166 LOGISTIC REGRESSION
5.1 INTERPRETING PARAMETERS IN LOGISTIC REGRESSION

For a binary response variable Y and an explanatory variable X, let mw(x) =
P(Y=1|X=x)=1—-P(Y = 0|X = x). The logistic regression model is

exp (o + Bx
m(x) = ad Bx) . (5.1)
1+ exp(a + Bx)
Equivalently, the log odds, called the logit, has the linear relationship
togit[ ()] = Tog—r " 52
t =log————— = a + Bx. :
ogit| 7 (x) Ogl—ﬂ-(x) a+ Bx (52)

This equates the logit link function to the linear predictor.

5.1.1 Interpreting 3: Odds, Probabilities, and Linear Approximations

How can we interpret B in (5.2)? Its sign determines whether 7 (x) is
increasing or decreasing as x increases. The rate of climb or descent
increases as | B|increases; as 8 — 0 the curve flattens to a horizontal straight
line. When B = 0, Y is independent of X. For quantitative x with 8 > 0, the
curve for 7(x) has the shape of the cdf of the logistic distribution (recall
Section 4.2.5). Since the logistic density is symmetric, 7 (x) approaches 1 at
the same rate that it approaches 0.

Exponentiating both sides of (5.2) shows that the odds are an exponential
function of x. This provides a basic interpretation for the magnitude of SB:
The odds increase multiplicatively by e” for every 1-unit increase in x. In
other words, e® is an odds ratio, the odds at X = x + 1 divided by the odds
at X = x.

Most scientists are not familiar with odds or logits, so the interpretation of
a multiplicative effect of e¢® on the odds scale or an additive effect of 8 on
the logit scale is not helpful to them. A simpler, although approximate slope
interpretation uses a linearization argument (Berkson 1951). Since it has a
curved rather than a linear appearance, the logistic regression function (5.1)
implies that the rate of change in w(x) per unit change in x varies. A
straight line drawn tangent to the curve at a particular x value, shown in
Figure 5.1, describes the rate of change at that point. Calculating 97 (x)/dx
using (5.1) yields a fairly complex function of the parameters and x, but it
simplifies to the form Bw(x)[1 — 7 (x)].

For instance, the line tangent to the curve at x for which 7(x) = 3 has
slope B(3)(3) = B/4; when 7(x) = 0.9 or 0.1, it has slope 0.098. The slope
approaches 0 as 7 (x) approaches 1.0 or 0. The steepest slope occurs at x for
which 77(x) = 1; that x value is x = —a/B. [To check that 7(x) = 3 at this



Michele Grassi
Linea

Michele Grassi
Linea

Michele Grassi
Linea

Michele Grassi
Linea

Michele Grassi
Linea

Michele Grassi
Linea

Michele Grassi
Linea

Michele Grassi
Linea

Michele Grassi
Linea


INTERPRETING PARAMETERS IN LOGISTIC REGRESSION 167

1.0

pr(t-m)
0.8

Probability
(@]
o

1

©
~
§

0.2

0.0 T T T T T T T
20 22 24 26 28 30 32 34

Width, x (cm)

FIGURE 5.1 Linear approximation to logistic regression curve.

point, substitute —a/B for x in (5.1), or substitute 7(x) = 1 in (5.2) and
solve for x.] This x valuc is sometimes called the median effective level and
denoted In toxicology studies it is called LDy, (LD = lethal dose), the
dose with a 50% chance of a lethal result.

From this linear approximation, near x where 7(x) = 1, a change in x of
1/B corresponds to a change in w(x) of roughly (1/8) 8/4) = ;; that
is, 1/B approximates the distance between x values where 7 (x) = 0.25 or
0.75 (in reality, 0.27 and 0.73) and where 7 (x) = 0.50. The linear approxima-
tion works better for smaller changes in x, however.

An alternative way to interpret the effect reports the values of 7(x) at
certain x values, such as their quartiles. This entails substituting those
quartiles for x into formula (5.1) for @ (x). The change in 7 (x) over the
middle half of x values, from the lower quartile to the upper quartile of x,
then describes the effect. It can be compared to the corresponding change
over the middle half of values of other predictors.

The intercept parameter « is not usually of particular interest. However,
by centering the predictor about O [i.e., replacing x by (x — ¥)], « becomes
the logit at that mean, and thus e®/(1 +e*) = w(x). (As in ordinary
regression, centering is also helpful in complex models containing quadratic
or interaction terms to reduce correlations among model parameter esti-
mates.)
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