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Figure 13.5: Example of a spanning cluster on a L = 4 triangular lattice. The bonds between the
occupied sites are drawn to clarify the symmetry of the lattice.

Figure 13.6: Two examples of bond clusters. The occupied bonds are shown as bold lines.

and is characterized by a probability p. For small p, the system consists of only finite polymers
(groups of monomers) and the system is in the sol phase. For some threshold value pc, there will
be a single polymer that is infinite in spatial extent. We say that for p ≥ pc, the system is in the
gel phase. How does a bowl of jello, an example of a gel phase, differ from a bowl of broth? Write
a program to simulate bond percolation on a square lattice and determine the bond percolation
threshold. Are your results consistent with the exact result, pc = 1/2?

We also can consider continuum percolation models. For example, we can place disks at
random into a two-dimensional box. Two disks are in the same cluster if they touch or overlap. A
typical continuum (off-lattice) percolation configuration is depicted in Fig. 13.7. One quantity of
interest is the quantity φ, the fraction of the area (volume in three dimensions) in the system that
is covered by disks. In the limit of an infinite size box, it can be shown that

φ = 1 − e−ρπr2
, (13.1)

where ρ is the number of disks per unit area, and r is the radius of a disk (see Xia and Thorpe).
Equation (13.1) is significantly inaccurate for small boxes because disks located near the edge of
the box might have a significant fraction of their area located outside of the box. Program site
can be modified to simulate continuum percolation. Instead of placing the disks on regular lattice
sites, place them at random within a square box of area L2. The relevant parameter is the density
ρ, the number of disks per unit area, instead of the probability p. Because the disks overlap, it is
convenient to replace the BOX SHOW statement in Program site with

BOX SHOW occup$ at x(i)-0.5,y(i)-0.5 using "or"
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Figure 13.7: A model of continuum (off-lattice) percolation realized by placing disks of unit diam-
eter at random into a square box of linear dimension L. If we concentrate on the voids between
the disks rather than the disks, then this model of continuum percolation is known as the Swiss
cheese model.

where the arrays x(i) and y(i) are used to store the disk positions of disk i. It also is a good
idea to set the background color to red (not black or white).
Problem 13.4. Continuum percolation

a. For site percolation, we can define φ as the area fraction covered by the disks that are placed on
the sites as in Program site. Convince yourself that φc = (π/4)pc (for disks of unit diameter
and unit lattice spacing). It is easy to do a Monte Carlo calculation of the area covered by the
disks to confirm this result. (Choose points at random in the box and calculate the fraction of
points within any disk.)

b. Modify Program site to simulate continuum percolation as discussed in the text. Estimate
the value of the percolation threshold ρc. Given this value of ρc, use a Monte Carlo method to
estimate the corresponding area fraction φc, and compare the value of φc for site and continuum
percolation. Explain why you might expect φc to be bigger for continuum percolation than for
site percolation. Compare your direct Monte Carlo estimate of φc with the indirect value of φc

obtained from (13.1) using the value of ρc. Explain any discrepancy.

c. Consider the simple model of the cookie problem discussed in Section 13.1. Write a program
that places disks at random into a square box and chooses their diameter randomly between 0
and 1. Estimate the value of ρc at which a spanning cluster first appears. How is the value of
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ρc changed from your estimate found in part (b)? Is your value for φc more or less than what
was found in part (b)?

d. A more realistic model of the cookie problem is to place disks with unit diameter at random
into a square box with the constraint that the disks do not overlap. Continue to add disks
until the probability of placing an additional disk becomes less than 1%, i.e., when one hundred
successive attempts at adding a disk are not successful. Then increase the diameters of all the
disks at a constant rate (in analogy to the baking of the cookies) until a spanning cluster is
attained. How does φc for this model compare with φc found in part (c)?

e. A continuum model that is applicable to random porous media is known as the Swiss cheese
model. In this model the relevant quantity (the cheese) is the space between the disks. For
the Swiss cheese model in two dimensions, the cheese area fraction at the percolation threshold,
φ̃c, is given by φ̃c = 1 − φc, where φc is the disk area fraction at the threshold of the disks.
Do you think such a relation holds in three dimensions (see Project 13.15)? Imagine that the
disks are conductors and that the cheese is an insulator and let σ(φ) denote the conductivity
of this system. Alternatively, we can imagine that the cheese is a conductor and the disks are
insulators and define a conductivity σ(φ̃). Do you think that σ(φ) = σ(φ̃) when φ = φ̃? This
question is investigated in Project 13.15.

Our discussion of percolation has emphasized the existence of the percolation threshold pc

and the appearance of a spanning path or cluster for p ≥ pc. Another quantity that characterizes
percolation is P∞(p), the probability that an occupied site belongs to the spanning cluster. P∞ is
defined as

P∞ =
number of sites in the spanning cluster

total number of occupied sites
. (13.2)

As an example, P∞(p = 0.59) = 140/154 for the single configuration shown in Fig. 13.3b. A
realistic calculation of P∞ involves an average over many configurations for a given value of p. For
an infinite lattice, P∞(p) = 0 for p < pc and P∞(p) = 1 for p = 1. Between pc and 1, P∞(p)
increases monotonically.

More information can be obtained from the mean cluster size distribution ns(p) defined by

ns(p) =
average number of clusters of size s

total number of lattice sites
. (13.3)

For p ≥ pc, the spanning cluster is excluded from ns. (For historical reasons, the size of a cluster
refers to the number of sites in the cluster rather than to its spatial extent.) As an example, we
see from Fig. 13.3a that ns(1) = 20, ns(2) = 4, ns(3) = 5, and ns(7) = 1 for p = 0.2 and is
zero otherwise. Because N

∑

s sns is the total number of occupied sites (N is the total number of
lattice sites), and Nsns is the number of occupied sites in clusters of size s, the quantity

ws =
sns

∑

s sns
(13.4)

is the probability that an occupied site chosen at random is part of an s-site cluster. Hence, the
mean cluster size S is given by

S =
∑

s

sws =
∑

s s2ns
∑

s sns
. (13.5)


