Montecarlo Methods for Medical Physics

Francesco Longo (francesco.longo@ts.infn.it)

Geant4 Tutorial Introduction F.Longo

Summary of the Course

Part1 (Today)

- General (and brief) introduction to Monte Carlo methods
- Montecarlo methods in Medical Physics

Part2 (Today – 1st part)

Introduction to the Geant4 toolkit

Part3

- Fundamentals of a Geant4 application (Today 2nd part)
- Geometry, Physics, Particle Flux, Scoring needs (Thursday)

Laboratory (Next weeks)

Realisation of an example relevant to Medical Physics

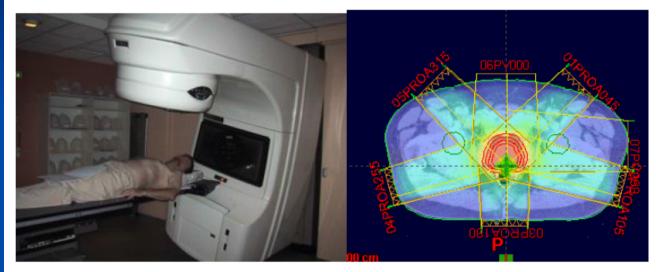
Evaluation for the "Laboratory"

Discussion of Geant4 example

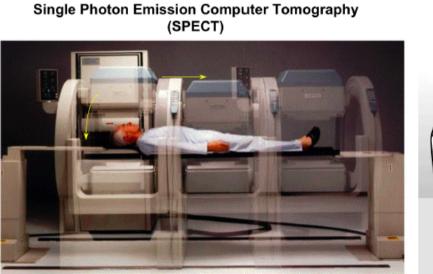
G4 example relevant to Medical Physics

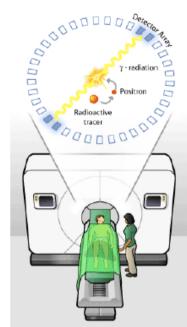
Discussion of requirements and methods

- Medical Physics "environment"
- Geant4 modeling
- "Basic" analysis of results

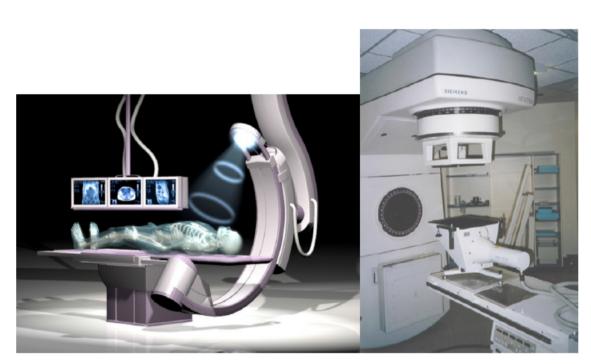

Realization of "new" example – Laboratory

Might just be an improvement of the existing G4 examples


Geant4 Tutorial Introduction F.Longo


Overview of Medical Physics Applications

Radiotherapy physics


- external/internal sources and dosimetry
- phantom simulations
- treatment planning

Nuclear medicine

- detectors
- imaging correction
- absorbed dose

Diagnostic radiology

- detection systems
- physical quantities
- radiation protection

Montecarlo in Treatment Planning Systems

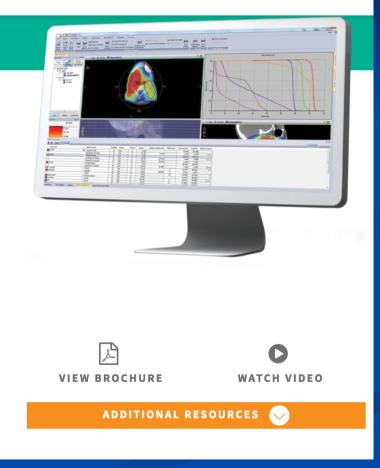
···) ELEKTA

Global Selector SUPPORT: +39 039 64129 199 SupportPlus Conta

MPANY PRODUCTS SERVICES INVESTORS PATIENTS CAREERS

MONACO[®]

Precision planning for photon and electron based plans

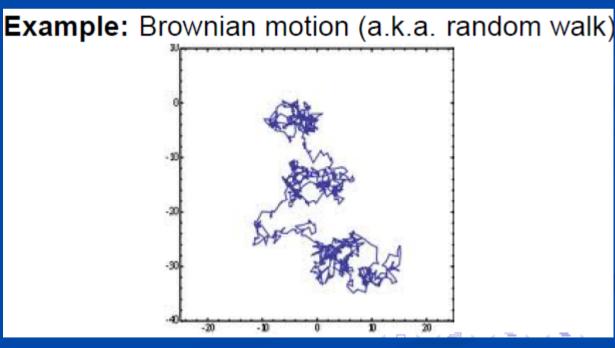

Monaco delivers high performance and high precision radiotherapy treatment planning for all major treatment techniques for photon and electron based plans.

Its rich, intuitive tools make the radiotherapy planning process faster, easier and clinically reliable.

By combining the superior accuracy of Monte Carlo and Collapsed Cone algorithms with the richness of advanced optimization tools in a modern, intuitive user workspace, Monaco delivers highly accurate 3D, IMRT, VMAT and SRS plans in a single, easy to use solution.

Monaco can handle very complex plans and exquisite dose distribution available in one rotation with its high dose modulation capabilities.

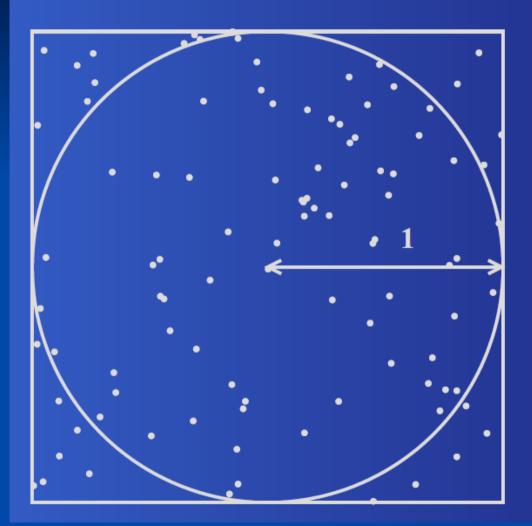
Monaco provides superior quality assurance with Monte Carlo used as the gold standard from which to compare other third party plans. Simply import a plan from any treatment planning system and re-calculate with Monte Carlo for a secondary check.



What is a Montecarlo program?

- Numerical method
- Random sampling of probability distributions
- Simulate stochastic processes in nature
 - Market fluctuations
 - Population studies
 - Weather forecasting
 - Radiation transport
 - Traffic flows
 - Astrophysics and Cosmology ...
 - **-** ...

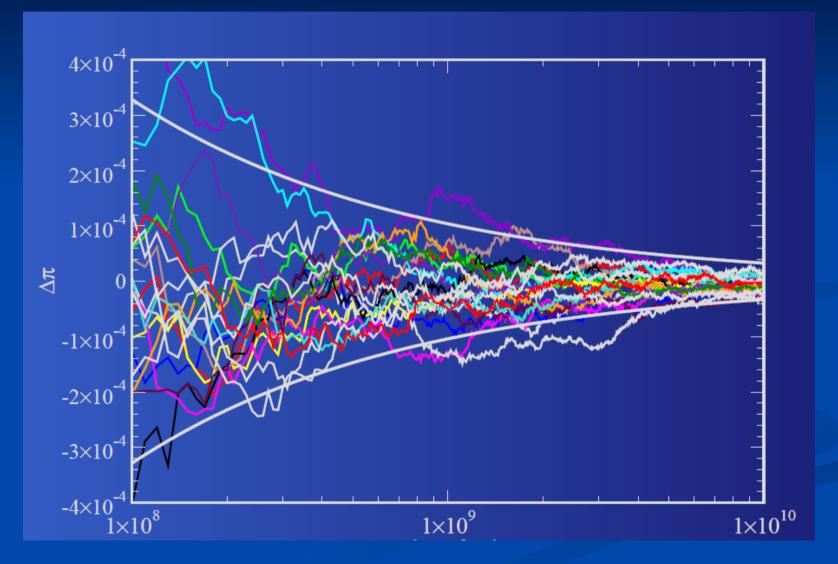
Stochastic processes


- Random, probabilistic processes
- Physical parameters vary according to probability distribution
- Not "single" outcome but more/less probable outcome are possible …

A brief history

- Comte du Buffon (1777): needle tossing experiment to calculate π
- **D** Laplace (1886): random points in a rectangle to calculate π
- Fermi (1930): random method to calculate the properties of the newly discovered neutron
- Manhattan project (40's): simulations during the initial development of thermonuclear weapons. von Neumann and Ulam coined the term "Monte Carlo"
- Exponential growth with the availability of digital computers
- Berger (1963): first complete coupled electron-photon transport code that became known as ETRAN
- Exponential growth in Medical Physics since the 80's

A brief history


Area of square: $A_s = 4$ Area of circle: $A_c = \pi$ Fraction p of random points inside circle:

$$p = \frac{A_c}{A_s} = \frac{\pi}{4}$$

Random points: NRandom points inside circle: N_c

 $\Rightarrow \quad \pi = \frac{4N_c}{N}$

A brief history

Home » Physics » Medical Physics » Monte Carlo Techniques in Radiation Therapy Monte Carlo Techniques in Radiation Therapy MAGING IN MEDICAL DIAGNOSIS AND THERAPY Monte Carlo Techniques Series: Imaging in Medical Diagnosis and Therapy in Radiation Therapy Published: March 25, 2013 by CRC Press Content: 342 Pages | 20 Color & 177 B/W Illustrations Editor(s): Joao Seco, Frank Verhaegen 🕂 Share 🗜 😏 🖂 ELike (21 » Recommend to Librarian. Description Table of Contents Editor Bio(s) Reviews Features

- atures
 - Provides a broad practical guide to the rapidly growing field of Monte Carlo simulations used in medical physics in radiotherapy
 - Includes the mathematical and technical background required for understanding Monte Carlo simulations and variance reduction techniques
 - Covers real medical applications of Monte Carlo methods in proton/light ion therapeutics, beam models, quality assurance, radiation dosimetry, and patient dose calculation
 - Incorporates examples to help illustrate key points

Summary

Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. **Monte Carlo Techniques in Radiation Therapy** explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams.

< Previous Article

January 2017 Volume 33, Pages 179–181

Next Article >

Monte Carlo simulations for medical physics: From fundamental physics to cancer treatment

<u>S. Guatelli</u> [*] I Solution Physics (CMRP), University of Wollongong (UOW), Wollongong, NSW, Australia <u>S. Incerti</u> CENBG, CNRS/IN2P3, France
RumX Metrics
DOI: <u>https://doi.org/10.1016/j.ejmp.2017.01.002</u> 🜔 Check for updates
Article Info
Abstract Full Text References
 Highlights Focus Issue (FI) dedicated to the Monte Carlo (MC) Workshop for Medical Physics. The Monte Carlo workshop took place in April 2016.

- The event was organised by the Centre For Medical Radiation Physics, Wollongong.
- The FI contains 12 original, peer reviewed scientific contributions.
- · The papers concern the projects presented in some oral presentations of the event.
- The contributions include research performed in Europe, US, Asia and Australia.

The 2016 Monte Carlo Workshop for Radiotherapy, Imaging and Radiation Protection, 28–30 April, was organised by the Centre For Medical Radiation Physics (CMRP), University of Wollongong (UOW), Wollongong, NSW, Australia. The Chair was S. Guatelli (CMRP, UOW), with two supporting Co-chairs, S. Incerti (CENBG, CNRS/IN2P3, France) and J. Brown (Queen's University Belfast, Northern Ireland, UK). The event, already at its third edition (<u>http://eis.uow.edu.au/cmrp/workshops-seminars/UOW204211.html</u>), is unique in Australia and South Pacific region as it is devoted to the development, validation and use of Monte Carlo radiation transport codes in medical physics.

In: Medical Physics Editor: Marcin Balcerzyk ISBN: 978-1-62257-590-9 2013 Nova Science Publishers, Inc.

Chapter V

Applications of the Monte Carlo Method in Medical Physics

Ernesto Amato¹, Domenico Lizio² and Sergio Baldari¹

¹Department of Radiological Sciences, University of Messina, Italy ²Research Center of Saluggia, Institute of Radiological Protection, ENEA, Italy

ABSTRACT

The Monte Carlo simulation of particle transport and interaction in matter finds growing applications in medical radiation physics. Dosimetric applications in radiation therapy span from internal dosimetry in radionuclide therapy of nuclear medicine, to the treatment planning in external beam radiation therapy with photons, electrons or fast heavy ions, to the assessment of radiation dose distribution in heterogeneous media such as lungs, bones or renal parenchyma.

Introduction to Geant4

Geant4 Tutorial Introduction F.Longo

A Simulation Tool for Multi-disciplinary Applications http://cern.ch/geant4/

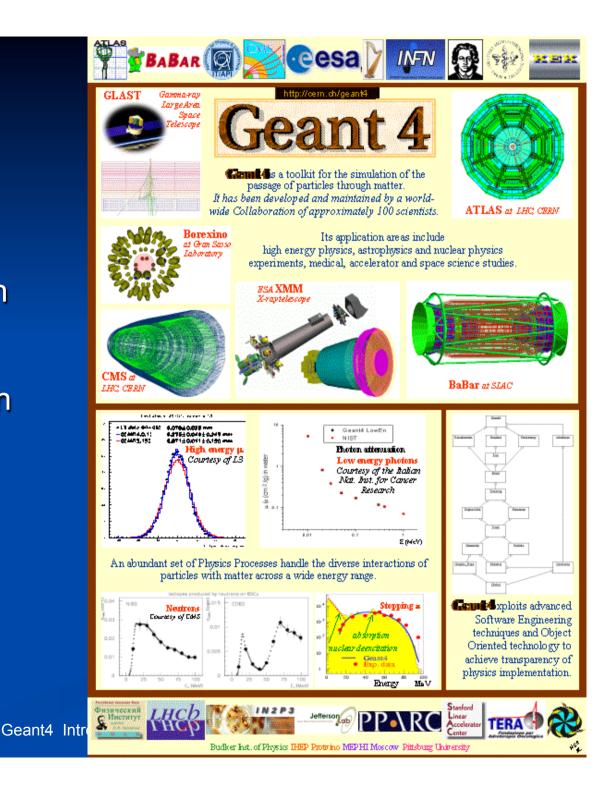
An simple introduction to Geant4 with emphasis on medical physics.

The seminar will touch some aspects of Geant4 from basic description to advanced topics.

The seminar should be of interest to complete novices with no familiarity with Geant4.

Participants are expected to have a basic knowledge of C++.

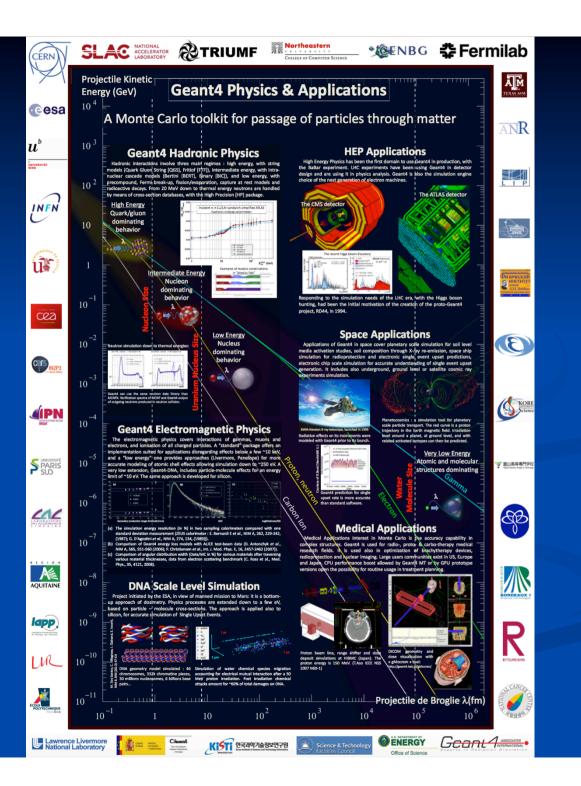
Based on Training Lectures by the G4 collaboration

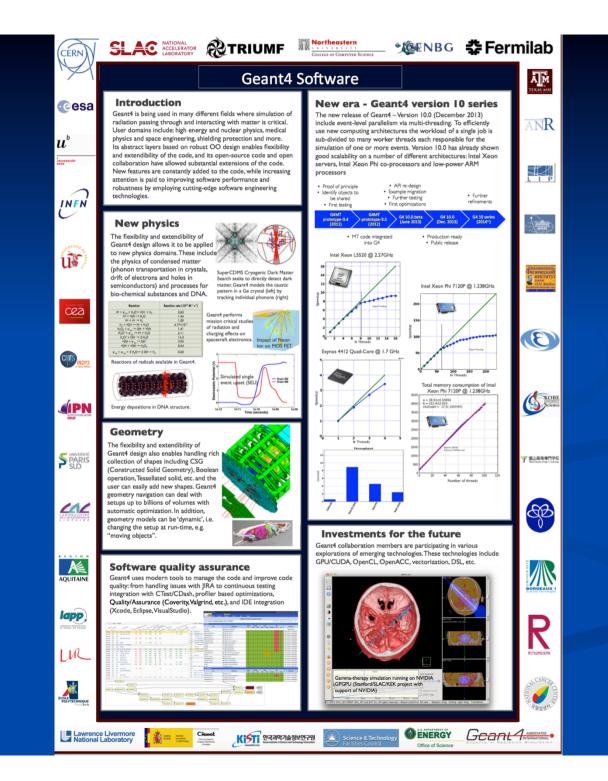

Outline of Part2

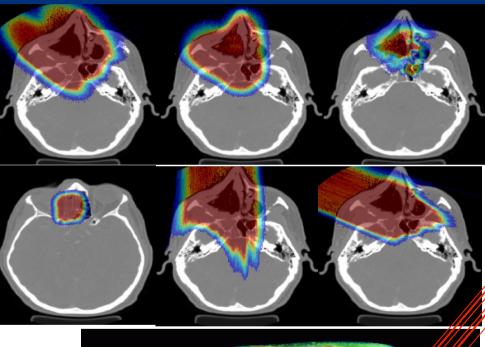
General Introduction to G4

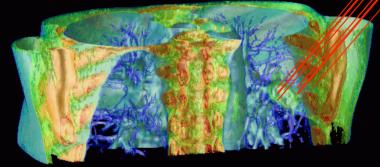
- What is G4 ?
- Review of user documentation
- Geant4 as a toolkit
- Basics of OO programming
- Geant4 Kernel and basics of the toolkit
 - Run, Event, Step
 - Particle and Physics processes
 - User classes

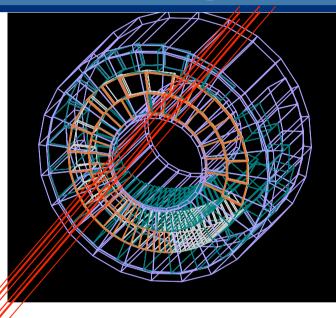
Geant4 toolkit


- Highlights of user applications
- General introduction and brief history
- User Documentation
- The main program


Geant4


Geant4

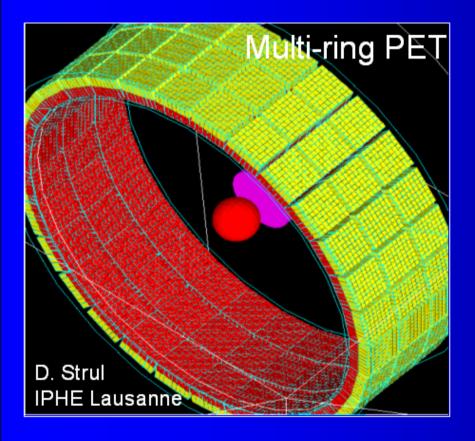


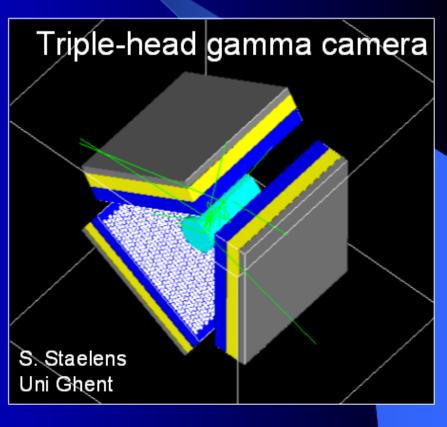

Highlights of Users Applications

To provide you some ideas how Geant4 would be utilized...

GEANT4 based proton dose calculation in a clinical environment: technical aspects, strategies and challenges

Harald Paganetti


MASSACHUSETTS GENERAL HOSPITAL



March

Geometry examples of GATE applications

Advanced Topics

radiotherapy'.

GATE

Simulations of Preclinical and Clinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy

Home Download •	Documentation - Collaborative Wiki	Mailing-list T	raining 🔻	Publications -	Meetings	Opportunities	Awards	About GATE 👻
User login	Forewords							Shortcuts
Username * Password * Request new password	GATE is an advanced opensource softwa simulations in medical imaging and radio Tomography - PET and Single Photon Em (Bioluminescence and Fluorescence) and simple or highly sophisticated experimenta the optimization of acquisition protocols an techniques. It can also be used for dose ca	therapy. It currently su hission Computed Tomo d Radiotherapy experir al settings, GATE now ad in the development a alculation in radiotherap	upports sim ography - S nents. Usir plays a key and assessi y experime	ulations of Emissic SPECT), Computed ag an easy-to-learn role in the design ment of image reconnts.	on Tomograph Tomography macro mech of new medica nstruction algo	y (Positron Emissior (CT), Optical Imaging nanism to configurate al imaging devices, in prithms and correction	Subsc	ribe to GATE-users mailing
Log in	If you are interested in contributing to GAT					ollaborative effort:	R	Request account on GATE collaborative wiki
DHD Offstigen Bring	 Contribute to the documentation: ask for 	or a login/password and	then modif	y the documentatio	n on the wiki			GitHub
PMB Citations Prize	 Report bugs GATE project is now publicly available on and close an issue 	GitHub. So, any peop	le identified	l as a GATE contrit	outor on GitH	ub can create, assign	Acces	ss to GATE project on Git-
collaboration have won the Physics in Medicine & Biology Citations Prize twice, in 2009 for their paper 'GATE: a simulation toolkit for PET and	 Add/modify the source code or fix bugs Start by copying the GATE public reposing it clone https://github.com/Ope 	sitory from GitHub					4	GATE users survey
SPECT' and in 2015 for their paper 'GATE V6: a major enhancement of the GATE simulation platform	 Create a specific branch on your reposition Create your own copy (fork) of GATE processing 					your branch onto this	;	
enabling modelling of CT and	 Once your code is ok, 							Download

Once your code is ok,

1. Create a pull-request from your Gate repository to the official Gate repository

http://www.opengatecollaboration.org/

G4 documentation basics

Geant4 Introduction F.Longo

G4 home page

https://geant4.web.cern.ch/

Download | User Forum Contact Us | Bug Reports d

Overview

Geant4

Geant4 is a toolkit for the simulation of the passage of particles through matter. Its areas of application include high energy, nuclear and accelerator physics, as well as studies in medical and space science. The three main reference papers for Geant4 are published in Nuclear Instruments and Methods in Physics Research A 506 (2003) 250-303 ° , IEEE Transactions on Nuclear Science 53 No. 1 (2006) 270-278 ° and Nuclear Instruments and Methods in Physics Research A 835 (2016) 186-225 ° .

A sampling of applications, technology transfer and other uses of Geant4

Getting started, guides and information for users and developers

Validation of Geant4, results from experiments and publications

Who we are: collaborating institutions, members, organization and legal information

News

2021-03-10 2021 planned developments.

2021-02-05 Patch-01 to release 10.7 is available from the Download area.

2020-11-06 **Patch-03** to release **10.6** is available from the Download archive area.

G4 Application Developer

Book For Application Developers

Docs » Geant4 Book For Application Developers

Geant4 Book For Application Developers

Scope of this manual

The User's Guide for Application Developers is the first manual the reader should consult when learning about GEANT4 or developing a GEANT4 -based detector simulation program. This manual is designed to:

- introduce the first-time user to the GEANT4 object-oriented detector simulation toolkit,
- provide a description of the available tools and how to use them, and
- supply the practical information required to develop and run simulation applications which may be used in real experiments.

This manual is intended to be an overview of the toolkit, rather than an exhaustive treatment of it. Related physics discussions are not included unless required for the description of a particular tool. Detailed discussions of the physics included in GEANT4 can be found in the Physics Reference Manual. Details of the design and functionality of the GEANT4 classes can be found in the User's Guide for Toolkit Developers.

G4 Application Developer

Book For Application Developers

Release 10.5

Geant4 Collaboration

Geant4 Introduction F.Longo

G4 Physics manual

A Physics Reference Manual

10.5

Search docs

General Information

Particle Decay

Electromagnetic Interactions

Solid State Physics

Hadronic Physics in GEANT4

Gamma- and Lepto-Nuclear Interactions

Solid State Physics

Docs » Physics Reference Manual

Physics Reference Manual

Scope of this Manual

The Physics Reference Manual provides detailed explanations of the physics implemented in the GEANT4 toolkit.

The manual's purpose is threefold:

- to present the theoretical formulation, model, or parameterization of the physics interactions included in GEANT4,
- to describe the probability of the occurrence of an interaction and the sampling mechanisms required to simulate it, and
- to serve as a reference for toolkit users and developers who wish to consult the underlying physics of an interaction.

This manual does not discuss code implementation or how to use the implemented physics interactions in a simulation. These topics are discussed in the *User's Guide for Application Developers*. Details of the object-oriented design and functionality of the GEANT4 toolkit are given in the *User's Guide for Toolkit Developers*. The *Installation Guide for Setting up |Geant4| in Your Computing Environment* describes how to get the GEANT4 code, install it, and run it.

G4 Physics manual

Physics Reference Manual

Release 10.5

Geant4 Collaboration

Last modified (GMT)

2019-04-17 07:34:33

2019-04-17 07:34:32

Size

analysis/	2019-04-17 07:34:32
<u>digits_hits/</u>	2019-04-17 07:34:31
environments/	2019-04-17 07:34:33
error_propagation/	2019-04-17 07:34:32
event/	2019-04-17 07:34:32
examples/	2019-04-17 07:34:31
externals/	2019-04-17 07:34:32
g <u>3tog4/</u>	2019-04-17 07:34:32
geometry/	2019-04-17 07:34:32

Version: [ReleaseNotes] [1.0] [1.1] [2.0] [3.0] [3.1] [3.2] [4.0] [4.0.p1] [4.0.p2] [4.1] [4.1.p1] [5.0] [5.0.p1] [5.1] [5.1.p1] [5.2] [5.2.p1][5.2.p2][6.0][6.0.p1][6.1][6.2][6.2.p1][6.2.p2][7.0][7.0.p1][7.1][7.1.p1][8.0][8.0.p1][8.1][8.1.p1][8.1.p2] [8.2][8.2.p1][8.3][8.3.p1][8.3.p2][9.0][9.0.p1][9.0.p2][9.1][9.1.p1][9.1.p2][9.1.p3][9.2][9.2.p1][9.2.p2][9.2.p3][9.2.p4] 9.3][9.3.p1][9.3.p2][9.4][9.4.p1][9.4.p2][9.4.p3][9.4.p4][9.5][9.5.p1][9.5.p2][9.6][9.6.p1][9.6.p2][9.6.p3][9.6.p4][10.0] 10.0.p1][10.0.p2][10.0.p3][10.0.p4][10.1][10.1.p1][10.1.p2][10.1.p3][10.2][10.2.p1][10.2.p2][10.2.p3][10.3][10.3.p1] [10.3.p2][10.3.p3][10.4][10.4.p1][10.4.p2][10.4.p3][10.5][10.5.p1]

Geant4 Cross Reference Geant4

Cross-Referencing

Geant4/

5

0000000000

5

GEANT4

Name

global/

graphics_reps/

Geant4 Cross Reference

Geant4 Tutorial Introduction F.Longo

Geant4 LXR

- [source navigation] - [identifier search] - [freetext search] - [file search] -

Description

User Forum

GEANT4 at hypernews.slac.stanford.edu Forum List by Category

Forums by Category Forums by Time Order Request a New Forum

Recent Postings Search in Forums Subscribe to Forums Member Info Members List New Member

Overview Contact Admin

Category: Applications					
Educational Applications	Industrial instruments	Medical Applications	Space Applications		
Category: Control of runs,	events, tracks, particles				
Event and Track Management	Multithreading	Particles	Run Management		
Category: Experimental Se	tup				
Biasing and Scoring	Fields: Magnetic and Otherwise	Geometry	Hits, Digitization and Pileup		
Category: General matters					
Documentation and Examples	HyperNews System Announcements	Hypernews Testing	Installation and Configuration	User Requirements	
Category: Interfaces					
(Graphical) User Interfaces	Analysis	Persistency	Visualization		
Category: Physics					
Biasing and Scoring Physics List	DNA/Very Low Energy Processes Involving Optical Photons	Electromagnetic Processes	Fast Simulation, Transportation & Others Hadronic		

This site runs SLAC HyperNews version 1.11-slac-98, derived from the original HyperNews

Basics of OO programming in C++

Geant4 Tutorial Introduction F.Longo

Class and Object

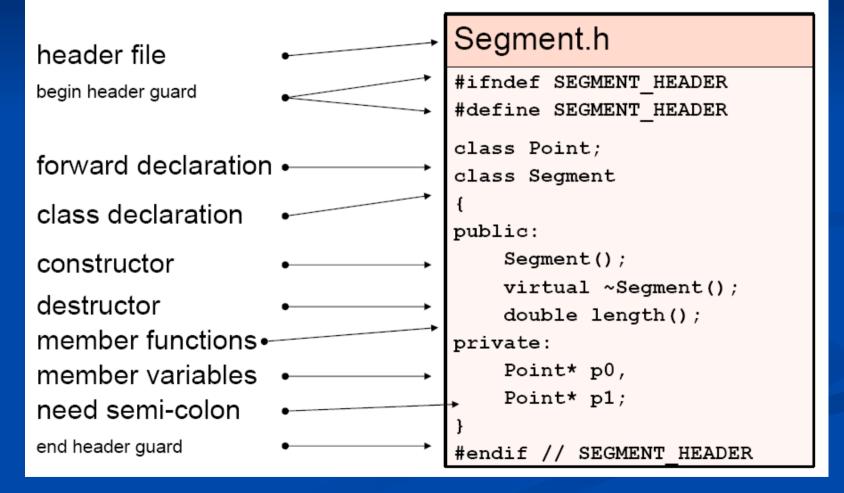
Class and Object

Object: is characterized by attributes (which define its state) and operations A class is the blueprint of objects of the same type

```
class Rectangle {
  public:
    Rectangle (double,double); // constructor
    ~Rectangle() { // empty; } // destructor
    double area () { return (width * height); } // member function
    private:
    double width, height; // data members
};
```

```
Rectangle rectangleA (3.,4.); // instantiate an object of type "Rectangle"
Rectangle* rectangleB = new Rectangle(5.,6.);
cout << "A area: " << rectangleA.area() << endl;
cout << "B area: " << rectangleB->area() << endl;
delete rectangleB; // invokes the destructor
```

Inheritance


Inheritance

- A key feature of C++
- Inheritance allows to create classes derived from other classes
- Public inheritance defines an "is-a" relationship
 - In other words: what applies to a base class applies to its derived classes

```
class Base {
  public:
    virtual ~Base() {}
    virtual void f() {...}
  protected:
    int a;
  private:
    int b; ...
};
```

Header File

How a Header File looks like

Implementation

Header file and implementation

File Segment.hh	File Segment.cc
#ifndef SEGMENT_HEADER	#include "Segment.hh"
#define SEGMENT_HEADER	#include "Point.hh"
class Point;	Segment::Segment() // constructor
class Segment	p0 = new Point(0.,0.);
{	p1 = new Point(1.,1.);
public:	}
Segment();	Segment::~Segment() // destructor
virtual ~Segment();	{
double length();	delete p0;
private:	delete p1;
Point* p0,	}
Point* p1;	double Segment::length()
};	function implementation
#endif // SEGMENT_HEADER	}

OOP programming

OOP basic concepts

Object, Class

 A class defines the abstract characteristics of a thing (object), including the thing's attributes and the thing's behaviour

Inheritance

 "Subclasses" are more specialized versions of a class, which *inherit* attributes and behaviours from their parent classes (and can introduce their own)

Encapsulation

- Each object exposes to any class a certain *interface* (i.e. those members accessible to that class)
- Members can be public, protected or private

Abstraction

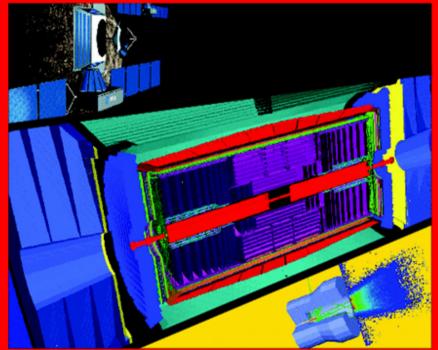
- Simplifying complex reality by modelling classes appropriate to the problem
- One works at the most appropriate level of inheritance for a given aspect of the problem

Polymorphism

It allows one to treat derived class members just like their parent class' members
 Maria Grazia Pia

General Introduction to Geant4

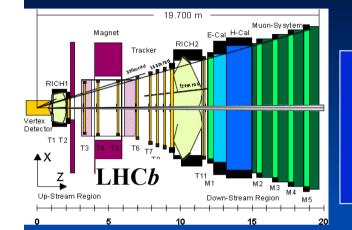
Technology transfer


Particle physics software aids space and medicine

Geant4 is a showcase example of technology transfer from particle physics to other fields such as space and medical science [...].

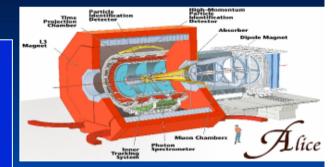
CERN Courier, June 2002 Geant 4

VOLUME 42 NUMBER 5 JUNE 2002

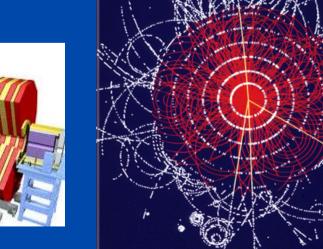


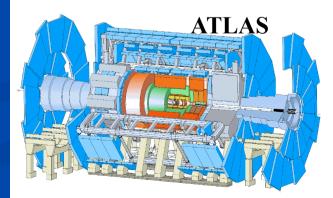
Simulation for physics, space and medicine

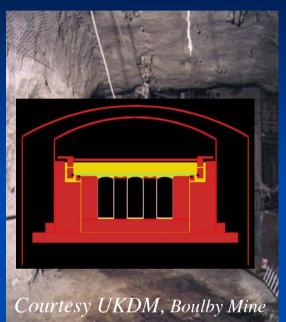
NEUTRINOS Sudbury Neutrino Observatory confirms neutrino oscillation p5 TESLA Electropolishing steers superconducting cavity to new record p10 COSMOPHYSICS Joint symposium brings CERN, ESA and ESO together p15

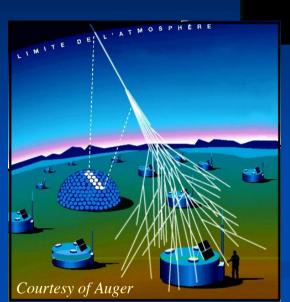

Globalisation

Sharing requirements and functionality across diverse fields


Complex physics Complex detectors 20 years software life-span


LHC


CMS



From deep underground...

Dark matter and v experiments

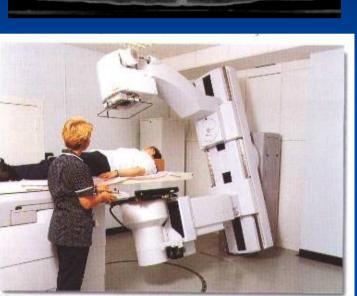
X and γ astronomy, gravitational waves, radiation damage to components etc.

Courtesy of ESA

Cosmic ray experiments

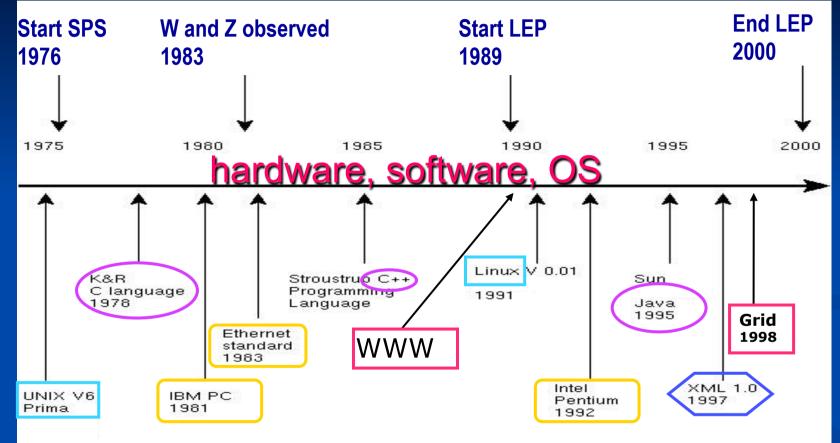
Variety of requirements from diverse applications

Physics from the eV to the PeV scale Detectors, spacecrafts and environment


...to space

For such experiments software is often **mission critical** Require reliability, rigorous software engineering standards

Medical Physics


from hospitals...

...to Mars

- Accurate modelling of radiation sources, devices and human body
 Easy configuration and friendly interface
 Speed
- Precision of physics
- Reliability

...in a fast changing computing environment

...and don't forget changes of requirements!

Evolution towards greater diversity

we must anticipate changes

00 technology

Openness to extension and evolution
 new implementations can be added w/o changing the existing code
 Robustness and ease of maintenance
 protocols and well defined dependencies minimize coupling

Strategic vision

Toolkit

- A set of compatible components
- each component is **specialised** for a specific functionality
- each component can be **refined** independently to a great detail
- components can be integrated at any degree of complexity
- it is easy to provide (and use) alternative components
- the user application can be customised as needed

Geant4 official publications

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 506, Issue 3, 1 July 2003, Pages 250-303

GEANT4—a simulation toolkit

S. Agostinelli ^{ae}, J. Allison ^{as} $\stackrel{\boxtimes}{\sim}$ ⊠, K. Amako ^e, J. Apostolakis ^a, H. Araujo ^{aj}, P. Arce ^{I, m, x, a}, M. Asai ^{g, ai}, D. Axen ^{i, t}, S. Banerjee ^{bi, I}, G. Barrand ^{an}, F. Behner ^I, L. Bellagamba ^c, J. Boudreau ^{bd}, L. Broglia ^{ar}, A. Brunengo ^c, H. Burkhardt ^a, S. Chauvie ^{bj, bl}, J. Chuma ^h ... D. Zschiesche ^{af}

E Show more

https://doi.org/10.1016/S0168-9002(03)01368-8

Get rights and content

Geant4 official publications

Geant4 developments and applications		
Publisher: IEEE	Cite This DF	
73 Author(s)J. Allison28897PaperPatentCitationsCitations	; K. Amako ; J. Apostolakis ; H. Araujo ; P. Arce Dubois ; I 10901 Full Text Views	M. Asai ; G. Barrand ; R. Capra ; S. Ch View All Authors R 💟 ⓒ 📩 📮
Abstract Document Sections I. Introduction II. New Developments in the Geant4 Kernel III. Improvements in Detector Modeling IV. Physics Extensions and Validation V. Enhancement of Coast4 Interaction	large number of experiments and projects in a var physics, astrophysics and space science, medical modeling capabilities continue to be extended, wh developments in diverse areas of the toolkit is pre-	physics and radiation protection. Its functionality and ile its performance is enhanced. An overview of recent sented. These include performance optimization for n in fields; new options for event biasing; and additions s and interactive capabilities
Geant4 Interactive Capabilities	ISSN Information:	Publisher: IEEE

Geant4 official publications

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 835, 1 November 2016, Pages 186-225

Recent developments in GEANT4

J. Allison ^{a, b}, K. Amako ^{c, a}, J. Apostolakis ^d, P. Arce ^e, M. Asai ^f, T. Aso ^g, E. Bagli ^h, A. Bagulya ⁱ, S. Banerjee ^j, G. Barrand ^k, B.R. Beck ^l, A.G. Bogdanov ^m, D. Brandt ⁿ, J.M.C. Brown ^o, H. Burkhardt ^d, Ph. Canal ^j, D. Cano-Ott ^p, S. Chauvie ^q ... H. Yoshida ^{bs, a}

E Show more

https://doi.org/10.1016/j.nima.2016.06.125 Under a Creative Commons license Get rights and content open access