già dall'infanzia con Morbo di Addison e manifestazioni neurologiche
- Alla base c'è un difetto perossisomiale della beta ossidazione degli acidi grassi a catena lunghissima (very long chain fatty acids) nelle membrane citoplasmatiche di vari organi tra cui anche il surrene.
- Laboratorio: alti livelli di VLCFA

Forma secondaria

Causa più comune di ipopituitarismo è la presenza di un ADENOMA IPOFISARIO con

compressione

dell'ipofisi

TABLE 339-2 Etiology of Hypopituitarism*

Development/structural

Transcription factor defect

Pituitary dysplasia/aplasia

Congenital CNS mass, encephalocele

Primary empty sella

Congenital hypothalamic disorders (septo-optic dysplasia, Prader-Willi syndrome, Laurence-Moon-Biedl syndrome, Kallmann syndrome)

Traumatic

Surgical resection

Radiation damage

Head injuries

Neoplastic

Pituitary adenoma

Parasellar mass (germinoma, ependymoma, glioma)

Rathke's cyst

Craniopharyngioma

Hypothalamic hamartoma, gangliocytoma

Pituitary metastases (breast, lung, colon carcinoma)

Lymphoma and leukemia

Meningioma

Infiltrative/inflammatory

Lymphocytic hypophysitis

Hemochromatosis

Sarcoidosis

Histiocytosis X

Granulomatous hypophysitis

Vascular

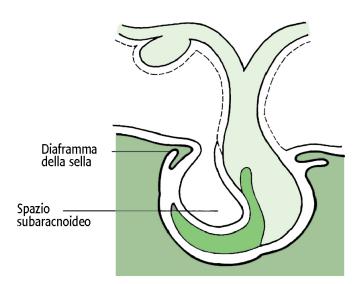
Pituitary apoplexy

Pregnancy-related (infarction with diabetes; postpartum necrosis)

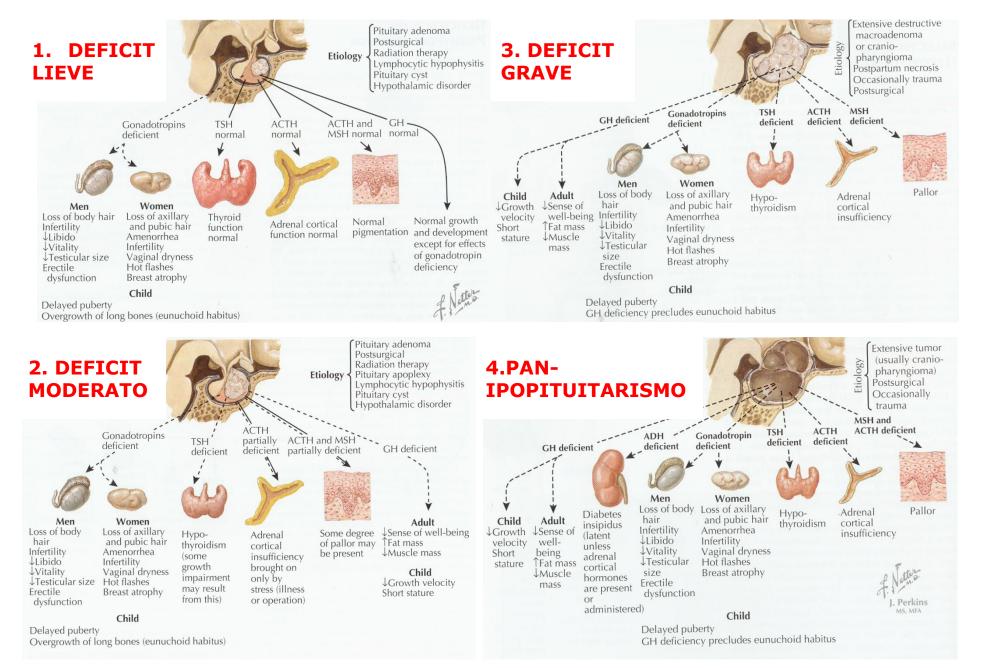
Sickle cell disease

Arteritis

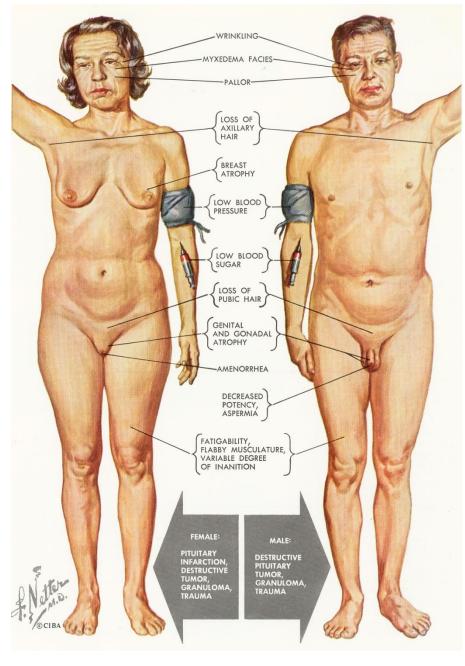
Infections


Fungal (histoplasmosis)

Parasitic (toxoplasmosis)


Tuberculosis

Pneumocystis carinii


Empty sella

^{*}Trophic hormone failure associated with pituitary compression or destruction usually occurs sequentially: GH > FSH > LH > TSH > ACTH. During childhood, growth retardation is often the presenting feature, and in adults, hypogonadism is the earliest symptom.

FSH>LH>GH>TSH>ACTH

- L'ipopituitarismo causato da ADENOMA IPOFISARIO NON SECERNENTE ha una evoluzione LENTA
- Il quadro clinico è dominato dalle conseguenze dell'IPOGONADISMO IPOGONADOTROPO deficit gonadotropine
- ASTENIA, riduzione della vitalità, rughe, pallore cutaneo, PERDITA dei PELI.
- F: calo della libido, AMENORREA, infertilità, osteoporosi
- M: calo della libido, DISFUNZIONE ERETTILE, infertilità, atrofia testicolare, osteoporosi
- Deficit GH causa malessere aumento della massa grassa e riduzione della massa magra
- Deficit TSH causa ASTENIA, intolleranza al freddo, ANEMIA e IPONATRIEMIA
- Deficit ACTH causa ASTENIA, IPOTENSIONE, IPOGLICEMIA e IPONATRIEMIA

Indagini laboratoristico-strumentali

LABORATORIO:

- ✓ E2/testosterone, se deficit FSH/LH,
- ✓ TSH FT4,
- ✓ cortisolo ore 8 (se ipersecrezione Nugent/cortisoluria 24 ore),
- ✓ IGF-1 (GH dopo GHRH+ariginina se deficit, GH dopo OGTT se ipersecrezione),
- ✓ PRL
- RM cervello e tronco encefalico con e senza mdc. Sezioni sagittali e coronali T1-pesate prima e dopo mdc (gadolinio) permettono di visualizzare l'ipofisi e tutte le strutture circostanti

Campimetria

Terapia adenoma non-secernente

- Indicazione all'intervento chirurgico di rimozione dell'adenoma (per via transfenoidale): presenza di danni al campo visivo
- L'intervento chirurgico normalizza i disturbi visivi nel 35-39%, li migliora nel 50-60%, li peggiora 0,5-2,5%.
- L'intervento non ha effetto sulla funzione ipofisaria. Può causare diabete insipido o ipopituitarismo fino al 20% dei casi
- DA OPERARE chi ha COMPRESSIONE VIE OTTICHE DISTURBI VISIVI
- DA NON OPERARE chi NON HA COMPRESSIONE VIE OTTICHE DISTURBI VISIVI e/o chi HA SOLO MINIME ALTERAZIONI VISIVE con ETÀ AVANZATA, COMORBIDITÀ, ISCHEMIA CEREBRALE
- Dopo l'intervento chirurgico può essere impiegata la radioterapia per ridurre il rischio di recidive, se vi è evidenza di accrescimento (nei non secernenti). La radioterapia dovrebbe essere riservata a: i) tumori più aggressivi; ii) tumori che crescono durante il follow-up; iii) pazienti con elevato rischio operatorio in caso di reintervento
- Nel 50% ipopituitarismo. Rischio di neurite ottica, malattie cerebrovascolari

TERAPIA SOSTITUTIVA (I)

- IPOCORTICOSURRENALISMO deficit cortisolo
- **❖ Idrocortisone** (30 mg/die) o **cortone acetato** (37,5 mg/die)
- ❖ Schema: 2/3 + 1/3 oppure 2/4 + 1/4 (+ ¼) (basta meno rispetto all'ipocorticosurrenalismo primitivo, non occorre aldosterone)
- dose giornaliera va aumentata in caso di eventi stressanti

STRESS MEDICO O CHIRURGICO	Dose di idrocortisone ev
Minore (colonscopia, chirurgia in Day- Surgery)	25-50 mg in bolo il giorno dell'intervento
Moderato (chirurgia in regime di ricovero ordinario)	50 mg in bolo (pre-anestesia) poi 50-100 mg in infusione continua per 24 ore
Severo (pancreatite, politrauma, chirurgia maggiore, cardiochirurgia)	50-100 mg in bolo (pre-anestesia) poi 100-150 mg/die in infusione continua per 48-72 h
Critico (shock settico)	50-100 mg in bolo ogni 6-8 ore oppure 0,18 mg/kg/h in infusione continua per 48-72 ore fino a risoluzione

La terapia dell'ipocorticosurrenalismo intrapresa prima della terapia dell'ipotiroidismo

- **IPOTIROIDISMO** deficit ormoni tiroidei
- ❖ L-tiroxina 0,25-0,5 mcg/kg/die (nell'adulto la dose è pari a 1,6 mcg/kg/die)
- ❖ Monitoraggio FT₄

TERAPIA SOSTITUTIVA (II)

- IPOGONADISMO deficit ormoni sessuali
- L'ipogonadismo maschile va trattato con testosterone per via transdermica o intramuscolare

Testosterone gel	Androgel, Testogel (50-100 g/die); Tostrex 60-80 mg/die
Testosterone patch	Testopatch (2,5-5 mg/die)
Testosterone undecanoato im	Nebid (1 g/3 mesi)
Testosterone esteri im	Testoviron (250 mg/3-4 sett)

- Controllo PSA, volume prostatico, ematocrito, assetto lipidico
- Controindicazioni ca prostata, nodulo prostatico di nuovo riscontro, PSA > 4 ng/ml, disturbi urinari, ematocrito > 50%
- Deficit GH deficit ormone della crescita
- ❖ **GH ricombinante** (0,1 mg/die) sc alla sera
- DIABETE INSIPIDO deficit di ADH
- ❖ accesso libero all'acqua e desmopressina con controllo di volume urinario, sodiemia, osmolarità urinaria dopo 2-4 settimane dall'inizio e poi ogni 6-12 mesi