
FYS4411

Part a, Variational Monte Carlo studies of atoms

The final aim of this project is to develop a variational Monte Carlo program which can be used
to obtain ground state properties of atoms like He, Be, O, Ne, Si etc. If possible (time allowing)
the hope is to be to be able to perform calculations for important molecules.

The aim of the part (a) of this project is to use the Variational Monte Carlo (VMC) method
and evaluate the ground state energy of the helium, beryllium and neon atoms. Although we
confine ourselves to atoms and molecules, you should however make your code flexible enough
to run for two-dimensional systems like electrons confined in quantum dots or other fermionic
systems in one, two and three dimensions.

We expect to finalize this part on March 22. Only a short report and a link to your Git
repository is required.

Exercise 1: Variational Monte Carlo calculations of the he-
lium atom

We will start with the simplest possible system beyond hydrogen, namely the helium atom. We
label r1 the distance from electron 1 to the nucleus and similarly r2 the distance between electron
2 and the nucleus. The contribution to the potential energy from the interactions between the
electrons and the nucleus is

V̂nuc(r1, r2) = −Z

r1
− Z

r2
, (1)

and if we add the electron-electron repulsion with r12 = |r1 − r2|, the total potential energy

V̂(r1, r2) is

V̂(r1, r2) = −Z

r1
− Z

r2
+

1

r12
, (2)

yielding the total Hamiltonian

Ĥ(r1, r2) = −∇2
1

2
− ∇2

2

2
− Z

r1
− Z

r2
+

1

r12
, (3)

where Z = 2 for Helium. The Schrödinger equation reads

Ĥψ = Eψ. (4)

All equations are in so-called atomic units. The distances ri and r12 are dimensionless. To have
energies in electronvolt you need to multiply all results with 2E0, where E0 = 13.6 eV. The
experimental binding energy for helium in atomic units a.u. is EHe = −2.9037 a.u.. See chapter
14 of the lecture notes[3] for more details.

1a) We want to perform a Variational Monte Carlo calculation of the ground state of the helium
atom. In our first attempt we will use a brute force Metropolis sampling with a trial wave
function which has the following form

ψT (r1, r2) = exp (−α(r1 + r2)) exp

(
r12

2(1 + βr12)

)
, (5)

with α and β as variational parameters.

Your task is to perform a Variational Monte Carlo calculation using the Metropolis algorithm
to compute the integral

⟨E⟩ =
∫
ψ∗
T (r1, r2)Ĥ(r1, r2)ψT (r1, r2)dr1dr2∫

ψ∗
T (r1, r2)ψT (r1, r2)dr1dr2

. (6)
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Parallelize your program. Find the energy minimum by plotting the energy surface as a
function of the variational parameters. Using the optimal parameters compute the mean
distance r12 between the two electrons. A sample code for doing a VMC calculation for the
helium atom can be found at https://github.com/ComputationalPhysics under the project
’fys4411’ and navigate to ’/examples/vmc-simple/’.

Your Monte Carlo moves are determined by

R′ = R+ rδ, (7)

where r is a random vector where each of the components are drawn from a uniform distri-
bution, and δ a chosen step length. In solving this exercise you need to devise an algorithm
which finds an optimal value of δ so that roughly 50% of the moves are accepted, for example
Newtons method. Note that the optimal value of δ depends on the variational parameters
α and β.

Give a physical interpretation of the best value of α. Make a plot of the variance as a
function of the number of Monte Carlo cycles.

1b) Find closed form expressions for the local energy

EL2 =
1

ΨT
ĤΨT (8)

for the above trial wave function and explain shortly how this trial function satisfies the cusp
condition when r1 → 0 or r2 → 0 or r12 → 0. Show that the closed-form expression for the
trial wave function is

EL2 = EL1 +
1

2(1 + βr12)2

{
α(r1 + r2)

r12
(1− r1r2

r1r2
)− 1

2(1 + βr12)2
− 2

r12
+

2β

1 + βr12

}
,

where

EL1 = (α− Z)

(
1

r1
+

1

r2

)
+

1

r12
− α2.

Compare the results of with and without the closed-form expressions (in terms of CPU time).

1c) Introduce importance sampling and study the dependence of the results as a function of the
time step ∆t. Compare the results with those obtained under 1a) and comment eventual
differences. In performing the Monte Carlo analysis you should use blocking[1] as a technique
to make a statistical analysis of the numerical data. The code has to run in parallel.

1d) With the optimal parameters for the ground state wave function, compute the onebody
density and the charge density. Discuss your results and compare the results with those
obtained with a pure hydrogenic wave functions. Run a Monte Carlo calculations without the
Jastrow factor as well and compute the same quantities. How important are the correlations
induced by the Jastrow factor?

1e) Repeat step 1c) and minimize the energy by finding the optimal variational parameters.
This can be done using methods like the stochastic gradient descent[2], conjugate gradient,
or some other algorithm of your choice.

Exercise 2: Variational Monte Carlo calculations of the Beryl-
lium and Neon atoms

The previous exercise has prepared you for extending your calculational machinery to other sys-
tems. Here we will focus on the neon and beryllium atoms. It is convenient to make classes of
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trial wave functions, both many-body wave functions and single-particle wave functions and the
quantum numbers involved, such as spin, orbital momentum and principal quantum numbers.

The new item you need to pay attention to is the calculation of the Slater Determinant. This is
an additional complication to your VMC calculations. If we stick to hydrogen-like wave functions,
the trial wave function for Beryllium can be written as

ψT (r1, r2, r3, r4) = Det
(
ϕ↑1s, ϕ

↓
1s, ϕ

↑
2s, ϕ

↓
2s

) 4∏
i<j

exp

(
rij

2(1 + βrij)

)
, (9)

where Det is a Slater determinant

Det (ϕ1, ϕ2, ϕ3, ϕ4) ∝

∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) ϕ3(r1) ϕ4(r1)
ϕ1(r2) ϕ2(r2) ϕ3(r2) ϕ4(r2)
ϕ1(r3) ϕ2(r3) ϕ3(r3) ϕ4(r3)
ϕ1(r4) ϕ2(r4) ϕ3(r4) ϕ4(r4)

∣∣∣∣∣∣∣∣ , (10)

and the single-particle wave functions are the hydrogen wave functions for the 1s and 2s orbitals.
Their form within the variational ansatz are given by

ϕ1s(ri) = e−αri , (11)

and
ϕ2s(ri) = (1− αri/2) e

−αri/2. (12)

For neon, the trial wave function can take the form

ψT (r1, r2, . . . , r10) = Det (ϕ1, ϕ2, . . . , ϕ10)

10∏
i<j

exp

(
rij

2(1 + βrij)

)
, (13)

In this case you need to include the 2p wave function as well. It is given as

ϕ2p(ri) = αrie
−αri/2. (14)

Observe that ri =
√
r2ix + r2iy + r2iz .

You can approximate the ground state of the Beryllium atom by writing it out as the Slater
determinant

ψT (r1, r2, r3, r4) ∝
(
ϕ↑1s(r1)ϕ

↑
2s(r2)− ϕ↑1s(r2)ϕ

↑
2s(r1)

)(
ϕ↓1s(r3)ϕ

↓
2s(r4)− ϕ↓1s(r4)ϕ

↓
2s(r3)

)
. (15)

Here you can see a simple code example which implements the above expression

f o r ( i n t i = 0 ; i < numberPart ic les ; i++) {
arg [ i ] = 0 . 0 ;
r S i n g l eP a r t i c l e = 0 ;
f o r ( i n t j = 0 ; j < dimension ; j++) {

r S i n g l eP a r t i c l e += r ( i , j )∗ r ( i , j ) ;
}
arg [ i ] = sq r t ( r S i n g l eP a r t i c l e ) ;

}

// S l a t e r determinant , no f a c t o r s as they vanish in the Metropo l i s r a t i o
wf = ( p s i 1 s ( arg [ 0 ] ) ∗ p s i 2 s ( arg [ 1 ] ) − p s i 1 s ( arg [ 1 ] ) ∗ p s i 2 s ( arg [ 0 ] ) ) ∗

( p s i 1 s ( arg [ 2 ] ) ∗ p s i 2 s ( arg [ 3 ] ) − p s i 1 s ( arg [ 3 ] ) ∗ p s i 2 s ( arg [ 2 ] ) ) ;

For beryllium we can easily implement the explicit evaluation of the Slater determinant. The above
will serve as a useful check for your function which computes the Slater determinat. The derivatives
of the single-particle wave functions can be computed analytically and you should consider using
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the closed form expression for the local energy (not mandatory, you can use numerical derivatives
as well although a closed form expressions speeds up your code).

For the correlation part

ΨC =
∏
i<j

g(rij) = exp

∑
i<j

arij
1 + βrij

,
we need to take into account whether electrons have equal or opposite spins since we have to obey
the electron-electron cusp condition as well. For Beryllium, as an example, you can fix electrons
1 and 2 to have spin up while electrons 3 and 4 have spin down. When the electrons have equal
spins

a = 1/4,

while for opposite spins (as for the ground state of helium)

a = 1/2.

2a) Write a function which sets up the Slater determinant for beryllium and neon and can be
generalized to handle larger systems as well. Compute the ground state energies of neon
and beryllium as you did for the helium atom in 1d). The calculations should include
parallelization, blocking, importance sampling and energy minimization.

2b) With the optimal parameters for the ground state wave function, compute again the onebody
density and the charge density. Discuss your results and compare the results with those
obtained with a pure hydrogenic wave functions. Run a Monte Carlo calculations without the
Jastrow factor as well and compute the same quantities. How important are the correlations
induced by the Jastrow factor?

Brief summary on how to write a report

Here follows a brief recipe and recommendation on how to write a report for each project.

• Give a short description of the nature of the problem and the eventual numerical methods
you have used.

• Describe the algorithm you have used and/or developed. Here you may find it convenient
to use pseudocoding. In many cases you can describe the algorithm in the program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test your program when
developing the code.

• Include your results either in figure form or in a table. Remember to label your results. All
tables and figures should have relevant captions and labels on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your results. If possible,
include a qualitative and/or quantitative discussion of the numerical stability, eventual loss
of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the exercise, whether you
felt you learnt something, ideas for improvements and other thoughts you’ve made when
solving the exercise. We wish to keep this course at the interactive level and your comments
can help us improve it. We do appreciate your comments.
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• Try to establish a practice where you log your work at the computerlab. You may find
such a logbook very handy at later stages in your work, especially when you don’t properly
remember what a previous test version of your program did. Here you could also record the
time spent on solving the exercise, various algorithms you may have tested or other topics
which you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file and a link to your online Git repository, see the
course web-page for more information. As programming language we prefer that you use C++.

Finally, we recommend that you work together. Optimal working groups consist of 2-3 students,
but more people can collaborate. You can then hand in a common report.
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