
436 Chapter 10. Minimization or Maximization of Functions

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

to the usual method by any factor substantially larger than the “tender-loving-care
factor” (which reflects the programming effort of the proponents).

Problems where the objective function and/or one or more of the constraints are
replaced by expressions nonlinear in the variables are called nonlinear programming
problems. The literature on such problems is vast, but outside our scope. The special
case of quadratic expressions is called quadratic programming. Optimization prob-
lems where the variables take on only integer values are called integer programming
problems, a special case of discrete optimization generally. The next section looks
at a particular kind of discrete optimization problem.

CITED REFERENCES AND FURTHER READING:
Bland, R.G. 1981, Scientific American, vol. 244 (June), pp. 126–144. [1]
Dantzig, G.B. 1963, Linear Programming and Extensions (Princeton, NJ: Princeton University

Press). [2]
Kolata, G. 1982, Science, vol. 217, p. 39. [3]
Gill, P.E., Murray, W., and Wright, M.H. 1991, Numerical Linear Algebra and Optimization, vol. 1

(Redwood City, CA: Addison-Wesley), Chapters 7–8.
Cooper, L., and Steinberg, D. 1970, Introduction to Methods of Optimization (Philadelphia: Saun-

ders).
Gass, S.T. 1969, Linear Programming, 3rd ed. (New York: McGraw-Hill).
Murty, K.G. 1976, Linear and Combinatorial Programming (New York: Wiley).
Land, A.H., and Powell, S. 1973, Fortran Codes for Mathematical Programming (London: Wiley-

Interscience).
Kuenzi, H.P., Tzschach, H.G., and Zehnder, C.A. 1971, Numerical Methods of Mathematical

Optimization (New York: Academic Press). [4]
Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),

§4.10.
Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. II of Handbook for Automatic Com-

putation (New York: Springer-Verlag). [5]

10.9 Simulated Annealing Methods

The method of simulated annealing [1,2] is a technique that has attracted signif-
icant attention as suitable for optimization problems of large scale, especially ones
where a desired global extremum is hidden among many, poorer, local extrema. For
practical purposes, simulated annealing has effectively “solved” the famous traveling
salesman problem of finding the shortest cyclical itinerary for a traveling salesman
who must visit each of N cities in turn. (Other practical methods have also been
found.) Themethod has also been used successfully for designing complex integrated
circuits: The arrangement of several hundred thousand circuit elements on a tiny
silicon substrate is optimized so as to minimize interference among their connecting
wires [3,4]. Surprisingly, the implementation of the algorithm is relatively simple.

Notice that the two applications cited are both examples of combinatorial
minimization. There is an objective function to be minimized, as usual; but the space
over which that function is defined is not simply the N -dimensional space of N
continuouslyvariable parameters. Rather, it is a discrete, but very large, configuration

mp
from NUMERICAL RECIPES

10.9 Simulated Annealing Methods 437

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

space, like the set of possible orders of cities, or the set of possible allocations of
silicon “real estate” blocks to circuit elements. The number of elements in the
configuration space is factorially large, so that they cannot be explored exhaustively.
Furthermore, since the set is discrete, we are deprived of any notion of “continuing
downhill in a favorable direction.” The concept of “direction” may not have any
meaning in the configuration space.

Below, we will also discuss how to use simulated annealing methods for spaces
with continuous control parameters, like those of §§10.4–10.7. This application is
actually more complicated than the combinatorial one, since the familiar problem of
“long, narrow valleys” again asserts itself. Simulated annealing, as we will see, tries
“random” steps; but in a long, narrow valley, almost all random steps are uphill!
Some additional finesse is therefore required.

At the heart of the method of simulated annealing is an analogy with thermody-
namics, specifically with the way that liquids freeze and crystallize, or metals cool
and anneal. At high temperatures, the molecules of a liquidmove freely with respect
to one another. If the liquid is cooled slowly, thermal mobility is lost. The atoms are
often able to line themselves up and form a pure crystal that is completely ordered
over a distance up to billions of times the size of an individual atom in all directions.
This crystal is the state of minimum energy for this system. The amazing fact is that,
for slowly cooled systems, nature is able to find this minimum energy state. In fact, if
a liquid metal is cooled quickly or “quenched,” it does not reach this state but rather
ends up in a polycrystalline or amorphous state having somewhat higher energy.

So the essence of the process is slow cooling, allowing ample time for
redistribution of the atoms as they lose mobility. This is the technical definition of
annealing, and it is essential for ensuring that a low energy state will be achieved.

Although the analogy is not perfect, there is a sense in which all of the
minimization algorithms thus far in this chapter correspond to rapid cooling or
quenching. In all cases, we have gone greedily for the quick, nearby solution: From
the starting point, go immediately downhill as far as you can go. This, as often
remarked above, leads to a local, but not necessarily a global, minimum. Nature’s
own minimization algorithm is based on quite a different procedure. The so-called
Boltzmann probability distribution,

Prob (E) ⇠ exp(�E/kT) (10.9.1)

expresses the idea that a system in thermal equilibrium at temperature T has its
energy probabilistically distributed among all different energy states E. Even at
low temperature, there is a chance, albeit very small, of a system being in a high
energy state. Therefore, there is a corresponding chance for the system to get out of
a local energy minimum in favor of finding a better, more global, one. The quantity
k (Boltzmann’s constant) is a constant of nature that relates temperature to energy.
In other words, the system sometimes goes uphill as well as downhill; but the lower
the temperature, the less likely is any significant uphill excursion.

In 1953, Metropolis and coworkers [5] first incorporated these kinds of prin-
ciples into numerical calculations. Offered a succession of options, a simulated
thermodynamic system was assumed to change its configuration from energy E1 to
energy E2 with probability p = exp[�(E2 �E1)/kT]. Notice that ifE2 < E1, this
probability is greater than unity; in such cases the change is arbitrarily assigned a
probability p = 1, i.e., the system always took such an option. This general scheme,

438 Chapter 10. Minimization or Maximization of Functions

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

of always taking a downhill step while sometimes taking an uphill step, has come
to be known as the Metropolis algorithm.

To make use of theMetropolis algorithm for other than thermodynamic systems,
one must provide the following elements:

1. A description of possible system configurations.
2. A generator of random changes in the configuration; these changes are the

“options” presented to the system.
3. An objective function E (analog of energy) whose minimization is the

goal of the procedure.
4. A control parameter T (analog of temperature) and an annealing schedule

which tells how it is lowered from high to low values, e.g., after how many random
changes in configuration is each downward step in T taken, and how large is that
step. The meaning of “high” and “low” in this context, and the assignment of a
schedule, may require physical insight and/or trial-and-error experiments.

Combinatorial Minimization: The Traveling Salesman

A concrete illustration is provided by the traveling salesman problem. The
proverbial seller visitsN cities with given positions (xi, yi), returning finally to his
or her city of origin. Each city is to be visited only once, and the route is to bemade as
short as possible. This problem belongs to a class known as NP-complete problems,
whose computation time for an exact solution increases withN as exp(const.⇥N),
becoming rapidly prohibitive in cost asN increases. The traveling salesman problem
also belongs to a class of minimization problems for which the objective functionE
has many local minima. In practical cases, it is often enough to be able to choose
from these a minimum which, even if not absolute, cannot be significantly improved
upon. The annealing method manages to achieve this, while limiting its calculations
to scale as a small power of N .

As a problem in simulated annealing, the traveling salesman problem is handled
as follows:

1. Configuration. The cities are numbered i = 1 . . .N and each has coordinates
(xi, yi). A configuration is a permutation of the number 1 . . .N , interpreted as the
order in which the cities are visited.

2. Rearrangements. An efficient set of moves has been suggested by Lin [6].
The moves consist of two types: (a) A section of path is removed and then replaced
with the same cities running in the opposite order; or (b) a section of path is removed
and then replaced in between two cities on another, randomly chosen, part of the path.

3. Objective Function. In the simplest form of the problem, E is taken just
as the total length of journey,

E = L ⌘
NX

i=1

p
(xi � xi+1)2 + (yi � yi+1)2 (10.9.2)

with the convention that point N + 1 is identified with point 1. To illustrate the
flexibility of the method, however, we can add the following additional wrinkle:
Suppose that the salesman has an irrational fear of flying over the Mississippi River.
In that case, we would assign each city a parameter µi, equal to+1 if it is east of the

10.9 Simulated Annealing Methods 439

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

Mississippi, �1 if it is west, and take the objective function to be

E =
NX

i=1

hp
(xi � xi+1)2 + (yi � yi+1)2 + �(µi � µi+1)

2
i

(10.9.3)

A penalty 4� is thereby assigned to any river crossing. The algorithm now finds
the shortest path that avoids crossings. The relative importance that it assigns to
length of path versus river crossings is determined by our choice of �. Figure 10.9.1
shows the results obtained. Clearly, this technique can be generalized to include
many conflicting goals in the minimization.

4. Annealing schedule. This requires experimentation. We first generate some
random rearrangements, and use them to determine the range of values of �E that
will be encountered from move to move. Choosing a starting value for the parameter
T which is considerably larger than the largest �E normally encountered, we
proceed downward in multiplicative steps each amounting to a 10 percent decrease
in T . We hold each new value of T constant for, say, 100N reconfigurations, or for
10N successful reconfigurations, whichever comes first. When efforts to reduce E
further become sufficiently discouraging, we stop.

The following traveling salesman program, using the Metropolis algorithm,
illustrates the main aspects of the simulated annealing technique for combinatorial
problems.

SUBROUTINE anneal(x,y,iorder,ncity)

INTEGER ncity,iorder(ncity)

REAL x(ncity),y(ncity)

C USES irbit1,metrop,ran3,revcst,revers,trncst,trnspt
This algorithm finds the shortest round-trip path to ncity cities whose coordinates are in

the arrays x(1:ncity),y(1:ncity). The array iorder(1:ncity) specifies the order

in which the cities are visited. On input, the elements of iorder may be set to any per-

mutation of the numbers 1 to ncity. This routine will return the best alternative path

it can find.

INTEGER i,i1,i2,idec,idum,iseed,j,k,nlimit,nn,nover,nsucc,n(6),

* irbit1

REAL de,path,t,tfactr,ran3,alen,x1,x2,y1,y2

LOGICAL ans

alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)

nover=100*ncity Maximum number of paths tried at any temperature.

nlimit=10*ncity Maximum number of successful path changes before continuing.

tfactr=0.9 Annealing schedule: t is reduced by this factor on each step.

path=0.0

t=0.5

do 11 i=1,ncity-1 Calculate initial path length.

i1=iorder(i)

i2=iorder(i+1)

path=path+alen(x(i1),x(i2),y(i1),y(i2))

enddo 11

i1=iorder(ncity) Close the loop by tying path ends together.

i2=iorder(1)

path=path+alen(x(i1),x(i2),y(i1),y(i2))

idum=-1

iseed=111

do 13 j=1,100 Try up to 100 temperature steps.

nsucc=0

do 12 k=1,nover

1 n(1)=1+int(ncity*ran3(idum)) Choose beginning of segment ..

n(2)=1+int((ncity-1)*ran3(idum)) ..and end of segment.

if (n(2).ge.n(1)) n(2)=n(2)+1

440 Chapter 10. Minimization or Maximization of Functions

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

0 .5 1
0

.5

1

0 .5 1
0

.5

1

0 .5 1
0

.5

1

(a)

(b)

(c)

Figure 10.9.1. Traveling salesman problem solved by simulated annealing. The (nearly) shortest path
among 100 randomly positioned cities is shown in (a). The dotted line is a river, but there is no penalty in
crossing. In (b) the river-crossing penalty is made large, and the solution restricts itself to the minimum
number of crossings, two. In (c) the penalty has been made negative: the salesman is actually a smuggler
who crosses the river on the flimsiest excuse!

10.9 Simulated Annealing Methods 441

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

nn=1+mod((n(1)-n(2)+ncity-1),ncity) nn is the number of cities not on the

segment.if (nn.lt.3) goto 1

idec=irbit1(iseed) Decide whether to do a segment reversal or transport.

if (idec.eq.0) then Do a transport.

n(3)=n(2)+int(abs(nn-2)*ran3(idum))+1

n(3)=1+mod(n(3)-1,ncity) Transport to a location not on the path.

call trncst(x,y,iorder,ncity,n,de) Calculate cost.

call metrop(de,t,ans) Consult the oracle.

if (ans) then

nsucc=nsucc+1

path=path+de

call trnspt(iorder,ncity,n) Carry out the transport.

endif

else Do a path reversal.

call revcst(x,y,iorder,ncity,n,de) Calculate cost.

call metrop(de,t,ans) Consult the oracle.

if (ans) then

nsucc=nsucc+1

path=path+de

call revers(iorder,ncity,n) Carry out the reversal.

endif

endif

if (nsucc.ge.nlimit) goto 2 Finish early if we have enough

successful changes.enddo 12

2 write(*,*)

write(*,*) ’T =’,t,’ Path Length =’,path

write(*,*) ’Successful Moves: ’,nsucc

t=t*tfactr Annealing schedule.

if (nsucc.eq.0) return If no success, we are done.

enddo 13

return

END

SUBROUTINE revcst(x,y,iorder,ncity,n,de)

INTEGER ncity,iorder(ncity),n(6)

REAL de,x(ncity),y(ncity)

This subroutine returns the value of the cost function for a proposed path reversal. ncity
is the number of cities, and arrays x(1:ncity),y(1:ncity) give the coordinates of these

cities. iorder(1:ncity) holds the present itinerary. The first two values n(1) and n(2)
of array n give the starting and ending cities along the path segment which is to be reversed.

On output, de is the cost of making the reversal. The actual reversal is not performed by

this routine.

INTEGER ii,j

REAL alen,xx(4),yy(4),x1,x2,y1,y2

alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)

n(3)=1+mod((n(1)+ncity-2),ncity) Find the city before n(1) ..

n(4)=1+mod(n(2),ncity) .. and the city after n(2).

do 11 j=1,4

ii=iorder(n(j)) Find coordinates for the four cities involved.

xx(j)=x(ii)

yy(j)=y(ii)

enddo 11

de=-alen(xx(1),xx(3),yy(1),yy(3)) Calculate cost of disconnecting the segment

at both ends and reconnecting in the op-

posite order.

* -alen(xx(2),xx(4),yy(2),yy(4))

* +alen(xx(1),xx(4),yy(1),yy(4))

* +alen(xx(2),xx(3),yy(2),yy(3))

return

END

442 Chapter 10. Minimization or Maximization of Functions

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

SUBROUTINE revers(iorder,ncity,n)

INTEGER ncity,iorder(ncity),n(6)

This routine performs a path segment reversal. iorder(1:ncity) is an input array giving

the present itinerary. The vector n has as its first four elements the first and last cities

n(1),n(2) of the path segment to be reversed, and the two cities n(3) and n(4) that

immediately precede and follow this segment. n(3) and n(4) are found by subroutine

revcst. On output, iorder(1:ncity) contains the segment from n(1) to n(2) in

reversed order.

INTEGER itmp,j,k,l,nn

nn=(1+mod(n(2)-n(1)+ncity,ncity))/2 This many cities must be swapped to e↵ect

the reversal.do 11 j=1,nn

k=1+mod((n(1)+j-2),ncity) Start at the ends of the segment and swap

pairs of cities, moving toward the cen-

ter.

l=1+mod((n(2)-j+ncity),ncity)

itmp=iorder(k)

iorder(k)=iorder(l)

iorder(l)=itmp

enddo 11

return

END

SUBROUTINE trncst(x,y,iorder, ncity,n,de)

INTEGER ncity,iorder(ncity),n(6)

REAL de,x(ncity),y(ncity)

This subroutine returns the value of the cost function for a proposed path segment transport.

ncity is the number of cities, and arrays x(1:ncity) and y(1:ncity) give the city

coordinates. iorder is an array giving the present itinerary. The first three elements of

array n give the starting and ending cities of the path to be transported, and the point

among the remaining cities after which it is to be inserted. On output, de is the cost of

the change. The actual transport is not performed by this routine.

INTEGER ii,j

REAL xx(6),yy(6),alen,x1,x2,y1,y2

alen(x1,x2,y1,y2)=sqrt((x2-x1)**2+(y2-y1)**2)

n(4)=1+mod(n(3),ncity) Find the city following n(3)..

n(5)=1+mod((n(1)+ncity-2),ncity) ..and the one preceding n(1)..

n(6)=1+mod(n(2),ncity) ..and the one following n(2).

do 11 j=1,6

ii=iorder(n(j)) Determine coordinates for the six cities in-

volved.xx(j)=x(ii)

yy(j)=y(ii)

enddo 11

de=-alen(xx(2),xx(6),yy(2),yy(6)) Calculate the cost of disconnecting the path

segment from n(1) to n(2), opening a

space between n(3) and n(4), connect-

ing the segment in the space, and con-

necting n(5) to n(6).

* -alen(xx(1),xx(5),yy(1),yy(5))

* -alen(xx(3),xx(4),yy(3),yy(4))

* +alen(xx(1),xx(3),yy(1),yy(3))

* +alen(xx(2),xx(4),yy(2),yy(4))

* +alen(xx(5),xx(6),yy(5),yy(6))

return

END

SUBROUTINE trnspt(iorder,ncity,n)

INTEGER ncity,iorder(ncity),n(6),MXCITY

PARAMETER (MXCITY=1000) Maximum number of cities anticipated.

This routine does the actual path transport, once metrop has approved. iorder is an

input array of length ncity giving the present itinerary. The array n has as its six elements

the beginning n(1) and end n(2) of the path to be transported, the adjacent cities n(3)
and n(4) between which the path is to be placed, and the cities n(5) and n(6) that

precede and follow the path. n(4), n(5), and n(6) are calculated by subroutine trncst.
On output, iorder is modified to reflect the movement of the path segment.

INTEGER j,jj,m1,m2,m3,nn,jorder(MXCITY)

m1=1+mod((n(2)-n(1)+ncity),ncity) Find number of cities from n(1) to n(2)

10.9 Simulated Annealing Methods 443

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

m2=1+mod((n(5)-n(4)+ncity),ncity) ...and the number from n(4) to n(5)

m3=1+mod((n(3)-n(6)+ncity),ncity) ...and the number from n(6) to n(3).

nn=1

do 11 j=1,m1

jj=1+mod((j+n(1)-2),ncity) Copy the chosen segment.

jorder(nn)=iorder(jj)

nn=nn+1

enddo 11

do 12 j=1,m2 Then copy the segment from n(4) to n(5).

jj=1+mod((j+n(4)-2),ncity)

jorder(nn)=iorder(jj)

nn=nn+1

enddo 12

do 13 j=1,m3 Finally, the segment from n(6) to n(3).

jj=1+mod((j+n(6)-2),ncity)

jorder(nn)=iorder(jj)

nn=nn+1

enddo 13

do 14 j=1,ncity

iorder(j)=jorder(j) Copy jorder back into iorder.

enddo 14

return

END

SUBROUTINE metrop(de,t,ans)

REAL de,t

LOGICAL ans

C USES ran3
Metropolis algorithm. ans is a logical variable that issues a verdict on whether to accept a

reconfiguration that leads to a change de in the objective function e. If de<0, ans=.true.,
while if de>0, ans is only .true. with probability exp(-de/t), where t is a temperature

determined by the annealing schedule.

INTEGER jdum

REAL ran3

SAVE jdum

DATA jdum /1/

ans=(de.lt.0.0).or.(ran3(jdum).lt.exp(-de/t))

return

END

Continuous Minimization by Simulated Annealing

The basic ideas of simulated annealing are also applicable to optimization
problems with continuous N -dimensional control spaces, e.g., finding the (ideally,
global) minimum of some function f(x), in the presence of many local minima,
where x is an N -dimensional vector. The four elements required by the Metropolis
procedure are now as follows: The value of f is the objective function. The
system state is the point x. The control parameter T is, as before, something like a
temperature, with an annealing schedule by which it is gradually reduced. And there
must be a generator of random changes in the configuration, that is, a procedure for
taking a random step from x to x + �x.

444 Chapter 10. Minimization or Maximization of Functions

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

The last of these elements is the most problematical. The literature to date [7-10]
describes several different schemes for choosing �x, none of which, in our view,
inspire complete confidence. The problem is one of efficiency: A generator of
random changes is inefficient if, when local downhill moves exist, it nevertheless
almost always proposes an uphill move. A good generator, we think, should not
become inefficient in narrow valleys; nor should it become more and more inefficient
as convergence to a minimum is approached. Except possibly for [7], all of the
schemes that we have seen are inefficient in one or both of these situations.

Our own way of doing simulated annealing minimization on continuous control
spaces is to use amodification of the downhill simplexmethod (§10.4). This amounts
to replacing the single point x as a description of the system state by a simplex of
N + 1 points. The “moves” are the same as described in §10.4, namely reflections,
expansions, and contractions of the simplex. The implementation of the Metropolis
procedure is slightly subtle: We add a positive, logarithmically distributed random
variable, proportional to the temperature T , to the stored function value associated
with every vertex of the simplex, and we subtract a similar random variable from
the function value of every new point that is tried as a replacement point. Like the
ordinary Metropolis procedure, this method always accepts a true downhill step, but
sometimes accepts an uphill one. In the limit T ! 0, this algorithm reduces exactly
to the downhill simplex method and converges to a local minimum.

At a finite value of T , the simplex expands to a scale that approximates the size
of the region that can be reached at this temperature, and then executes a stochastic,
tumblingBrownianmotionwithin that region, sampling new, approximately random,
points as it does so. The efficiency with which a region is explored is independent
of its narrowness (for an ellipsoidal valley, the ratio of its principal axes) and
orientation. If the temperature is reduced sufficiently slowly, it becomes highly
likely that the simplex will shrink into that region containing the lowest relative
minimum encountered.

As in all applications of simulated annealing, there can be quite a lot of
problem-dependent subtlety in the phrase “sufficiently slowly”; success or failure
is quite often determined by the choice of annealing schedule. Here are some
possibilities worth trying:

• Reduce T to (1 � ✏)T after every m moves, where ✏/m is determined
by experiment.

• Budget a total of K moves, and reduce T after every m moves to a value
T = T0(1� k/K)↵, where k is the cumulative number of moves thus far,
and ↵ is a constant, say 1, 2, or 4. The optimal value for ↵ depends on the
statistical distribution of relative minima of various depths. Larger values
of ↵ spend more iterations at lower temperature.

• After everymmoves, setT to � times f1�fb , where� is an experimentally
determined constant of order 1, f1 is the smallest function value currently
represented in the simplex, and fb is the best function ever encountered.
However, never reduce T by more than some fraction � at a time.

Another strategic question is whether to do an occasional restart, where a vertex
of the simplex is discarded in favor of the “best-ever” point. (You must be sure that
the best-ever point is not currently in the simplex when you do this!) We have found
problems for which restarts — every time the temperature has decreased by a factor
of 3, say — are highly beneficial; we have found other problems for which restarts

10.9 Simulated Annealing Methods 445

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

have no positive, or a somewhat negative, effect.
You should compare the following routine, amebsa, with its counterpart amoeba

in §10.4. Note that the argument iter is used in a somewhat different manner.

SUBROUTINE amebsa(p,y,mp,np,ndim,pb,yb,ftol,funk,iter,temptr)

INTEGER iter,mp,ndim,np,NMAX

REAL ftol,temptr,yb,p(mp,np),pb(np),y(mp),funk

PARAMETER (NMAX=200)

EXTERNAL funk

C USES amotsa,funk,ran1
Multidimensional minimization of the function funk(x) where x(1:ndim) is a vector in

ndim dimensions, by simulated annealing combined with the downhill simplex method of

Nelder and Mead. The input matrix p(1..ndim+1,1..ndim) has ndim+1 rows, each an

ndim-dimensional vector which is a vertex of the starting simplex. Also input is the vector

y(1:ndim+1), whose components must be pre-initialized to the values of funk evaluated at

the ndim+1 vertices (rows) of p; ftol, the fractional convergence tolerance to be achieved

in the function value for an early return; iter, and temptr. The routine makes iter
function evaluations at an annealing temperature temptr, then returns. You should then

decrease temptr according to your annealing schedule, reset iter, and call the routine

again (leaving other arguments unaltered between calls). If iter is returned with a positive

value, then early convergence and return occurred. If you initialize yb to a very large value

on the first call, then yb and pb(1:ndim) will subsequently return the best function value

and point ever encountered (even if it is no longer a point in the simplex).

INTEGER i,idum,ihi,ilo,j,m,n

REAL rtol,sum,swap,tt,yhi,ylo,ynhi,ysave,yt,ytry,psum(NMAX),

* amotsa,ran1

COMMON /ambsa/ tt,idum

tt=-temptr

1 do 12 n=1,ndim Enter here when starting or after overall contraction.

sum=0. Recompute psum.

do 11 m=1,ndim+1

sum=sum+p(m,n)

enddo 11

psum(n)=sum

enddo 12

2 ilo=1 Enter here after changing a single point. Find which point

is the highest (worst), next-highest, and lowest (best).ihi=2

ylo=y(1)+tt*log(ran1(idum)) Whenever we “look at” a vertex, it gets a random thermal

fluctuation.ynhi=ylo

yhi=y(2)+tt*log(ran1(idum))

if (ylo.gt.yhi) then

ihi=1

ilo=2

ynhi=yhi

yhi=ylo

ylo=ynhi

endif

do 13 i=3,ndim+1 Loop over the points in the simplex.

yt=y(i)+tt*log(ran1(idum)) More thermal fluctuations.

if(yt.le.ylo) then

ilo=i

ylo=yt

endif

if(yt.gt.yhi) then

ynhi=yhi

ihi=i

yhi=yt

else if(yt.gt.ynhi) then

ynhi=yt

endif

enddo 13

rtol=2.*abs(yhi-ylo)/(abs(yhi)+abs(ylo))

446 Chapter 10. Minimization or Maximization of Functions

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

Compute the fractional range from highest to lowest and return if satisfactory.

if (rtol.lt.ftol.or.iter.lt.0) then If returning, put best point and value in slot 1.

swap=y(1)

y(1)=y(ilo)

y(ilo)=swap

do 14 n=1,ndim

swap=p(1,n)

p(1,n)=p(ilo,n)

p(ilo,n)=swap

enddo 14

return

endif

iter=iter-2

Begin a new iteration. First extrapolate by a factor�1 through the face of the simplex across

from the high point, i.e., reflect the simplex from the high point.

ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,-1.0)

if (ytry.le.ylo) then

Gives a result better than the best point, so try an additional extrapolation by a factor 2.

ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,2.0)

else if (ytry.ge.ynhi) then

The reflected point is worse than the second-highest, so look for an intermediate lower point,

i.e., do a one-dimensional contraction.

ysave=yhi

ytry=amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,0.5)

if (ytry.ge.ysave) then Can’t seem to get rid of that high point. Better contract

around the lowest (best) point.do 16 i=1,ndim+1

if(i.ne.ilo)then

do 15 j=1,ndim

psum(j)=0.5*(p(i,j)+p(ilo,j))

p(i,j)=psum(j)

enddo 15

y(i)=funk(psum)

endif

enddo 16

iter=iter-ndim

goto 1

endif

else

iter=iter+1 Correct the evaluation count.

endif

goto 2

END

FUNCTION amotsa(p,y,psum,mp,np,ndim,pb,yb,funk,ihi,yhi,fac)

INTEGER ihi,mp,ndim,np,NMAX

REAL amotsa,fac,yb,yhi,p(mp,np),pb(np),psum(np),y(mp),funk

PARAMETER (NMAX=200)

EXTERNAL funk

C USES funk,ran1
Extrapolates by a factor fac through the face of the simplex across from the high point,

tries it, and replaces the high point if the new point is better.

INTEGER idum,j

REAL fac1,fac2,tt,yflu,ytry,ptry(NMAX),ran1

COMMON /ambsa/ tt,idum

fac1=(1.-fac)/ndim

fac2=fac1-fac

do 11 j=1,ndim

ptry(j)=psum(j)*fac1-p(ihi,j)*fac2

enddo 11

10.9 Simulated Annealing Methods 447

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

ytry=funk(ptry)

if (ytry.le.yb) then Save the best-ever.

do 12 j=1,ndim

pb(j)=ptry(j)

enddo 12

yb=ytry

endif

yflu=ytry-tt*log(ran1(idum)) We added a thermal fluctuation to all the current vertices,

but we subtract it here, so as to give the simplex

a thermal Brownian motion: It likes to accept any

suggested change.

if (yflu.lt.yhi) then

y(ihi)=ytry

yhi=yflu

do 13 j=1,ndim

psum(j)=psum(j)-p(ihi,j)+ptry(j)

p(ihi,j)=ptry(j)

enddo 13

endif

amotsa=yflu

return

END

There is not yet enough practical experience with the method of simulated
annealing to say definitively what its future place among optimization methods
will be. The method has several extremely attractive features, rather unique when
compared with other optimization techniques.

First, it is not “greedy,” in the sense that it is not easily fooled by the quick
payoff achieved by falling into unfavorable local minima. Provided that sufficiently
general reconfigurations are given, it wanders freely among local minima of depth
less than about T . As T is lowered, the number of such minima qualifying for
frequent visits is gradually reduced.

Second, configuration decisions tend to proceed in a logical order. Changes
that cause the greatest energy differences are sifted over when the control parameter
T is large. These decisions become more permanent as T is lowered, and attention
then shifts more to smaller refinements in the solution. For example, in the traveling
salesman problem with the Mississippi River twist, if � is large, a decision to cross
the Mississippi only twice is made at high T , while the specific routes on each side
of the river are determined only at later stages.

The analogies to thermodynamics may be pursued to a greater extent than we
have done here. Quantities analogous to specific heat and entropy may be defined,
and these can be useful in monitoring the progress of the algorithm towards an
acceptable solution. Information on this subject is found in [1].

CITED REFERENCES AND FURTHER READING:
Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. 1983, Science, vol. 220, pp. 671–680. [1]
Kirkpatrick, S. 1984, Journal of Statistical Physics, vol. 34, pp. 975–986. [2]
Vecchi, M.P. and Kirkpatrick, S. 1983, IEEE Transactions on Computer Aided Design, vol. CAD-

2, pp. 215–222. [3]
Otten, R.H.J.M., and van Ginneken, L.P.P.P. 1989, The Annealing Algorithm (Boston: Kluwer)

[contains many references to the literature]. [4]
Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller A., and Teller, E. 1953, Journal of Chemical

Physics, vol. 21, pp. 1087–1092. [5]
Lin, S. 1965, Bell System Technical Journal, vol. 44, pp. 2245–2269. [6]
Vanderbilt, D., and Louie, S.G. 1984, Journal of Computational Physics, vol. 56, pp. 259–271. [7]
Bohachevsky, I.O., Johnson, M.E., and Stein, M.L. 1986, Technometrics, vol. 28, pp. 209–217. [8]

448 Chapter 10. Minimization or Maximization of Functions

Sam
ple page from

 N
U

M
ER

IC
AL R

EC
IPES IN

 FO
R

TR
AN

 77: TH
E AR

T O
F SC

IEN
TIFIC

 C
O

M
PU

TIN
G

 (ISBN
 0-521-43064-X)

C
opyright (C

) 1986-1992 by C
am

bridge U
niversity Press. Program

s C
opyright (C

) 1986-1992 by N
um

erical R
ecipes Softw

are.
Perm

ission is granted for internet users to m
ake one paper copy for their ow

n personal use. Further reproduction, or any copying of m
achine-

readable files (including this one) to any server com
puter, is strictly prohibited. To order N

um
erical R

ecipes books, diskettes, or C
D

R
O

M
s

visit w
ebsite http://w

w
w

.nr.com
 or call 1-800-872-7423 (N

orth Am
erica only), or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth Am

erica).

Corana, A., Marchesi, M., Martini, C., and Ridella, S. 1987, ACM Transactions on Mathematical
Software, vol. 13, pp. 262–280. [9]

Bélisle, C.J.P., Romeijn, H.E., and Smith, R.L. 1990, Technical Report 90–25, Department of
Industrial and Operations Engineering, University of Michigan, submitted to Mathematical
Programming. [10]

Christofides, N., Mingozzi, A., Toth, P., and Sandi, C. (eds.) 1979, Combinatorial Optimization
(London and New York: Wiley-Interscience) [not simulated annealing, but other topics and
algorithms].

