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b. Use the Lee-Kosterlitz analysis at the specific heat peak to determine if there is a phase tran-
sition.

Project 17.27. Ground state energy of the Ising spin glass
A spin glass is a magnetic system with frozen-in disorder. An example of such a system is the Ising
model with the exchange constant Jij between nearest neighbor spins randomly chosen to be ± 1.
The disorder is said to be “frozen-in” because the set of interactions {Jij} does not change with
time. Because the spins cannot arrange themselves so that every pair of spins is in its lowest energy
state, the system exhibits frustration similar to the antiferromagnetic Ising model on a triangular
lattice (see Problem 17.15). Is there a phase transition in the spin glass model, and if so, what
is its nature? The answers to these questions are very difficult to obtain by doing simulations.
One of the difficulties is that we need to do not only an average over the possible configurations
of spins for a given set of {Jij}, but we also need to average over different realizations of the
interactions. Another difficulty is that there are many local minima in the energy (free energy
at finite temperature) as a function of the configurations of spins, and it is very difficult to find
the global minimum. As a result, Monte Carlo simulations typically become stuck in these local
minima or metastable states. Detailed finite size scaling analyses of simulations indicate that there
might be a transition in three dimensions. It is generally accepted that the transition in two
dimensions is at zero temperature. In the following, we will look at some of the properties of an
Ising spin glass on a square lattice at low temperatures.

a. Write a program to apply simulated annealing to an Ising spin glass using the Metropolis algo-
rithm with the temperature fixed at each stage of the annealing schedule (see Problem 17.22a).
Search for the lowest energy configuration for a fixed set of {Jij}. Use at least one other anneal-
ing schedule for the same {Jij} and compare your results. Then find the ground state energy
for at least ten other sets of {Jij}. Use lattice sizes of L = 5 and L = 10. Discuss the nature
of the ground states you are able to find. Is there much variation in the ground state energy
E0 from one set of {Jij} to another? Theoretical calculations give an average over realizations
of E0/N ≈ −1.4. If you have sufficient computer resources, repeat your computations for the
three-dimensional spin glass.

b. Modify your program to do simulated annealing using the demon algorithm (see Problem 17.22b).
How do your results compare to those that you found in part (a)?

Project 17.28. Zero temperature dynamics of the Ising model We have seen that various kinetic
growth models (Section 14.3) and reaction-diffusion models (Section 12.4) lead to interesting and
nontrivial behavior. Similar behavior can be seen in the zero temperature dynamics of the Ising
model. Consider the one-dimensional Ising model with J > 0 and periodic boundary conditions.
The initial orientation of the spins is chosen at random. We update the configurations by choosing
a spin at random and computing the change in energy ∆E. If ∆E < 0, then flip the spin; else if
∆E = 0, flip the spin with 50% probability. The spin is not flipped if ∆E > 0. This type of Monte
Carlo update is known as Glauber dynamics. How does this algorithm differ from the Metropolis
algorithm at T = 0?

The quantity of interest is f(t), the fraction of spins that flip for the first time at time t. As
usual, the time is measured in terms of Monte Carlo steps per spin. Published results (Derrida,
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Bray, and Godrèche) for N = 105 indicate that f(t)

f(t) ∼ t−θ (17.68)

for t ≈ 3 to t ≈ 10, 000 with θ ≈ 0.37. Verify this result and extend your results to the one-
dimensional q-state Potts model. In the latter model each site is initially given a random integer
between 1 and q. A site is chosen at random and set equal to either of its two neighbors with
equal probability. The value of the exponent θ is not understood at present, but might be related
to analogous behavior in reaction-diffusion models.
Project 17.29. The inverse power law potential
Consider the inverse power law potential

V (r) = V0 (
σ

r
)n (17.69)

with V0 > 0. One reason for interest in potentials of this form is that thermodynamic quanti-
ties such as the mean energy E do not depend on V0 and σ separately, but depend on a single
dimensionless parameter. This dimensionless parameter can be defined as

Γ =
V0

kT

σ

a
, (17.70)

where a is defined in three and two dimensions by 4πa3ρ/3 = 1 and πa2ρ = 1, respectively. The
length a is proportional to the mean distance between particles. A Coulomb interaction corresponds
to n = 1, and a hard sphere system corresponds to n → ∞. What phases do you expect to occur
for arbitrary n?

a. Compare the qualitative features of g(r) for a “soft” potential with n = 4 to a system of hard
disks at the same density.

b. Let n = 12 and compute the mean energy E as a function of T for fixed density for a three-
dimensional system. Fix T and consider N = 16, 32, 64, and 128. Does E depend on N? Can
you extrapolate your results for the N -dependence of E to N → ∞? Fix N and determine E
as a function of Γ. Do you see any evidence of a phase transition? If so, estimate the value of
Γ at which it occurs. What is the nature of the transition if it exists?

Project 17.30. Rare gas clusters There has been much recent interest in structures that contain
many particles, but that are not macroscopic. An example is the unusual structure of sixty carbon
atoms known as a “buckeyball.” A less unusual structure is a cluster of argon atoms. Questions
of interest include the structure of the clusters, the existence of “magic” numbers of particles
for which the cluster is particularly stable, the temperature dependence of the thermodynamic
quantities, and the possibility of different phases. This latter question has been subject to some
controversy, because transitions between different kinds of behavior in finite systems are not nearly
as sharp as they are for infinite systems.

a. Write a Monte Carlo program to simulate a three-dimensional system of particles interacting via
the Lennard-Jones potential. Use open boundary conditions, that is, do not enclose the system
in a box. The number of particles N and the temperature T should be input parameters.
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