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We also can consider continuum percolation models. For example, we can place disks at
random into a two-dimensional box. Two disks are in the same cluster if they touch or overlap. A
typical continuum (off-lattice) percolation configuration is depicted in Fig. 13.7. One quantity of
interest is the quantity ¢, the fraction of the area (volume in three dimensions) in the system that
is covered by disks. In the limit of an infinite size box, it can be shown that

p=1—e""" (13.1)

where p is the number of disks per unit area, and r is the radius of a disk (see Xia and Thorpe).
Equation (13.1) is significantly inaccurate for small boxes because disks located near the edge of
the box might have a significant fraction of their area located outside of the box. Program site
can be modified to simulate continuum percolation. Instead of placing the disks on regular lattice
sites, place them at random within a square box of area L2. The relevant parameter is the density
p, the number of disks per unit area, instead of the probability p. Because the disks overlap, it is
convenient to replace the BOX SHOW statement in Program site with

BOX SHOW occup$ at x(i)-0.5,y(i)-0.5 using "or"

where the arrays x(i) and y(i) are used to store the disk positions of disk i. It also is a good
idea to set the background color to red (not black or white).

Problem 13.4. Continuum percolation

a. For site percolation, we can define ¢ as the area fraction covered by the disks that are placed on
the sites as in Program site. Convince yourself that ¢. = (7/4)p. (for disks of unit diameter
and unit lattice spacing). It is easy to do a Monte Carlo calculation of the area covered by the
disks to confirm this result. (Choose points at random in the box and calculate the fraction of
points within any disk.)

b. Modify Program site to simulate continuum percolation as discussed in the text. Estimate
the value of the percolation threshold p.. Given this value of p., use a Monte Carlo method to
estimate the corresponding area fraction ¢., and compare the value of ¢, for site and continuum
percolation. Explain why you might expect ¢, to be bigger for continuum percolation than for
site percolation. Compare your direct Monte Carlo estimate of ¢. with the indirect value of ¢,
obtained from (13.1) using the value of p.. Explain any discrepancy.

c. Consider the simple model of the cookie problem discussed in Section 13.1. Write a program
that places disks at random into a square box and chooses their diameter randomly between 0

and 1. Estimate the value of p. at which a spanning cluster first appears. How is the value of
pe changed from your estimate found in part (b)? s your value for ¢. more or less than what

was found in part (b)?

d. A more realistic model of the cookie problem is to place disks with unit diameter at random
into a square box with the constraint that the disks do not overlap. Continue to add disks
until the probability of placing an additional disk becomes less than 1%, i.e., when one hundred
successive attempts at adding a disk are not successful. Then increase the diameters of all the
disks at a constant rate (in analogy to the baking of the cookies) until a spanning cluster is
attained. How does ¢. for this model compare with ¢. found in part (c)?

e. A continuum model that is applicable to random porous media is known as the Swiss cheese
model. In this model the relevant quantity (the cheese) is the space between the disks. For
the Swiss cheese model in two dimensions, the cheese area fraction at the percolation threshold,
be, is given by ¢, = 1 — ¢, where ¢, is the disk area fraction at the threshold of the disks.
Do you think such a relation holds in three dimensions (see Project 13.15)7 Imagine that the
disks are conductors and that the cheese is an insulator and let o(¢) denote the conductivity
of this system. Alternatively, we can imagine that the cheese is a conductor and the disks are
insulators and define a conductivity o(¢). Do you think that o(¢) = o(¢) when ¢ = ¢? This
question is investigated in Project 13.15.



