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Background

Numerical summaries of (aspects of) dependence are known as measures
of association and are mostly studied in the bivariate case (for extensions
to higher dimensions, see, e.g., Jaworski et al. (2010).

::::

For a pair of rvs (X1,X2) we quantify the dependence by means of

the usual linear Pearson’s correlation coefficient

Cor(X1,X2) =
Cov(X1,X2)√

Var(X1)
√

Var(X2)
(1)

Copula-based measures

{
rank correlation coefficients

tail-dependence coefficients
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Properties of Linear Correlation

Let (X1,X2) be a random vector whose components have finite variances.
Then,

1 Cor(X1,X2) ∈ [−1, 1]

2 |Cor(X1,X2)| = 1 if and only if there exist a, b ∈ R, a 6= 0, such that
X2 = aX1 + b almost surely (X1 and X2 are perfectly linearly
dependent)

3 If X1 and X2 are independent, then Cor(X1,X2) = 0

4 For any a1, a2 > 0, or any a1, a2 < 0, and for any b1, b2 ∈ R,

Cor(a1X1 + b1, a2X2 + b2) = Cor(X1,X2)

In particular, Pearson’s correlation coefficient is invariant under
strictly increasing linear transformations.
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Fallacies Related to the Correlation Coefficient
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Fallacies Related to the Correlation Coefficient

Understanding the limitations of correlation

Fallacy 1 (Existence) Cor(X1,X2) exists for every random vector (X1,X2)

The Cauchy-Schwarz inequality implies

|Cov(X1,X2)| ≤
√

Var(X1)Var(X2)

hence, both the numerator and the denominator in Eq. (1)
exist only if the second moments of X1 and X2 are finite

Fallacy 2 (Invariance) Cor(X1,X2) is invariant under strictly increasing
transformations on ranX1 or ranX2.

Counterexample to Fallacies 1 and 2. If X1,X2 ∼ F (x) = 1− x−3, x ≥ 1
and X1,X2 ind., then Cor(X1,X2) = 0 but Cor(X 3

1 ,X2) does not exist
since neither E ((X 3

1 )2) nor E (X 3
1 ) are finite.
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Fallacies Related to the Correlation Coefficient

Understanding the limitations of correlation/ 2

Fallacy 3 (Uniqueness) The marginal distributions and the correlation
coefficient uniquely determine the joint distribution

Fallacy 4 (Uncorrelatedness Implies Independence) Cor(X1,X2) = 0
implies that X1 and X2 are independent.

Counterexamples to Fallacies 3 and 4. Fallacy 4 alone can be easily
falsified by taking X1 ∼ N(0, 1) and X2 = X 2

1 ; then Cor(X1,X2) = 0 but
X1 and X2 are dependent.

A counterexample to both Fallacies 3 and 4 can be constructed by a
mixture of the two Fréchet-Hoeffding bounds W and M.

Dependence modeling with copulas Part II June 6, 2022 8



Fallacies Related to the Correlation Coefficient

Understanding the limitations of correlation/ 3

Model 1: X = (X1,X2) ∼ N2(0, I2), i.e., (X1,X2) has N(0, 1) margins
and zero correlation.
Model 2: (Y1,Y2) = (X1,VX1), with X1 as in Model 1 and V and
independent discrete rv such that P(V = 1) = P(V = −1) = 1/2. Hence

Cor(Y1,Y2) = Cov(Y1,Y2) = E(Y1Y2) = E(VX 2
1 ) = E(V )E(X 2

1 ) = 0

Conditional on V = −1 (respectively, V = 1), the copula C of (Y1,Y2) is
the countermonotonicity W (respectively, the comonotonicity copula M):

C (u1, u2) = 0.5 max(u1 + u2 − 1, 0) + (1− 0, 5) min(u1, u2)

which is a mixture of the two-dimensional Fréchet-Hoeffding bounds.
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Fallacies Related to the Correlation Coefficient

Uncorrelatedness Versus Independence

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Y1
Y

2

Figure: n = 1000 independent realizations from (X1,X2), whose copula is the
independence copula (left) and (Y1,Y2), whose copula is a mixture between the
Fréchet–Hoeffding bounds W and M (right); both have N(0, 1) margins and
zero correlation.
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Fallacies Related to the Correlation Coefficient

Uncorrelatedness Versus Independence/ 2

Assume X1,X2 from Model 1 and Y1,Y2 from Model 2 are losses, with
N(0, 1) margins and zero correlation. it can be proved that for α > 0.75,
VaRα(X1 + X2) =

√
2Φ−1(α); VaRα(Y1 + Y2) = 2Φ−1(2α− 1)
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Figure: VaR for the risks X1 + X2 and Y1 + Y2. The VaR of a sum of risks is not
determined by marginal distributions and pairwise correlations.
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Fallacies Related to the Correlation Coefficient

Attainable Correlations

Fallacy 5 (Attainable Correlations) Given margins F1,F2, all
Cor(X1,X2) ∈ [−1, 1] can be attained by choosing a
suitable copula for (X1,X2).

Counterexample to Fallacy 5. Let lnX1 ∼ N(0, 1) and lnX2 ∼ N(0, σ2).
Hence, (X1,X2) has lognormally distributed margins. Let Z ∼ N(0, 1).
Then

X1,X2 comonotonic: (X1,X2)
d
= (eZ , eσZ )

Cor(X1,X2) = ρmax =
eσ − 1√

(e − 1)(eσ2 − 1)

X1,X2 countermonotonic: (X1,X2)
d
= (eZ , e−σZ )

Cor(X1,X2) = ρmin =
e−σ − 1√

(e − 1)(eσ2 − 1)
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Fallacies Related to the Correlation Coefficient

Attainable Correlations/ 2
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Figure: Correlation bounds for lognormal rvs X1 and X2 where lnX1 ∼ N(0, 1)
and lnX2 ∼ N(0, σ2)
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Fallacies Related to the Correlation Coefficient

Attainable Correlations: Remark

Let α ∈ (0, 1). For comonotonic rvs X1, . . . ,Xd the comonotone
additivity of quantiles holds:

F←X1+X2+...Xd
(α) = F←X1

(α) + · · ·+ F←Xd
(α)

Assume d = 2. In a superadditive VaR case we have

F←X1+X2
(α) > F←X1

(α) + F←X2
(α)

for some level α ∈ (0, 1). Thus

F←X1
(α) + F←X2

(α) = F←Y1+Y2
(α)

for comonotonic rvs (Y1,Y2), Y1
d
= X1 and Y2

d
= X2. Since the maximal

correlation ρmax is attained if and only if two rvs are comonotonic,
(Y1,Y2) will attain ρmax > Cor(X1,X2), but VaRX1+X2 > VaRY1+Y2 .
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Fallacies Related to the Correlation Coefficient

Linear correlation: Summary

The main limitations of the linear correlation coefficient are:

1 Cor(X1,X2) does not exist for all random vectors (X1,X2) (only for
those with finite second moments);

2 Cor(X1,X2) depends on the marginal dfs of (X1,X2) even when the
latter are continuous

3 Cor(X1,X2) is invariant only under strictly increasing linear
transformations (not under strictly increasing transformations in
general)

By only depending on the underlying copula C in the case of continuous
random vectors, rank correlation coefficients overcome several of the
aforementioned issues.
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Rank Correlation
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Rank Correlation

Rank correlation measures

Definition (Spearman’s Rho, Kendall’s Tau)

Let (X1,X2) be a bivariate random vector with continuous marginal dfs
F1 and F2.

1 The (population version of) Spearman’s rho is defined by

ρS = ρS(X1,X2) = Cor(F1(X1),F2(X2))

2 Let (X ′1,X
′
2) be an independent copy (same distribution) of (X1,X2)

The (population version of) Kendall’s tau is defined by

τ = τ(X1,X2) = E(sign((X1 − X ′1)(X2 − X ′2)))

where sign(x) = I{x>0} − I{x<0}

Remark: ρS measures dependence independently of the margins and it is

invariant under strictly increasing transformations of X1 and X2
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Rank Correlation

ρS and τ as measures of concordance

Both Spearman’s Rho and Kendall’s Tau can be defined in terms of the
concordance and discordance of (X1,X2) and an independent copy
(X ′1,X

′
2).

::::

Kendall’s tau can be written as the probability of concordance minus the
probability of discordance

τ = P((X1 − X ′1)(X2 − X ′2) > 0)− P((X1 − X ′1)(X2 − X ′2) < 0)

For Spearman’s Rho, if X ′1
d
= X1 and X ′2

d
= X2, and (X1,X2), X ′1, X ′2 are

all independent, then

ρS = 3[P((X1 − X ′1)(X2 − X ′2) > 0)− P((X1 − X ′1)(X2 − X ′2) < 0)]
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Rank Correlation

Representation of ρS and τ

Let (X1,X2) be a bivariate random vector with continuous marginal dfs
and copula C . Then,

ρS = ρS(C ) =12

∫ 1

0

∫ 1

0
(C (u1, u2)− u1u2)du1du2 (2)

=12

∫
[0,1]2

C (u)du− 3

and

τ = τ(C ) = 4

∫
[0,1]2

C (u)dC (u)− 1 (3)
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Rank Correlation

Rank correlation VS linear correlation

Spearman’s rho and Kendall’s tau only depend on the underlying copula;
they can be viewed as moments of the copula. Moreover,

they always exist, and are not limited to continuous random vectors
with finite second moments (compare with Fallacy 1)

are invariant under strictly increasing transformations (compare with
Fallacy 2)

can reach any value in [−1, 1] (compare with Fallacy 5); the minimal
and maximal values of ρS and τ are attained for the lower and upper
Fréchet–Hoeffding bounds

Analogs of Fallacies 3 and 4 still apply to rank correlation coefficients.
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Rank Correlation

Method-of-moments estimators

Consider a one-parameter family of copulas {Cθ : θ ∈ Θ}, where Θ ⊆ R.
For many such copula families, the functions

gρS (θ) = ρS(Cθ) and gτ (θ) = τ(Cθ), θ ∈ Θ

are one-to-one. For example:

Clayton family: gτ (θ) = θ/(θ + 2), θ ∈ (0,∞);

Gumbel-Hougaard family: gτ (θ) = 1− 1/θ, θ ∈ [1,∞);

Normal family: for θ ∈ [−1, 1]
gρS (θ) = (6/π) arcsin(θ/2); gτ (θ) = (2/π) arcsin θ

From g−1ρS and g−1τ one can obtain the unique value of θ corresponding to
an admissible value of ρS or τ .

In the R package copula the functions ρS , g
−1
ρS
, τ, g−1τ are rho(),

iRho(), tau() and iTau()
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Rank Correlation

Rank correlations for Normal Copulas
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Figure: ρS and Kendall’s τ as functions of the correlation parameter ρ of a
normal copula C n

ρ . ρ is very well approximated by Spearman’s rho in this case.
The relationship between τ and ρ holds more generally for other elliptical
copulas, such as the t Copula C t

ν,ρ.
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Tail dependence coefficients

Tail dependence

Coefficients of tail dependence aim at summarizing the extremal
dependence, i.e., the dependence in the (joint) tails of bivariate
distributions.

::::

Formally, the coefficients of tail dependence (TD) are limits of
conditional probabilities of quantile exceedances (see Nelsen (2006)).

::::

Scatter plots from bivariate distributions with N(0, 1) margins and the
same Kendall’s tau but different copulas can exhibit very different tail
behaviors.
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Tail dependence coefficients

Tail dependence: example

The plots show generated
random samples of size
n = 10000 from four
bivariate distributions in
the Fréchet class, with
standard normal margins,
to investigate how the
copula affects the
dependence in the tails
(Kendall’s tau is 0.6 for
all of them)
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Tail dependence coefficients

Tail dependence coefficients

Definition (Upper and Lower TDC)

Let (X1,X2) be a random vector with marginal dfs F1 and F2. Provided
that the limits exist, the coefficient of lower and upper tail dependence of
X1 and X2 are defined by

1 λl = λl(X1,X2) = limq→0+ P(X2 ≤ F←2 (q)|X1 ≤ F←1 (q))

2 λu = λu(X1,X2) = limq→1− P(X2 > F←2 (q)|X1 > F←1 (q))

respectively.
If λl ∈ (0, 1] (respectively, λu ∈ (0, 1]), then X1 and X2 are said to be
lower (respectively, upper) tail dependent; if λl = 0 (respectively, λu = 0)
they are asymptotically independent in the lower (respectively, upper) tail.
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Tail dependence coefficients

Representation of TDC

If F1 and F2 are continuous dfs, then we get simple expressions for λl and
λu in terms of the unique copula C of (X1,X2):

λl = λl(C ) = lim
q→0+

P(X2 ≤ F←2 (q),X1 ≤ F←1 (q))

P(X1 ≤ F←1 (q))
= lim

q→0+

C (q, q)

q

λu = λu(C ) = lim
q→1−

Ĉ (1− q, 1− q)

1− q
= lim

q→1−

1− 2q + C (q, q)

1− q

where Ĉ is the survival copula of C . Hence, for radially symmetric

copulas we must have λu = λl , since C = Ĉ and λu = limq→0+
Ĉ (q, q)

q
.
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Tail dependence coefficients

TDCs: Examples

If the copula has a simple closed form, calculation of the coefficients of
tail dependence λl and λu is simple:

A Clayton copula with parameter θ ∈ (0,∞) has lower TD:
λl = 2−1/θ; λu = 0
(Clayton copulas converge to the M as θ →∞)

the Gumbel copula with θ > 1 has upper TD
λl = 0; λu = 2− 21/θ

(Gumbel-Hougaard copulas converge to the M as θ →∞)

Normal copulas are asymptotically independent in both tails

the t-copula has both upper and lower tail dependence of the same
magnitude.

In the R package copula the function for computing the coefficients of
tail dependence is lambda()
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Tail dependence coefficients

Example: Tail Dependence of t Copulas

For the t copula C t
ρ,ν with correlation ρ and degrees of freedom ν, the

plots display the graphs of the TDC λ = λu = λl as a function of ρ and ν
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Figure: For fixed, finite ν, tail dependence increases as ρ increases (left). For
fixed |ρ| < 1, tail dependence increases as ν decreases (right).
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Tail dependence coefficients

Joint quantile exceedances

Looking at joint exceedances of finite high quantiles can help to
understand the practical consequences of the differences between the
extremal behaviours of different models.

Example: Daily returns. Suppose X = (X1, . . . ,X5) represent a vector of
five daily negative log-returns with fixed continuous marginal dfs and
fixed common pairwise Kendall’s tau equal to 1/3. In addition, suppose
that we are unsure whether a normal or a t copula should be used as
underlying dependence structure C .
Under the normal copula (with parameter ρ) the probability that, on any
day, all five negative log-returns lie above their u = 0.99 quantiles is

P(X1 > F←1 (u), . . . ,X5 > F←5 (u)) = P(F1(X1) > u, . . . ,F5(X5) > u)

= Cn
ρ (1− u, . . . , 1− u),

where the last equality follows by radial symmetry.
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Tail dependence coefficients

Joint quantile exceedances/ 2

Assuming 260 trading days in a year, his calculation can be carried out
using the following code

R code:

>set.seed(231)

>d<-5

>rho<-iTau(normalCopula(), tau=1/3) #0.5

>u<-0.99

>prob<-pCopula(rep(1-u, d),copula=normalCopula(rho,

dim=d))

>1/(260*prob) # 51.42 years

Hence, the event of joint exceedances above the 99% quantile for the five
daily negative log-returns happens about once every 51.42 years.
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Tail dependence coefficients

Joint quantile exceedances/ 3

If the copula of X is assume to be a 5-dimensional t copula C t
0.5,3, such

an event will happen approximately 9.31 times more often (roughly once
every 5.63 years)

R code:

> prob.t<-pCopula(rep(1-u, d), copula=tCopula(rho, dim=d,

df=3))

> 1/(260*prob.t)

[1] 5.625567
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Tail dependence coefficients
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