
Montecarlo Methods for
Medical Physics

Francesco Longo
(francesco.longo@ts.infn.it)

Geant4 Tutorial Introduction F.Longo 1

Summary of the Course

n  Part1 (Monday)
n  General (and brief) introduction to Monte Carlo methods
n  Montecarlo methods in Medical Physics

n  Part2 (Monday)
n  Introduction to the Geant4 toolkit

n  Part3
n  Fundamentals of a Geant4 application (Tuesday)
n  Geometry, Physics, Particle Flux, Scoring needs (Today - …)

n  Laboratory (Next weeks)
n  Realisation of an example relevant to Medical Physics

2 Geant4 Tutorial Introduction F.Longo

Part 2

Introduction to Geant4

Geant4 Tutorial Introduction F.Longo 3

Toolkit
A set of compatible components
n  each component is specialised for a specific functionality
n  each component can be refined independently to a great detail
n  components can be integrated at any degree of complexity
n  it is easy to provide (and use) alternative components
n  the user application can be customised as needed

Openness to extension and evolution
new implementations can be added w/o changing the existing code

Robustness and ease of maintenance
protocols and well defined dependencies minimize coupling

OO technology

Strategic vision

Outline of Part2
n  General Introduction to G4

n  What is G4 ?
n  Review of user documentation
n  Geant4 as a toolkit

n  Basics of OO programming
n  Geant4 Kernel and basics of the toolkit

n  Run, Event, Step
n  Particle and Physics processes
n  User classes

5 Geant4 Introduction F.Longo

Simulation basics

Geant4 Introduction F.Longo 6

7

Geant4 simulation toolkit

n  Modeling the experimental set-up
n  Tracking particles through matter
n  Interaction of particles with matter
n  Modeling the detector response
n  Run and event control
n  Accessory utilities (random number generators, PDG particle

information, physical constants, system of units etc.)

n  User interface
n  Interface to event generators

n  Visualisation (of the set-up, tracks, hits etc.)
n  Persistency

n  Analysis

Part 2

Main ingredients of a G4 application

Geant4 Tutorial Introduction F.Longo 8

9 Geant4 Introduction F.Longo

To use Geant4, you have to…

n  Geant4 is a toolkit. You have to build an application.
n  To make an application, you have to

n  Define your geometrical setup
n  Material, volume

n  Define physics to get involved
n  Particles, physics processes/models
n  Production thresholds

n  Define how an event starts
n  Primary track generation

n  Extract information useful to you

n  You may also want to
n  Visualize geometry, trajectories and physics output
n  Utilize (Graphical) User Interface
n  Define your own UI commands
n  etc.

10

Run in Geant4
n  As an analogy of the real experiment, a run of Geant4 starts with “Beam On”.

n  Within a run, the user cannot change
n  detector setup

n  settings of physics processes

n  Conceptually, a run is a collection of events which share the same detector
and physics conditions.
n  A run consists of one event loop.

n  At the beginning of a run, geometry is optimized for navigation and cross-
section tables are calculated according to materials appear in the geometry
and the cut-off values defined.

n  G4RunManager class manages processing a run, a run is represented by
G4Run class or a user-defined class derived from G4Run.
n  A run class may have a summary results of the run.

n  G4UserRunAction is the optional user hook.

11

Event in Geant4
n  An event is the basic unit of simulation in Geant4.

n  At beginning of processing, primary tracks are generated. These primary tracks

are pushed into a stack.

n  A track is popped up from the stack one by one and “tracked”. Resulting

secondary tracks are pushed into the stack.

n  This “tracking” lasts as long as the stack has a track.

n  When the stack becomes empty, processing of one event is over.

n  G4Event class represents an event. It has following objects at the end of its

(successful) processing.

n  List of primary vertices and particles (as input)

n  Hits and Trajectory collections (as output)

n  G4EventManager class manages processing an event. G4UserEventAction is

the optional user hook.

12

Track in Geant4
n  Track is a snapshot of a particle.

n  It has physical quantities of current instance only. It does not record previous
quantities.

n  Step is a “delta” information to a track. Track is not a collection of steps.
Instead, a track is being updated by steps.

n  Track object is deleted when
n  it goes out of the world volume,
n  it disappears (by e.g. decay, inelastic scattering),

n  it goes down to zero kinetic energy and no “AtRest” additional process is
required, or

n  the user decides to kill it artificially.

n  No track object persists at the end of event.
n  For the record of tracks, use trajectory class objects.

n  G4TrackingManager manages processing a track, a track is represented
by G4Track class.

n  G4UserTrackingAction is the optional user hook.

13

Step in Geant4
n  Step has two points and also “delta” information of a particle (energy loss on

the step, time-of-flight spent by the step, etc.).

n  Each point knows the volume (and material). In case a step is limited by a
volume boundary, the end point physically stands on the boundary, and it
logically belongs to the next volume.
n  Because one step knows materials of two volumes, boundary processes such as

transition radiation or refraction could be simulated.

n  G4SteppingManager class manages processing a step, a step is represented
by G4Step class.

n  G4UserSteppingAction is the optional user hook.

Pre-step point
Post-step point

Step

Boundary

14

Particle in Geant4
n  A particle in Geant4 is represented by three layers of classes.
n  G4Track

n  Position, geometrical information, etc.

n  This is a class representing a particle to be tracked.

n  G4DynamicParticle
n  "Dynamic" physical properties of a particle, such as momentum, energy, spin, etc.

n  Each G4Track object has its own and unique G4DynamicParticle object.
n  This is a class representing an individual particle.

n  G4ParticleDefinition
n  "Static" properties of a particle, such as charge, mass, life time, decay channels, etc.
n  G4ProcessManager which describes processes involving to the particle

n  All G4DynamicParticle objects of same kind of particle share the same
G4ParticleDefinition.

15

Extract useful information
n  Given geometry, physics and primary track generation, Geant4 does proper

physics simulation “silently”.
n  You have to add a bit of code to extract information useful to you.

n  There are two ways:
n  Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)

n  You have an access to almost all information

n  Straight-forward, but do-it-yourself

n  Use Geant4 scoring functionality
n  Assign G4VSensitiveDetector to a volume

n  Hits collection is automatically stored in G4Event object, and automatically accumulated if
user-defined Run object is used.

n  Use Geant4 native scorers to get specified quantities (dose, energy release, flux, path
length, etc.)

Geant4 Tutorial Introduction
F.Longo 16

Geometry

n  Role
n  detailed detector description
n  efficient navigation

n  Three conceptual layers
n  Solid: shape, size
n  LogicalVolume: material, sensitivity, daughter volumes, etc.
n  PhysicalVolume: position, rotation

n  One can do fancy things with geometry…

Geometry

Boolean operations

Courtesy of ATLAS Collaboration

ATLAS
5.2 M volume objects

110 K volume types

March 2007 18
Geant4 Tutorial Introduction

F.Longo

Detector geometry

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

n  Three conceptual layers
n  G4VSolid -- shape, size

n  G4LogicalVolume -- daughter physical volumes,

 material, sensitivity, user limits, etc.

n  G4VPhysicalVolume -- position, rotation

Geant4 Tutorial Introduction
F.Longo 19

Geometry - Materials

20
Geant4 Tutorial Introduction

F.Longo

Definition of Materials
n  Different kinds of materials can be described:

n  isotopes <-> G4Isotope
n  elements <-> G4Element
n  molecules, compounds and mixtures <-> G4Material

n  Attributes associated to G4Material:
n  temperature, pressure, state, density

n  Prefer low-density material to vacuum

n  Single element material

double density = 1.390*g/cm3;

double a = 39.95*g/mole;

G4Material* lAr =

 new G4Material("liquidArgon",z=18.,a,density);

First Homework

n  Review G4 web pages
n  Find Appropriate documentation
n  Find relevant Medical Physics examples
n  Define your preferred project

n  Simple geometry
n  Particle distributions
n  Scoring needs

21 Geant4 Tutorial Introduction F.Longo

Geant4 Tutorial Introduction
F.Longo 22

Physics Lists

Toolkit
A set of compatible components
n  each component is specialised for a specific functionality
n  each component can be refined independently to a great detail
n  components can be integrated at any degree of complexity
n  it is easy to provide (and use) alternative components
n  the user application can be customised as needed

Openness to extension and evolution
new implementations can be added w/o changing the existing code

Robustness and ease of maintenance
protocols and well defined dependencies minimize coupling

OO technology

Strategic vision

Physics
From the Minutes of LCB (LHCC Computing Board) meeting on 21 October, 1997:

“It was noted that experiments have requirements
for independent, alternative physics models.
In Geant4 these models, differently from the
concept of packages, allow the user to understand
how the results are produced, and hence improve
the physics validation. Geant4 is developed with a
modular architecture and is the ideal framework
where existing components are integrated and new
models continue to be developed.”

25
Geant4 Introduction

F.Longo

To use Geant4, you have to…

n  Geant4 is a toolkit. You have to build an application.
n  To make an application, you have to

n  Define your geometrical setup
n  Material, volume

n  Define physics to get involved
n  Particles, physics processes/models
n  Production thresholds

n  Define how an event starts
n  Primary track generation

n  Extract information useful to you

n  You may also want to
n  Visualize geometry, trajectories and physics output
n  Utilize (Graphical) User Interface
n  Define your own UI commands
n  etc.

26
Geant4 Tutorial Introduction

F.Longo

User classes
n  main()

n  Geant4 does not provide main().
Note : classes written in yellow are mandatory.

n  Initialization classes
n  Use G4RunManager::SetUserInitialization() to define.
n  Invoked at the initialization

n  G4VUserDetectorConstruction
n  G4VUserPhysicsList

n  Action classes
n  Use G4RunManager::SetUserAction() to define.
n  Invoked during an event loop

n  G4VUserPrimaryGeneratorAction
n  G4UserRunAction
n  G4UserEventAction
n  G4UserStackingAction
n  G4UserTrackingAction
n  G4UserSteppingAction

27
Geant4 Introduction

F.Longo

Physics in Geant4
n  It is rather unrealistic to develop a uniform physics model to cover wide variety of

particles and/or wide energy range.

n  Much wider coverage of physics comes from mixture of theory-driven,
parameterized, and empirical formulae. Thanks to polymorphism mechanism,
both cross-sections and models (final state generation) can be combined in
arbitrary manners into one particular process.

n  Geant4 offers
n  EM processes
n  Hadronic processes

n  Photon/lepton-hadron processes

n  Optical photon processes

n  Decay processes

n  Shower parameterization

n  Event biasing techniques

n  And you can plug-in more

 What is a Physics List?

●  A class which collects all the particles, physics processes and

production thresholds needed for your application
●  It tells the run manager how and when to invoke physics

●  It is a very flexible way to build a physics environment
•  user can pick the particles he wants
•  user can pick the physics to assign to each particle

●  But, user must have a good understanding of the physics
required
•  omission of particles or physics could cause errors or poor simulation

 Why Do We Need a Physics List?

●  Physics is physics – shouldn't Geant4 provide, as a default, a

complete set of physics that everyone can use?
●  No:

n  there are many different physics models and approximations
n  very much the case for hadronic physics
n  but also the case for electromagnetic physics

n  computation speed is an issue
n  a user may want a less-detailed, but faster approximation

n  no application requires all the physics and particles Geant4 has to offer
n  e.g., most medical applications do not want multi-GeV physics

 Why Do We Need a Physics List?

●  For this reason Geant4 takes an atomistic, rather than an

integral approach to physics
n  provide many physics components (processes) which are de-coupled

from one another
n  user selects these components in custom-designed physics lists in

much the same way as a detector geometry is built

 Physics Processes Provided
by Geant4

●  EM physics
  “standard” processes valid from ~ 1 keV to ~ PeV
  “low-energy” Livermore/ Penelope valid from 250 eV to ~ PeV
  optical photons

●  Weak physics
  decay of subatomic particles
  radioactive decay of nuclei

●  Hadronic physics
  pure hadronic processes valid from 0 to ~100 TeV
  γ-, µ-nuclear valid from 10 MeV to ~TeV

●  Parameterized or “fast simulation” physics

 Pre-packaged Physics Lists (1)

●  Our example deals mainly with electromagnetic physics
●  A complete and realistic set of EM physics lists are provided

•  add to it according to your needs
●  Adding hadronic physics is more involved

•  for any one hadronic process, user may choose from several hadronic
models to choose from

•  choosing the right models for your application requires care
•  to make things easier, hadronic physics lists are now provided

according to some use cases

 Pre-packaged Physics Lists (2)

●  Originally referred to as “hadronic physics lists” but include
electromagnetic physics already

●  Can be found on the Geant4 web page at
●  PhysicsList Guide

●  Caveats:

n  these lists are provided as a “best guess” of the physics needed in a
given case

n  The user is responsible for validating the physics for his own
application and adding (or subtracting) the appropriate physics
n  “Trust, but verify.”

n  they are intended as starting points or templates

Reference Physics Lists
n  Reference physics lists attempt to cover a wide range of use cases

n  Extensive validation by LHC experiments for simulation hadronic
showers

n  Comparison experinents for neutron production and transport
demonstrates good agreement

n  QGSP_BIC_HP, QGSP_BERT_HP
n  user feedback, e.g. vi hypernews, is welcome

n  Users responsible for validating results

n  Documentation available from G4 Physics List manual
n  Physics Lists User forum for questions and feedback

G4 home page

n  https://geant4.web.cern.ch/

35 Geant4 Introduction F.Longo

Hands On

Geant4 Introduction F.Longo 36

Work on Medical Physics Example
n  Check the Example documentation or the source code.

n  Find the geometrical info
n  Find the physics list
n  Find the particle source mechanism
n  Find the particle scoring mechanism

n  Start designing your application …

37
Geant4 Tutorial Introduction F.Longo

Laboratory

Geant4 Introduction F.Longo 38

Procedure

1)  Copiate l’esempio basic B3 nella vostra directory
2)  Entrate nella vostra directory B3
3)  Costruite la sottodirectory dove compilerete
4)  Entrate nella directory B3/build
5)  Eseguite il comando per creare i makefiles
6)  Compilate l’esempio
7)  Entrate nella directory B3/build/B3a
8)  Lanciate l’esempio exampleB3a

41 Geant4 Tutorial Introduction F.Longo

Procedure

1)  cp -r /gpfs/glast/Geant4/G4_10.5.p01/geant4.10.05.p01-
install/share/Geant4-10.5.1/examples/basic/B3 .

2)  cd B3
3)  mkdir build
4)  cd build
5)  cmake ../
6)  make
7)  cd B3a
8)  ./exampleB3a

42 Geant4 Tutorial Introduction F.Longo

Geant4 Tutorial Introduction
F.Longo 43

Particle Generation

44
Geant4 Introduction

F.Longo

To use Geant4, you have to…

n  Geant4 is a toolkit. You have to build an application.
n  To make an application, you have to

n  Define your geometrical setup
n  Material, volume

n  Define physics to get involved
n  Particles, physics processes/models
n  Production thresholds

n  Define how an event starts
n  Primary track generation

n  Extract information useful to you

n  You may also want to
n  Visualize geometry, trajectories and physics output
n  Utilize (Graphical) User Interface
n  Define your own UI commands
n  etc.

45
Geant4 Tutorial Introduction

F.Longo

User classes
n  main()

n  Geant4 does not provide main().
Note : classes written in yellow are mandatory.

n  Initialization classes
n  Use G4RunManager::SetUserInitialization() to define.
n  Invoked at the initialization

n  G4VUserDetectorConstruction
n  G4VUserPhysicsList

n  Action classes
n  Use G4RunManager::SetUserAction() to define.
n  Invoked during an event loop

n  G4VUserPrimaryGeneratorAction
n  G4UserRunAction
n  G4UserEventAction
n  G4UserStackingAction
n  G4UserTrackingAction
n  G4UserSteppingAction

Primary particle generation

47

G4VUserPrimaryGeneratorAction
n  This class is one of mandatory user classes to control the generation of

primaries.

n  This class itself should NOT generate primaries but invoke
GeneratePrimaryVertex() method of primary generator(s) to make
primaries.

n  Constructor

n  Instantiate primary generator(s)

n  Set default values to it(them)

n  GeneratePrimaries() method

n  Randomize particle-by-particle value(s)

n  Set these values to primary generator(s)

n  Never use hard-coded UI commands

n  Invoke GeneratePrimaryVertex() method of primary generator(s)

Built-in primary particle
generators

49

G4ParticleGun
n  Concrete implementations of G4VPrimaryGenerator

n  A good example for experiment-specific primary generator implementation
n  It shoots one primary particle of a certain energy from a certain point at a certain

time to a certain direction.
n  Various set methods are available
n  Intercoms commands are also available for setting initial values

n  One of most frequently asked questions is :

I want “particle shotgun”, “particle machinegun”, etc.

n  Instead of implementing such a fancy weapon, in your implementation of
UserPrimaryGeneratorAction, you can

n  Shoot random numbers in arbitrary distribution

n  Use set methods of G4ParticleGun

n  Use G4ParticleGun as many times as you want

n  Use any other primary generators as many times as you want to make
overlapping events

50

G4VUserPrimaryGeneratorAction
void T01PrimaryGeneratorAction::
 GeneratePrimaries(G4Event* anEvent)
{ G4ParticleDefinition* particle;
 G4int i = (int)(5.*G4UniformRand());
 switch(i)
 { case 0: particle = positron; break; ... }
 particleGun->SetParticleDefinition(particle);
 G4double pp =
 momentum+(G4UniformRand()-0.5)*sigmaMomentum;
 G4double mass = particle->GetPDGMass();
 G4double Ekin = sqrt(pp*pp+mass*mass)-mass;
 particleGun->SetParticleEnergy(Ekin);
 G4double angle = (G4UniformRand()-0.5)*sigmaAngle;
 particleGun->SetParticleMomentumDirection
 (G4ThreeVector(sin(angle),0.,cos(angle)));
 particleGun->GeneratePrimaryVertex(anEvent);
}

n  You can repeat this for generating more than one primary particles.

51

Primary vertices and primary particles

n  Primary vertices and primary particles are stored in G4Event in advance to
processing an event.

n  G4PrimaryVertex and G4PrimaryParticle classes

n  These classes don’t have any dependency to G4ParticleDefinition nor G4Track.

n  They will become “primary tracks” only at Begin-of-Event phase and put into a

“stack”

MyPrimaryGenerator
(G4VUserPrimaryGeneratorAction)

Computes desired
primary properties

MyParticleGun
(G4VPrimaryGenerator)

Vertices and

Primary particles
are created

G4Event

Primaries are stored
for later tracking

52

G4ParticleGun
n  Concrete implementations of G4VPrimaryGenerator

n  A good example for experiment-specific primary generator implementation

n  It shoots one primary particle of a certain energy from a certain point at a
certain time to a certain direction.
n  Various C++ set methods are available

n  Intercoms commands are also available for setting initial values

n  /gun/List List available particles
n  /gun/particle Set particle to be generated
n  /gun/direction Set momentum direction
n  /gun/energy Set kinetic energy
n  /gun/momentum Set momentum
n  /gun/momentumAmp Set absolute value of momentum
n  /gun/position Set starting position of the particle
n  /gun/time Set initial time of the particle
n  /gun/polarization Set polarization
n  /gun/number Set number of particles to be generated

 (per event)
n  /gun/ion Set properties of ion to be generated

 [usage] /gun/ion Z A Q

53

Motivation for GPS
n  After first simple tutorial trials, modelling sources in realistic

set-up soon requires relatively more complex sources

n  G4ParticleGun can be used in most cases
 (as in the series of examples during this tutorial), but

n  users still needs to code (C++) almost every change and
n  add related UI commands for interactive control

n  Requirements for advanced primary particle modelling are
often common to many users in different communities
n  E.g. uniform vertex distribution on a surface, isotropic generation,

energy spectrum,…

54

What is GPS?

n  The General Particle Source (GPS) offers as pre-defined
 many common options for particle generation
 (energy, angular and spatial distributions)

n  GPS is a concrete implementation of G4VPrimaryGenerator (as G4ParticleGun but more
advanced)

n  G4 class name: G4GeneralParticleSource (in the event category)

n  User cases: space radiation environment, medical physics, accelerator (fixed target)

n  First development (2000) University of Southampton (ESA contract), maintained
and upgraded now mainly by QinetiQ and ESA

55

G4GeneralParticleSource

n  A concrete implementation of G4VPrimaryGenerator
n  Suitable especially to space applications

MyPrimaryGeneratorAction::

 MyPrimaryGeneratorAction()

{ generator = new G4GeneralParticleSource; }

void MyPrimaryGeneratorAction::

 GeneratePrimaries(G4Event* anEvent)

{ generator->GeneratePrimaryVertex(anEvent); }

n  Detailed description
Geant4 GPS manual
LXR code browser (expgps)

56

Summary of GPS features	

n  Primary vertex can be randomly positioned with several options
n  Emission from point, plane,…

n  Angular emission

n  Several distributions; isotropic, cosine-law, focused, …

n  With some additional parameters (min/max-theta, min/max-phi,…)

n  Kinetic energy of the primary particle can also be randomized.

n  Common options (e.g. mono-energetic, power-law), some extra shapes (e.g.

black-body) or user defined

n  Multiple sources

n  With user defined relative intensity

n  Capability of event biasing (variance reduction).

n  By enhancing particle type, distribution of vertex point, energy and/or direction

57

G4GeneralParticleSource (GPS)	

n  An advanced concrete implementation of G4VPrimaryGenerator

n  Offers as pre-defined many common (and not so common) options

n  Position, angular and energy distributions

n  Multiple sources, with user defined relative intensity

n  Capability of event biasing (variance reduction).

n  All features can be used via C++ or command line (or macro) UI

58

Example:
Proton source

n  Vertices on rectangle along xz at edge of World
n  Parallel emission along -y
n  Monoenergetic: 500 MeV

n  Macro
 /gps/particle proton

 /gps/ene/type Mono
/gps/ene/mono 500 MeV

 /gps/pos/type Plane
 /gps/pos/shape Rectangle
/gps/pos/rot1 0 0 1

 /gps/pos/rot2 1 0 0
 /gps/pos/halfx 46.2 cm
 /gps/pos/halfy 57.2 cm
 /gps/pos/centre 0. 57.2 0. cm

 /gps/direction 0 –1 0

59

GPS
Example 6

n  Vertex on sphere surface
n  Isotropic emission
n  Pre-defined spectrum (black-body)

n  Macro
 /gps/particle geantino

 /gps/pos/type Surface
/gps/pos/shape Sphere
/gps/pos/centre -2. 2. 2. cm
/gps/pos/radius 2.5 cm

 /gps/ang/type iso

 /gps/ene/type Bbody
/gps/ene/min 2. MeV
/gps/ene/max 10. MeV
/gps/ene/temp 2e10
/gps/ene/calculate

60

GPS
Example 7

n  Vertex on cylinder surface
n  Cosine-law emission

 (to mimic isotropic source in space)
n  Pre-defined spectrum

 (Cosmic Diffuse Gamma)

n  Macro
 /gps/particle gamma

 /gps/pos/type Surface
/gps/pos/shape Cylinder
/gps/pos/centre 2. 2. 2. cm
/gps/pos/radius 2.5 cm
/gps/pos/halfz 5. cm

 /gps/ang/type cos

 /gps/ene/type Cdg
/gps/ene/min 20. keV
/gps/ene/max 1. MeV
/gps/ene/calculate

61

GPS vs G4ParticleGun

MyPrimaryGenerator
(G4VUserPrimaryGeneratorAction)

Computes desired
primary properties

G4ParticleGun
(G4VPrimaryGenerator)

Vertices and
Primary particles

are created

G4Event

Primaries are stored
for later tracking

MyPrimaryGenerator
(G4VUserPrimaryGeneratorAction)

G4GeneralParticleSource
(G4VPrimaryGenerator)

Computes desired
primary properties

Creates vertices and
primary particles

G4Event

Primaries are stored
for later tracking

User messenger (UI)

GPS messenger (UI)

user geant4

62

GPS control: scripting UI
n  All features can be used via C++ or command line (or macro) UI

n  Example of isotropic emission in UserPrimaryGenerator C++ code:
examples/advanced/human_phantom/src/G4HumanPhantomPrimaryGeneratorAction.cc

G4double a,b,c;
G4double n;
do {
 a = (G4UniformRand()-0.5)/0.5;
 b = (G4UniformRand()-0.5)/0.5;
 c = (G4UniformRand()-0.5)/0.5;
 n = a*a+b*b+c*c;
} while (n > 1 || n == 0.0);
n = std::sqrt(n);
a /= n;
b /= n;
c /= n;
G4ThreeVector direction(a,b,c);
particleGun->SetParticleMomentumDirection(direction);

n  Equivalent GPS (script)

/gps/ang/type iso

63

Position distributions /gps/pos/…

n  Point
E.g. /gps/pos/type Point

 /gps/pos/centre 0. 0. 0. cm

n  Beam
E.g. /gps/pos/type Beam

 /gps/pos/shape Circle
 /gps/pos/radius 1. mm
 /gps/pos/sigma_r 2. mm

n  Plane
n  Shape: Circle, Annulus, Ellipsoid, Square or Rectangle
E.g. /gps/pos/type Plane

 /gps/pos/shape Rectangle
 /gps/pos/halfx 50 cm
 /gps/pos/halfy 70 cm

n  Surface or Volume
n  Shape: Sphere, Ellipsoid, Cylinder or Para
n  Surface: zenith automatically oriented as normal to surface at point
E.g. /gps/pos/type Surface

 /gps/pos/shape Sphere
 /gps/pos/radius 1. m

64

Position distributions
 /gps/pos/… (2)

n  Some shared UI commands

n  /gps/pos/centre
n  /gps/pos/halfx | y | z
n  /gps/pos/radius
n  /gps/pos/inner_radius
n  /gps/pos/sigmar
n  /gps/pos/sigmax | y
n  /gps/pos/rot1
n  /gps/pos/rot2

n  When usinig Volume type, one can limit the emission from within
a certain volume in the “mass” geometry

 /gps/pos/confine your_physical_volume_name

65

Angular distributions /gps/ang/…

n  Isotropic (iso)

n  Cosine-law (cos)
n  See next slides for more information

n  Planar wave (planar)
n  Standard emission in one direction

 (it’s also implicitly set by /gps/direction x y z)

n  Accelerator beam
n  1-d or 2-d gaussian emission, beam1d or beam2d

n  Focusing to a point (focused)

n  User-defined (user)

66

Energy distributions
/gps/ene/…

Kinetic energy of the primary particle can also be randomized, with
several predefined options:

n  Common options (e.g. mono-energetic, power-law, exponential,
gaussian, etc)
n  mono-energetic (Mono)
n  linear (Lin)
n  power-law (Pow)
n  exponential (Exp)
n  gaussian (Gauss)

n  Some extra predefined spectral shapes (bremsstrahlung, black-
body, cosmic diffuse gamma ray,…)
n  bremsstrahlung (Brem)
n  black-body (Bbody)
n  cosmic diffuse gamma ray (Cdg)

n  User defined
n  user-defined histogram (User)
n  arbitrary point-wise spectrum (Arb) and
n  user-defined energy per nucleon histogram (Epn)

67

Multiple sources
n  Definition of multiple “parallel” sources
n  One source per event is used
n  Sampling according to relative

intensity
n  First source is always

already present (implicitly
created)
n  one can add intensity

information

 /gps/source/intensity 5.

n  Additional sources must be

added explicitly

 /gps/source/add 10.

68

GPS
Example 31

n  Two-beam source
definition
 (multiple sources)

n  Gaussian profile

n  Can be focused /
defocused

n  Macro
beam #1

default intensity is 1,
 # now change to 5.
/gps/source/intensity 5.

/gps/particle proton
/gps/pos/type Beam

the incident surface is

 # in the y-z plane
/gps/pos/rot1 0 1 0
/gps/pos/rot2 0 0 1

the beam spot is centered

 # at the origin and is
of 1d gaussian shape

 # with a 1 mm central plateau
/gps/pos/shape Circle
/gps/pos/centre 0. 0. 0. mm
/gps/pos/radius 1. mm
/gps/pos/sigma_r .2 mm

 # the beam is travelling
 # along the X_axis
 # with 5 degrees dispersion
/gps/ang/rot1 0 0 1
/gps/ang/rot2 0 1 0
/gps/ang/type beam1d
/gps/ang/sigma_r 5. deg

the beam energy is in

 # gaussian profile centered
 # at 400 MeV
/gps/ene/type Gauss
/gps/ene/mono 400 MeV
/gps/ene/sigma 50. MeV

beam #2

2x the instensity of beam #1
/gps/source/add 10.

this is a electron beam
...

69

G4GeneralParticleSource	

n  Primary vertex can be randomly chosen on the surface of a certain volume.

n  Momentum direction and kinetic energy of the primary particle can also be
randomized.

n  Distribution could be set by UI commands.

n  Capability of event biasing (variance reduction).

n  By enhancing particle type, distribution of vertex point, energy and/or
direction	

Square plane, cosine-law direction, linear energy
Spherical surface, isotropic radiation, black-body energy Cylindrical surface, cosine-law radiation, Cosmic diffuse energy Spherical volume with z biasing, isotropic radiation with theta

and phi biasing, integral arbitrary point-wise energy distribution
with linear interpolation.

