"Stem cells" from bone marrow

Transdifferentiation Genome reprogramming

PANCREAS

Neovascularization of ischemic myocardium by human bonemarrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function

> A.A. KOCHER¹, M.D. SCHUSTER¹, M.J. SZABOLCS³, S. TAKUMA², D. BURKHOFF², J. WANG¹, S. HOMMA², N.M. EDWARDS¹ & S. ITESCU^{1,2}

Kocher AA., Nature Medicine, Apr. 2001

Bone marrow cells regenerate infarcted myocardium

Donald Orlic†, Jan Kajstura*, Stefano Chimenti*, Igor Jakoniuk*, **Stacie M. Anderson†, Baosheng Li*, James Pickel‡, Ronald McKay‡,** Bernardo Nadal-Ginard*, David M. Bodine†, Annarosa Leri* & Piero Anversa*

NATURE VOL 410 5 APRIL 2001

Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells

Kathyjo A. Jackson,¹ Susan M. Majka,^{1,20} Hongyu Wang,¹ Jennifer Pocius,¹ Craig J. Hartley,⁴ Mark W. Majesky,^{3,5} Mark L. Entman,⁴ Lloyd H. Michael,⁴ Karen K. Hirschi,^{1,23} and Margaret A. Goodell¹

The Journal of Clinical Investigation **June 2001** Volume 107 Number 11

Figure 4 Myocardial repair and connexin 43. a, Border zone; b-d, regenerating myocardium. Shown are connexin 43 (yellow-green; arrows indicate contacts between myocytes) and α -sarcomeric actin (red), and PI-stained nuclei (blue). Original magnification, $\times 500$ (a), $\times 800$ (b-d).

Bone marrow cells regenerate infarcted myocardium

Donald Orlic†, Jan Kajstura*, Stefano Chimenti*, Igor Jakoniuk*, Stacie M. Anderson†, Baosheng Li*, James Pickel‡, Ronald McKay‡, Bernardo Nadal-Ginard*, David M. Bodine†, Annarosa Leri* & Piero Anversa*

* Department of Medicine, New York Medical College, Valhalla, New York 10595, **USA**

† Hematopoiesis Section, Genetics and Molecular Biology Branch, NHGRI, and # Laboratory of Molecular Biology, NINDS, NIH, Bethesda, Maryland 20892, **USA**

Myocardial infarction leads to loss of tissue and impairment of cardiac performance. The remaining myocytes are unable to reconstitute the necrotic tissue, and the post-infarcted heart deteriorates with time¹. Injury to a target organ is sensed by distant stem cells, which migrate to the site of damage and undergo alternate stem cell differentiation²⁻⁵; these events promote structural and functional repair⁶⁻⁸. This high degree of stem cell plasticity prompted us to test whether dead myocardium could be restored by transplanting bone marrow cells in infarcted mice. We sorted lineage-negative (Lin⁻) bone marrow cells from transgenic mice expressing enhanced green fluorescent protein⁹ by fluorescence-activated cell sorting on the basis of c-kit expression¹⁰. Shortly after coronary ligation, Lin⁻ c-kit^{POS} cells were injected in the contracting wall bordering the infarct. Here we report that newly formed myocardium occupied 68% of the infarcted portion of the ventricle 9 days after transplanting the bone marrow cells. The developing tissue comprised proliferating myocytes and vascular structures. Our studies indicate that locally delivered bone marrow cells can generate de novo myocardium, ameliorating the outcome of coronary artery disease.

Figure 2 Myocardial infarct injected with Lin^-c - ki^{POS} cells; myocardium is regenerating from endocardium (EN) to epicardium (EP). a, EGFP (green); **b**, cardiac myosin (red); c, combination of EGFP and myosin (red-green), and propidium-iodide-stained nuclei (blue). Infarcted tissue (IT) can be seen in the subendocardium, spared myocytes (SM) can be seen in the subepicardium. Original magnification, $\times 250$ (a-c).

Is it true plasticity? It might be, but there are other possibilities...

Stem cells

Cell fusion causes confusion

Andrew E. Wurmser and Fred H. Gage

'Transdifferentiation' is a poorly understood process invoked to explain how tissue-specific adult stem cells can generate cells of other tissues. New results challenge its existence.

Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion

Naohiro Terada*†, Takashi Hamazaki*, Masahiro Oka*, Masanori Hoki*, Diana M. Mastalerz*, Yuka Nakano‡, Edwin M. Meyer‡, Laurence Morel*, **Bryon E. Petersen*† & Edward W. Scott†§**

* Department of Pathology, † Program in Stem Cell Biology, Shands Cancer Center, \ddagger Department of Pharmacology, § Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610, USA

Mixed culture

Light microscope (Hoffman)

Green fluorescence

Stem cells

Lost in translation

Kenneth R. Chien

The potential use of stem cells as agents of repair in human disease makes them the subject of high-profile studies. But we should be wary of prematurely pushing laboratory research into clinical practice.

Figure 1 Two strategies used to show that bone-marrow stem cells do not take on the role of damaged heart cells. a, Murry et al.² isolated and purified genetically modified bone-marrow stem cells from mice. The modification 'tagged' the cells (with $LacZ$), enabling them to be detected in the recipient mouse heart, into which the cells were directly injected. Closer inspection of the recipient heart showed that the label could not be detected in heart muscle cells. b, Similar results were shown by Balsam et al , although the approach was slightly different. Donor bone-marrow stem cells were transfused directly into the circulation of recipients. Again, the tag (GFP; green fluorescent protein) could not be detected in heart muscle cells of the donor; indeed, the bone-marrow cells continued to differentiate into blood cells while in the heart.

Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium

Leora B. Balsam¹, Amy J. Wagers^{2,3}, Julie L. Christensen^{2,3}, Theo Kofidis¹, Irving L. Weissman^{2,3} & Robert C. Robbins¹

¹Departments of Cardiothoracic Surgery, ²Pathology, and ³Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA

Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts

Charles E. Murry¹, Mark H. Soonpaa², Hans Reinecke¹, Hidehiro Nakajima², Hisako O. Nakajima², Michael Rubart², Kishore B. S. Pasumarthi²*, Jitka Ismail Virag¹, Stephen H. Bartelmez³, Veronica Poppa¹, Gillian Bradford², Joshua D. Dowell², David A. Williams^{2*} & Loren J. Field²

¹Department of Pathology, Box 357470, Room D-514 HSB, University of Washington, Seattle, Washington 98195, USA ² Wells Center for Pediatric Research, Indiana University, 1044 West Walnut Street, R4 Bldg, Room W376, Indianapolis 46202-5225, USA ³Department of Pathobiology, University of Washington, Seattle, Washington 98195, USA

NATURE doi:10.1038/nature02460 | www.nature.com/nature

Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium

Leora B. Balsam¹, Amy J. Wagers^{2,3}, Julie L. Christensen^{2,3}, Theo Kofidis¹, Irving L. Weissman^{2,3} & Robert C. Robbins¹

NATURE | VOL 428 | 8 APRIL 2004 | www.nature.com/nature

Charles E. Murry¹, Mark H. Soonpaa², Hans Reinecke¹, Hidehiro Nakajima², Hisako O. Nakajima², Michael Rubart², Kishore B. S. Pasumarthi²*, Jitka Ismail Virag¹, Stephen H. Bartelmez³, Veronica Poppa¹, Gillian Bradford², Joshua D. Dowell², David A. Williams²* & Loren J. Field²

Transgenic mice in which the cardiac-specific MHC promoter drives the expression of a nuclear beta-gal

Bone marrow transplant (MHC/EGFP)

Bone marrow transplant (EGFP)

A rare GFP cardiomyocyte in the peri-infarct region, after BMT (MHC staining) and a single rod-shaped enzymatically dispersed cardiomyocyte

Therapeutic nucleic acids

Protein-coding cDNAs

Proteins replacing missing cellular functions Proteins modulating cellular functions Proteins regulating cell survival Proteins activating the immune system Antibodies and intracellular antibodies

Small, non-coding DNAs and RNAs

Oligonucleotides and modified oligonucleotides Phosphorothioate oligonucleotides 2' ribose-modified oligonucleotides Locked Nucleic Acids (LNA) and Ethylene Bridged Nucleic Acids (ENA) siRNA Morpholino (PMO) Peptide Nucleic Acids (PNA) Catalytic RNAs and DNAs (ribozymes and DNAzymes) Small regulatory RNAs (siRNAs, shRNAs, microRNAs)

Screening for cardiomyocyte proliferation using a library of microRNA mimics

microRNA mimics arrayed on 96-well plates (988 mature sequences)

Ana Eulalio

cell fixation and fluorescence staining (Hoechst, alpha-actinin, Ki-67 and EdU)

40 human miRNAs increase both rat and mouse cardiomyocyte proliferation

Hoechst a-actinin EdU

nucleus of proliferating cell nudeus of non-proliferating cell proliferating cardiomyocyte non-proliferating cardiomyocyte

Intracardiac injection of the miRNAs increasing cardiomyocyte proliferation in the newborn rat heart

cel-miR-67 hsa-miR-199a hsa-miR-590 **α-actinin / EdU**

miRNAs increasing CM proliferation in vivo α -actinin EdU merge

Effect of miRNA prolonged expression in vivo?

miR-590 and miR-199a preserve myocardial function after MI

miR-590 and miR-199a markedly reduce infarct size

Masson Trichrome staining

Mechanism?

Identification of miR-590 and miR-199a target genes

Functional analysis (IPA) of transcripts upand down-regulated by hsa-miR-590-3p and hsa-miR-199a-3p

Among the 641 genes downregulated by miR-590-3 and miR-199a-3p are:

Myomesin 1 (Myom1) Myomesin 2 (Myom2) Myosin light polypeptide 4 (Myl4) Nebulin-related anchoring protein (Nrap) Myosin IB (Myo1b) Titin (Ttn) Troponin T1, skeletal slow (Tnnt1) Troponin T2 cardiac (Tnnt2) Cofilin2 (Cofilin2) Dynamin1-like (Dnm1l) Ankyrin repeat domain 52 (Ankrd52) Nebulette (Nbl)

What about large animal models?

\blacksquare Open chest MI model in farm pig

AAV6-miR-199a reduces infarct size after MI

AAV6 empty

Common markers of cell cycle progression

AMERICAN JOURNAL OF PATHOLOGY. VOL. XIII

HYPERPLASIA AND REGENERATION OF THE MYOCARDIUM IN INFANTS AND IN CHILDREN *

H. EDWARD MACMAHON, M.D.

(From the Department of Pathology, Tufts College Medical School, Boston, Mass.)

* Received for publication May 26, 1937.

