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Chapter 1

Affine algebraic sets and Zariski

topology.

1.1 Introduction

The aim of this course is to introduce the notion of algebraic variety in the classical sense,

over a field K.

Roughly speaking, algebraic varieties are sets of solutions of a system of algebraic equa-

tions, i.e. equations given by polynomials. The natural space where to look at these solutions

seems to be the affine space, but one realizes that the projective ambient is more convenient.

On one hand the projective space extends the affine space and includes it naturally, on the

other hand the projective ambient allows to prove more general and complete results.

After introducing the notions of affine and projective varieties, we will study the notion of

dimension. Then we will introduce two kinds of transformations of algebraic varieties: regular

and rational maps. They give rise to two types of equivalence or isomorphism: biregular

isomorphism and birational equivalence, and therefore to two classification problems.

In this course we will see many examples of varieties, and of regular and rational maps.

In particular we will see some classes of varieties related to the notion of tensor (without

symmetries, symmetric, skew-symmetric); they are much studied because of many recent

applications in fields as control theory, signal transmission, etc. We will see also examples of

rational and unirational varieties, hopefully this will give a taste of the modern classification

problems. We will then study the notions of tangent space, and of smoothness.
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Classical algebraic geometry is the basis and gives the motivations for modern algebraic

geometry: from schemes, introduced by Grothendieck in the sixties of last century, to the

stacks, due to Mumford and Artin. All these notions are strongly based on commutative

algebra, i.e. the theory of commutative rings, in particular polynomial rings and their

quotients, local rings, and homological algebra.

The reference books I’ve chosen, all of which have become classics, have different flavours:

the book [S] of Šafarevič is complete and precise, and contains almost all algebraic notions

needed; Harris’ book [jH] has a more geometric flavour, proofs are not complete but there

are many many examples and ideas; Harthshorne’s book [rH], the “Bible” of algebraic ge-

ometry since its appearance, treats classical varieties quickly in the first chapter, then moves

to modern language, but always with an eye to classical problems. Further bibliographic

references will be recommended later, for particular topics or as in-depth reading.

Notation. The ideal generated by a set S will be denoted by 〈S〉.

1.2 Affine and projective spaces.

In this first section, we begin by fixing the ambient in which we will work: the affine and

the projective space over any field K. In particular we recall some basic facts about the

projective space.

Let K be a field. For us the affine space of dimension n over K will simply be the set

Kn : on it, the additive group of Kn acts naturally by translation. The affine space will be

denoted by An
K or simply An. So the points of An

K are n−tuples (a1, . . . , an), where ai ∈ K
for i = 1, . . . , n.

Let V be a K−vector space of dimension n+1. Let V ∗ = V \{0} be the subset of non–zero

vectors. The following relation in V ∗ is an equivalence relation (relation of proportionality):

v ∼ v′ if and only if ∃λ 6= 0, λ ∈ K, such that v′ = λv.

The quotient set V ∗/∼ is called the projective space associated to V and is denoted by

P(V ). The points of P(V ) are the lines in V (through the origin) deprived of the origin. In

particular, P(Kn+1) is denoted by PnK (or simply Pn) and called the numerical projective

n-space. By definition, the dimension of P(V ) is equal to dimV − 1.

There is a canonical surjection p : V ∗ → P(V ) which maps a vector v to its equiv-

alence class [v]. If (x0, . . . , xn) ∈ (Kn+1)∗, we will denote the corresponding point of
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Pn by [x0, . . . , xn]. Another notation, used for instance in [S], is (x0 : . . . : xn). So

[x0, . . . , xn]=[x′0, . . . , x
′
n] if and only if ∃λ ∈ K∗ such that x′0 = λx0, . . . , x

′
n = λxn.

If we fix a basis e0, . . . , en of V , then there is an associated system of homogeneous

coordinates in V , in the following way: if v = x0e0 + . . . + xnen, then x0, . . . , xn are called

homogeneous coordinates of the corresponding point P =[v]= p(v) in P(V ). We also write

P [x0, . . . , xn]. Note that homogeneous coordinates of a point P are not uniquely determined

by P , but are defined only up to multiplication by a non–zero constant. If dimV = n+ 1, a

system of homogeneous coordinates allows to define a bijection

P(V ) −→ Pn

P = [v] −→ [x0, . . . , xn]

where v = x0e0 + . . .+ xnen.

The points E0[1, 0, . . . , 0], . . . , En[0, 0, . . . , 1] are called fundamental points, and U [1, . . . , 1]

unit point of the given system of coordinates.

A projective (or linear) subspace of P(V ) is a subset of the form P(W ), where W ⊂ V is

a vector subspace of V .

If W,U are vector subspaces of V , the following Grassmann relation holds:

dimU + dimW = dim(U ∩W ) + dim(U +W ).

From this relation, observing that P(U ∩W ) = P(U) ∩ P(W ), we get in P(V ):

dimP(U) + dimP(W ) = dim(P(U) ∩ P(W )) + dimP(U +W ).

Note that P(U+W ) is the minimal linear subspace of P(V ) containing both P(U) and P(W ):

it is denoted P(U) + P(W ).

Example 1.2.1. Let V = K3, P(V ) = P2, U,W ⊂ K3 subspaces of dimension 2. Then

P(U),P(V ) are lines in the projective plane. There are two cases:

(i) U = W = U +W = U ∩W ;

(ii) U 6= W , dimU ∩W = 1, U +W = K3.

In case (i) the two lines in P2 coincide; in case (ii) P(U) ∩ P(W ) = P(U ∩W ) = [v], if

v 6= 0 is a vector generating U ∩W. Observe that never P(U) ∩ P(W ) = ∅.
What are the possible reciprocal positions of two lines in P3? Of two planes? Of a line

and a plane?
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Let T ⊂ P(V ) be a non–empty set. The linear span 〈T 〉 of T is the intersection of the

projective subspaces of P(V ) containing T , i.e. the minimum subspace containing T .

For example, assume that T = {P1, . . . , Pt} is a finite set, and that v1, . . . , vt are vectors

such that P1 = [v1], . . . , Pt = [vt]. Then 〈P1, . . . , Pt〉 = P(W ), where W is the vector subspace

of V generated by v1, . . . , vt.

So dim〈P1, . . . , Pt〉 ≤ t−1 and equality holds if and only if v1, . . . , vt are linearly indepen-

dent; in this case, also the points P1, . . . , Pt are called linearly independent. In particular, if

t = 2, two points are linearly independent if they generate a line; if t = 3, three points are

linearly independent if they generate a plane, etc. It is clear that, if P1, . . . , Pt are linearly

independent, then t ≤ n+1, and any subset of {P1, . . . , Pt} is formed by linearly independent

points.

Definition 1.2.2 (Points in general position in Pn). P1, . . . , Pt are said to be in general

position if either t ≤ n+1 and they are linearly independent, or t > n+1 and they are n+1

by n+ 1 linearly independent.

Proposition 1.2.3. The fundamental points E0, . . . , En and the unit point U of a sys-

tem of homogeneous coordinates on Pn are n + 2 points in general position. Conversely, if

P0, . . . , Pn, Pn+1 are n + 2 points in general position, then there exists a system of homo-

geneous coordinates in which P0, . . . , Pn are the fundamental points and Pn+1 is the unit

point.

Proof. The proof is linear algebra. If e0, . . . , en is a basis, then clearly the n + 1 vectors

e0, . . . , êi, . . . , en, e0 + · · ·+ en are linearly independent: this proves the first claim. To prove

the second claim, we fix vectors v0, . . . , vn+1 such that Pi = [vi] for all i. So v0, . . . , vn is a

basis and there exist λ0, . . . , λn in K such that vn+1 = λ0v0 + · · ·+ λnvn. The assumption of

general position easily implies that λ0, . . . , λn are all different from 0, hence λ0v0, . . . , λnvn

is a new basis such [λivi] = Pi and Pn+1 is the corresponding unit point. �

1.3 Embedding of the affine space in the projective

space

Let a system of homogeneous coordinates be fixed in Pn. We introduce the subspaces H0 =

〈E1, . . . , En〉, H1 = 〈E0, E2, . . . , En〉, . . . , Hn = 〈E0, . . . , En−1〉: they are n + 1 hyperplanes in

Pn (subspaces of codimension 1). Note that Hi is defined by the equation xi = 0. These

hyperplanes are called the fundamental hyperplanes.
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Let Ui = Pn \Hi = {P [x0, . . . , xn] | xi 6= 0}. Note that Pn = U0 ∪ U1 ∪ . . . ∪ Un, because

no point in Pn has all coordinates equal to zero.

There is a map ϕ0 : U0 −→ An(= Kn) defined by

ϕ0([x0, . . . , xn]) =
(x1

x0

, . . . ,
xn

x0

)
.

ϕ0 is bijective and the inverse map is j0 : An −→ U0 such that j0(y1, . . . , yn) = [1, y1, . . . , yn].

So ϕ0 and j0 establish a bijection between the affine space An and the subset U0 of the

projective space Pn. Similarly, there are maps ϕi and ji for any i = 1, . . . , n, that establish

bijections between An and Ui. So Pn is covered by n+1 subsets, each one in natural bijection

with An.

There is a natural way of thinking of Pn as a completion of An; this is done by identifying

An with Ui via ϕi, and by interpreting the points of Hi(= Pn \Ui) as points at infinity of An,

or directions in An. We do this explicity for i = 0. First of all we identify An with U0 via ϕ0

and j0. So if P [a0, . . . , an] ∈ Pn, either a0 6= 0 and P ∈ An, or a0 = 0 and P [0, a1, . . . , an] /∈ An.

Then we consider in An the line L, passing through O(0, . . . , 0) and of direction given by the

vector (a1, . . . , an). The following are parametric equations of L:
x1 = a1t

x2 = a2t

. . . . . .

xn = ant

with t ∈ K. The points of L are identified (via j0) with the points of U0 with homogeneous

coordinates x0, . . . , xn given by: 
x0 = 1

x1 = a1t

x2 = a2t

. . . . . .

or equivalently, if t 6= 0, by: 
x0 = 1

t

x1 = a1

x2 = a2

. . . . . .

Now, roughly speaking, if t tends to infinity, this point “tends” to P [0, a1, . . . , an]. Clearly

this is not a rigorous argument, but just a hint to the intuition.

In this way Pn can be interpreted as An with the points at infinity added, each point at

infinity corresponding to one direction in An.
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Exercises 1.3.1. Let V be a vector space of finite dimension over a field K. Let V̌ denote

the dual of V , i.e. the space of linear forms (or functionals) on V . Prove that P(V̌ ) can be

put in bijection with the set of the hyperplanes of P(V ) (hint: the kernel of a non-zero linear

form on V is a subvector space of V of codimension one). P(V̌ ) is the dual projective space.

1.4 Algebraic sets.

Roughly speaking, algebraic subsets of the affine or of the projective space are sets of solutions

of systems of algebraic equations, i.e. common roots of sets of polynomials.

Examples of algebraic sets are: linear subspaces of both the affine and the projective

space, plane algebraic curves, quadrics, graphs of polynomials functions, . . .

Algebraic geometry is the branch of mathematics which studies algebraic sets (and their

generalizations). Our first aim is to give a formal definition of algebraic sets in the affine

space.

1.4.1 Affine algebraic sets

LetK[x1, . . . , xn] be the polynomial ring in n variables over the fieldK. If P (a1, . . . , an) ∈ An,

and F = F (x1, . . . , xn) ∈ K[x1, . . . , xn], we can consider the value of F at P , i.e. F (P ) =

F (a1, . . . , an) ∈ K. We say that P is a zero of F if F (P ) = 0.

For example the points P1(1, 0), P2(−1, 0), P3(0, 1) are zeros of F = x2
1 +x2

2 − 1 over any

field. If G = x2
1 + x2

2 + 1 then G has no zeros in A2
R, but does have zeros in A2

C.

Definition 1.4.1. A subset X of An
K is an affine algebraic set, or an affine variety, if X is

the set of common zeros of a family of polynomials of K[x1, . . . , xn].

Remark 1. In some texts the term “variety” is reserved to the affine algebraic sets which

are irreducible. The notion of irreducible algebraic set will be introduced in Chapter 6.

X is an affine algebraic set means that there exists a subset S ⊂ K[x1, . . . , xn] such that

X = {P ∈ An | F (P ) = 0 ∀ F ∈ S}.

In this case X is called the zero set of S and is denoted by V (S) (or in some books Z(S),

e.g. this is the notation of Hartshorne’s book [rH]). In particular, if S = {F}, then V (S)

will be denoted simply by V (F ).

Example 1.4.2. 1. S = K[x1, . . . , xn]: then V (S) = ∅, because S contains non–zero

constants.
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2. S = {0}: then V (S) = An.

3. S = {xy − 1} : then V (xy − 1) is a hyperbola in the affine plane.

4. If S ⊂ T , then V (S) ⊃ V (T ).

5. V (F1, . . . , Fr) = V (F1) ∩ . . . ∩ V (Fr).

Let S ⊂ K[x1, . . . , xn] be a set of polynomials, let α := 〈S〉 be the ideal generated by S.

Recall that α = {finite sums of products of the form HF where F ∈ S, H ∈ K[x1, . . . , xn]}.

Proposition 1.4.3. Let α = 〈S〉. Then V (S) = V (α).

Proof. From S ⊂ α it follows that V (S) ⊃ V (α).

Conversely, if P ∈ V (S), let G =
∑

iHiFi be a polynomial of α (Fi ∈ S ∀ i). Then

G(P ) = (
∑
HiFi)(P ) =

∑
Hi(P )Fi(P ) = 0. �

Proposition 1.4.3 is important in view of the following:

Theorem 1.4.4 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then the polynomial

ring R[x] is Noetherian.

Proof. Assume by contradiction that R[x] is not Noetherian. Let I ⊂ R[x] be a non-finitely

generated ideal. Let f1 ∈ I be a non-zero polynomial of minimum degree. We define by

induction a sequence {fk}k∈N of polynomials as follows: if fk (k ≥ 1) has already been

chosen, let fk+1 be a polynomial of minimum degree in I \ 〈f1, . . . , fk〉. Let nk be the degree

of fk, and let ak be its leading coefficient. Note that, due to the choice of fk, the chain of

the degrees is increasing: n1 ≤ n2 ≤ . . ..

We will prove now that 〈a1〉 ⊂ 〈a1, a2〉 ⊂ . . . is a chain of ideals, that does not become sta-

tionary: this will give the required contradiction. Indeed, if 〈a1, . . . , ar〉 = 〈a1, . . . , ar, ar+1〉
for some r, then ar+1 =

∑r
i=1 biai, for suitable bi ∈ R. In this case, we consider the poly-

nomial g := fr+1 −
∑r

i=1 bix
nr+1−nifi: g belongs to I, but g /∈ 〈f1, . . . , fr〉, and its degree is

strictly lower than the degree of fr+1: contradiction. �

Corollary 1.4.5. Any affine algebraic set X ⊂ An is the zero set of a finite number of

polynomials, i.e. there exist F1, . . . , Fr ∈ K[x1, . . . , xn] such that X = V (F1, . . . , Fr).

Note that V (F1, . . . , Fr) = V (F1)∩. . .∩V (Fr), so every algebraic set is a finite intersection

of algebraic sets of the form V (F ), i.e. zeros of a unique polynomial F . If F = 0, then

V (0) = An; if F = c ∈ K \ {0}, then V (c) = ∅; if deg F > 0, then V (F ) is called a

hypersurface.
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1.4.2 The Zariski topology on the affine space

Proposition 1.4.6. The affine algebraic sets of An satisfy the axioms of the closed sets of

a topology, called the Zariski topology.

Proof. It is enough to check that finite unions and arbitrary intersections of algebraic sets

are again algebraic sets.

Let V (α), V (β) be two algebraic sets, with α, β ideals of K[x1, . . . , xn]. We recall that

the product ideal of α and β is

αβ = {
∑

finite

aibi | ai ∈ α, bi ∈ β}.

Then V (α) ∪ V (β) = V (α ∩ β) = V (αβ). Indeed: αβ ⊂ α ∩ β so V (α ∩ β) ⊂ V (αβ), and

both α∩β ⊂ α and α∩β ⊂ β so V (α)∪V (β) ⊂ V (α∩β). Assume now that P ∈ V (αβ) and

P /∈ V (α): hence ∃F ∈ α such that F (P ) 6= 0; on the other hand, if G ∈ β then FG ∈ αβ
so (FG)(P ) = 0 = F (P )G(P ), which implies G(P ) = 0.

Let V (αi), i ∈ I, be a family of algebraic sets, αi ⊂ K[x1, . . . , xn]. Then ∩i∈IV (αi) =

V (
∑

i∈I αi), where
∑

i∈I αi is the sum ideal of α′is. Indeed αi ⊂
∑

i∈I αi ∀i, hence V (
∑

i αi) ⊂
V (αi) ∀i and V (

∑
i αi) ⊂ ∩iV (αi). Conversely, if P ∈ V (αi) ∀i, and F ∈

∑
i αi, then

F =
∑

i
Fi; therefore F (P ) =

∑
Fi(P ) = 0. �

Example 1.4.7. 0. Every point of An is closed in the Zariski topology, indeed A =

(a1, . . . , an) = V (x1 − a1, . . . , xn − an).

1. The Zariski topology on the affine line A1.

Let us recall that the polynomial ring K[x] in one variable is a PID (principal ideal

domain), so every ideal I ⊂ K[x] is of the form I = 〈F 〉. Hence every closed subset of A1

is of the form X = V (F ), the set of zeros of a unique polynomial F (x). If F = 0, then

V (F ) = A1, if F = c ∈ K∗, then V (F ) = ∅, if degF = d > 0, then F can be decomposed

in linear factors in the polynomial ring over the algebraic closure of K; it follows that V (F )

has at most d points.

We conclude that the closed sets in the Zariski topology of A1 are: A1, ∅ and the finite

sets.

2. If K = R or C, then the Zariski topology and the Euclidean topology on An
K can be

compared, and it results that the Zariski topology is coarser. Indeed every open set in the

Zariski topology is open also in the usual topology. Let X = V (F1, . . . , Fr) be a closed set

in the Zariski topology, and U := An \X; if P ∈ U , then ∃ Fi such that Fi(P ) 6= 0, so there

exists an open neighbourhood of P in the usual topology in which Fi does not vanish.
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Conversely, there exist closed sets in the usual topology which are not Zariski closed, for

example the balls. The first case, of an interval in the real affine line, follows from part 1.

1.4.3 Projective algebraic sets

We want to define now the projective algebraic sets, or projective varieties, in Pn.
The idea is the same as in the affine space: a projective variety is the set of solutions

of a system of polynomial equations. The difference is that a point in the projective space

does not have a well defined set of coordinates: homogeneous coordinates are defined only

up to proportionality. So it may happen that, given a polynomial F and a point P ∈ Pn

with homogeneous coordinates [x0, . . . , xn], the n-tuple x0, . . . , xn is a zero of F , but other

proportional n-tuples of the form [λx0, . . . , λxn] are not.

To give a good definition, we have to consider only homogeneous polynomials, because

for them the problem does not occur. Otherwise, to say that a point p ∈ Pn is a zero

of a polynomial F , we must ask that it annihilates F for each choice of its homogeneous

coordinates.

Let’s now formalize what I have anticipated.

Let K[x0, x1, . . . , xn] be the polynomial ring in n + 1 variables. If we fix a polynomial

G(x0, x1, . . . , xn) ∈ K[x0, x1, . . . , xn] and a point P [a0, a1, . . . , an] ∈ Pn, then, in general,

G(a0, . . . , an) 6= G(λa0, . . . , λan),

so the value of G at P cannot be defined.

Example 1.4.8. Let G = x1 + x0x1 + x2
2 , P [0, 1, 2] = [0, 2, 4] ∈ P2

R. Note that G(0, 1, 2) =

1 + 4 6= G(0, 2, 4) = 2 + 16. But if Q = [1, 0, 0] = [λ, 0, 0], then G(1, 0, 0) = G(λ, 0, 0) = 0

for each λ.

Definition 1.4.9 (Homogeneous polynomials). Let G ∈ K[x0, x1, . . . , xn]: G is homogeneous

of degree d, or G is a form of degree d, if G is a linear combination of monomials of degree

d.

Lemma 1.4.10. If G ∈ K[x0, x1, . . . , xn] and t is a new variable, then G is homogeneous of

degree d if and only if G(tx0, . . . , txn) = tdG(x0, . . . , xn).

Proof. To prove the “ only of” implication, it is enough to prove the equality for monomials,

i.e. for

G = axi00 x
i1
1 . . . x

in
n with i0 + i1 + · · ·+ in = d :

12



G(tx0, . . . , txn) = a(tx0)
i0(tx1)

i1 . . . (txn)in = ati0+i1+···+inxi00 x
i1
1 . . . x

in
n = tdG(x0, . . . , xn).

Conversely, if G(tx0, . . . , txn) = tdG(x0, . . . , xn), we write G as sum of its homogeneous

components G = G0 +G1 + · · ·+Ge and use the first implication. We get tdG(x0, . . . , xn) =

G0 + tG1(x0, . . . , xn) + · · · + teGe(x0, . . . , xn), which is an equality of polynomials in the

variable t. So we get d = e and G = Gd. �

Definition 1.4.11. Let G be a homogeneous polynomial of K[x0, x1, . . . , xn]. A point

P [a0, . . . , an] ∈ Pn is a zero of G if G(a0, . . . , an) = 0. In this case we write G(P ) = 0.

Note that by Lemma 1.4.10 if G(a0, . . . , an) = 0, then

G(λa0, . . . , λan) = λdegGG(a0, . . . , an) = 0

for every choice of λ ∈ K∗. (Remind: K∗ denotes K \ {0}.)

Definition 1.4.12. A subset Z of Pn is a projective algebraic set, or a projective variety, if

Z is the set of common zeros of a set of homogeneous polynomials of K[x0, x1, . . . , xn].

If T ⊂ K[x0, x1, . . . , xn] is any subset formed by homogeneous polynomials, then the

corresponding algebraic set will be denoted by VP (T ).

1.5 Graded rings and homogeneous ideals

We want now to give an interpretation of projective varieties as sets of zeros of ideals, as we

did in the affine case, see Proposition 1.4.3. But of course the ideal generated by a family of

homogeneous polynomials contains also polynomials that are not homogeneous.

Let α = 〈T 〉 be the ideal generated by the polynomials of T , all assumed to be homoge-

neous. For any F ∈ α, there is en expression F =
∑

iHiFi, Fi ∈ T .

So if P [a0, . . . , an] ∈ VP (T ), then

F (a0, . . . , an) =
∑

Hi(a0, . . . , an)Fi(a0, . . . , an) = 0

for any choice of coordinates of P , regardless if F is homogeneous or not. We say that P is

a projective zero of F .

We want to formalize this situation in the context of the graded rings, of which the

polynomial rings are a prototype. In particular in a graded ring there will be a situation

similar to the following one: if F is a polynomial, then F can be written in a unique way
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as a sum of homogeneous polynomials, called the homogeneous components of F : F =

F0 + F1 + · · ·+ Fd, where, for any index i, either the degree of Fi is equal to i, or Fi = 0.

We give the following definition:

Definition 1.5.1. Let A be a ring (as usual assumed to be commutative with unit). A is

called a graded ring over Z if there exists a family of additive subgroups of A, {Ai}i∈Z, such

that:

(i) A = ⊕i∈ZAi; and

(ii) AiAj ⊂ Ai+j for any pair of indices.

The elements of Ai are called homogeneous of degree i, and Ai is the homogeneous com-

ponent of A of degree i. Condition (i) regards the additive structure of A; it means that

any element a of A has a unique finite expression a = Σi∈Zai, finite sum of homogeneous

elements. Condition (ii) regards the multiplicative structure: a product of homogeneous

elements is homogeneous of degree the sum of the degrees. Notice that 0 belongs to all

homogeneous components of A.

The standard example of graded ring is the polynomial ring with coefficients in a ring R.

R is the homogeneous component of degree 0, the variables have all degree 1. In this case

the homogeneous components of negative degrees are all zero.

Proposition 1.5.2 (Proposition - Definition of homogeneous ideal). Let I ⊂ A be an ideal

of a graded ring. I is called homogeneous if the following equivalent conditions are fulfilled:

(i) I is generated by homogeneous elements (this means: there is a system of generators

formed by homogeneous elements);

(ii) I = ⊕k∈Z(I ∩ Ak), i.e. if F = Σk∈ZFk ∈ I, then all homogeneous components Fk of F

belong to I.

Proof of the equivalence. “ (ii)⇒(i)”: given a system of generators of I, write each of them as

sum of its homogeneous components: Fi = Σk∈ZFik. Then a set of homogeneous generators

of I is formed by all the elements Fik.

“ (i)⇒(ii)”: let I be generated by a family of homogeneous elements {Gα}, with degGα =

dα. If F ∈ I, then F is a combination of the elements Gα with suitable coefficients Hα; write

each Hα as sum of its homogeneous components: Hα = ΣHαk. Note that the product HαkGα

is homogeneous of degree k+dα. By the unicity of the expression of F as sum of homogeneous

elements, it follows that all of them are combinations of the generators {Gα} and therefore

they belong to I. �
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Let I ⊂ K[x0, x1, . . . , xn] be a homogeneous ideal. Note that, by the noetherianity, I

admits a finite set of homogeneous generators.

Let P [a0, . . . , an] ∈ Pn. If F ∈ I, F = F0 + · · · + Fd, then F0 ∈ I, . . . , Fd ∈ I. We say

that P is a zero of I if P is a projective zero of any polynomial of I or, equivalently, of

any homogeneous polynomial of I. This also means that P is a zero of any homogeneous

polynomial of a set generating I. The set of zeros of I will be denoted VP (I): all projective

algebraic subsets of Pn are of this form.

As in the affine case, the projective algebraic subsets of Pn satisfy the axioms of the

closed sets of a topology, called the Zariski topology of Pn. This time the empty set can be

expressed as VP (1), as well as VP (x0, . . . , xn): indeed the n-tuple [0, ..., 0] is not a point of

Pn. As for the other axioms of closed sets, the idea is always the same: the equations of the

intersection of a family of algebraic sets are the union of all the equations, while the union

of two algebraic sets X and Y is defined by all the possible products of two equations, one

of X and the other of Y .

From the point of view of ideals, it is useful to make the following remark, whose proof

follows from Proposition 1.5.2. Let I, J be homogeneous ideals of K[x0, x1, . . . , xn]. Then I+

J , IJ and I∩J are homogeneous ideals. Indeed both I and J are generated by homogeneous

polynomials, I + J is generated by the union of all of them, IJ is generated by products of

two of them, one in I and the other in J , so in both cases by homogeneous polynomials. For

I ∩ J it is enough to use Proposition 1.5.2 (ii).

Note that also all subsets of An and Pn have a structure of topological space, with the

induced topology, which is still called the Zariski topology.

Exercises 1.5.3. 1. Let F ∈ K[x1, . . . , xn] be a non–constant polynomial. The set An \
V (F ) will be denoted An

F . Prove that {An
F | F ∈ K[x1, . . . , xn] \K} is a topology basis

for the Zariski topology.

2. Let B ⊂ Rn be a ball. Prove that B is not Zariski closed.

3. Prove that the map ϕ : A1 → A3 defined by t→ (t, t2, t3) is a homeomorphism between

A1 and its image, for the Zariski topology.

4. Let X ⊂ A2
R be the graph of the map R→ R such that x→ sinx. Is X closed in the

Zariski topology? (hint: intersect X with a line....)
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Chapter 2

Examples of algebraic varieties.

2.1 Points

In the Zariski topology both in An and in Pn all points are closed. If P (a1, . . . , an) ∈ An,

then P = V (x1 − a1, . . . , xn − an). But in the projective space, if P [a0, . . . , an] ∈ Pn, the

equations are different: P = VP (aixj − ajxi)i,j=0,...,n. In this way the polynomials defining P

as closed set are homogeneous. They can be seen as minors of order 2 of the matrix(
a0 a1 . . . an

x0 x1 . . . xn

)

with entries in K[x0, x1, . . . , xn]. This expresses the fact that x0, . . . , xn are proportional to

a0, . . . , an. Equations of the form VP (x0 − a0, . . . , xn − an) don’t make sense.

2.2 Affine and projective linear subspaces.

Generalizing the previous example, the linear subspaces, both in the affine and in the projec-

tive case, are examples of algebraic sets. As it is well known, they are defined by equations

of degree 1.

2.3 Hypersurfaces

An affine hypersurface is an affine variety of the form V (F ), the set of zeros of a unique

polynomial F of positive degree. Similarly, in the projective space, a projective hypersurface

is of the form VP (G), where G ∈ K[x0, x1, . . . , xn] is a homogeneous non-constant polynomial.
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Examples of hypersurfaces are the curves in the affine or projective plane, and the surfaces

in a space of dimension 3, as for instance the quadrics.

Let us recall that the polynomial ring K[x1, . . . , xn] is a UFD (unique factorization do-

main), i.e., every non-constant polynomial F can be expressed in a unique way (up to the

order and up to units) as F = F r1
1 F

r2
2 . . . F rs

s , where F1, . . . , Fs are irreducible and two by

two distinct polynomials, and ri ≥ 1 for any i = 1, . . . , s. Hence the hypersurface of An

defined by F is

X := V (F ) = V (F r1
1 F

r2
2 . . . F rs

s ) = V (F1F2 . . . Fs) = V (F1) ∪ V (F2) ∪ · · · ∪ V (Fs).

The equation F1F2 . . . Fs = 0 is called the reduced equation of X. Note that F1F2 . . . Fs

generates the radical
√
F . If s = 1, X is called an irreducible hypersurface; by definition its

degree is the degree of its reduced equation. Therefore, any hypersurface is a finite union of

irreducible hypersurfaces.

Assume now that Z = VP (G), with G ∈ K[x0, x1, . . . , xn], G homogeneous, is a projective

hypersurface. Exercise 3 asks to prove that the irreducible factors of G are homogeneous.

Therefore, as in the affine case, each projective hypersurface Z has a reduced equation (whose

degree is, by definition, the degree of Z) and Z is a finite union of irreducible hypersurfaces.

If the field K is algebraically closed, the degree of a projective hypersurface has the

following important geometrical meaning.

Proposition 2.3.1. Let K be an algebraically closed field. Let Z ⊂ Pn be a projective

hypersurface of degree d. Then any line in Pn, not contained in Z, meets Z at exactly d

points, counting multiplicities.

In the proof we will see what we mean by saying “ counting multiplicity”.

Proof. Let G be the reduced equation of Z and L ⊂ Pn be any line.

We fix two points on L: A = [a0, . . . , an], B = [b0, . . . , bn]. So L admits parametric

equations of the form 
x0 = λa0 + µb0

x1 = λa1 + µb1

. . .

xn = λan + µbn

The points of Z ∩ L are obtained from the homogeneous pairs [λ, µ] which are solutions

of the equation G(λa0 +µb0, . . . , λan +µbn) = 0. If L ⊂ Z, then this equation is an identity.
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Otherwise, G(λa0 +µb0, . . . , λan+µbn) is a non-zero homogeneous polynomial of degree d in

the two variables λ, µ. Since K is algebraically closed, it can be factorized in linear factors:

G(λa0 + µb0, . . . , λan + µbn) = (µ1λ− λ1µ)d1(µ2λ− λ2µ)d2 . . . (µrλ− λrµ)dr

with d1 +d2 + . . .+dr = d. Every factor corresponds to a point in Z ∩L, to be counted with

the same multiplicity as the corresponding factor.

�

If K is not algebraically closed, considering the algebraic closure of K and using Propo-

sition 2.3.1, we get that d is an upper bound on the number of points of Z ∩ L.

2.4 Product of affine spaces

Let An, Am be two affine spaces over the field K. The cartesian product An ×Am is the set

of pairs (P,Q), P ∈ An, Q ∈ Am: it is in natural bijection with An+m via the map

ϕ : An × Am −→ An+m

such that ϕ((a1, . . . , an), (b1, . . . , bm)) = (a1, . . . , an, b1, . . . , bm).

From now on we will always identify An × Am with An+m. Therefore we have two

topologies on An × Am: the Zariski topology of An+m and the product topology of the

Zariski topologies of An and Am.

Proposition 2.4.1. The Zariski topology is strictly finer than the product topology.

Proof. Let us first observe that, if X = V (α) ⊂ An, α ⊂ K[x1, . . . , xn] and Y = V (β) ⊂ Am,

β ⊂ K[y1, . . . , ym], then X × Y ⊂ An × Am is Zariski closed, precisely X × Y = V (α ∪ β)

where the union is made in the polynomial ring in n+m variables K[x1, . . . , xn, y1, . . . , ym].

Now we consider U = An \X and V = Am \ Y , open subsets of An and Am in the Zariski

topology. Then U × V = An × Am \ ((An × Y ) ∪ (X × Am)): this is a set-theoretical fact

that holds true in general. So it is open in An × Am in the Zariski topology.

Conversely, we give an example to prove that the two topologies are different. Precisely

we show that A1 ×A1 = A2 contains some subsets which are Zariski open, but are not open

in the product topology.

The proper open subsets in the product topology are of the form A1×A1 \{ finite unions

of “ vertical” and “ horizontal” lines}. See the figure.
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Let X = A2 \ V (x − y): it is Zariski open but does not contain any non-empty subset

of the above form, so it is not open in the product topology. There are similar examples in

An × Am for any n,m. �

Note that there is no similar construction for Pn × Pm. We will see in Chapter 13.1 that

there is an injective map, the Segre map, of Pn × Pm to the projective space of dimension

(n + 1)(m + 1) − 1, whose image is a projective variety. This allows to give a geometric

structure to the product of projective spaces . We see here only the first case.

2.5 P1 × P1

The cartesian product P1×P1 is simply a set, but we are going to define an injective map σ

from P1 × P1 to P3, whose image will be a projective variety: it will be identified with our

product, and this will allow to interpret P1 × P1 as a projective variety.

The map σ is defined in the following way: σ([x0, x1], [y0, y1]) = [x0y0, x0y1, x1y0, x1y1].

Using coordinates z0, ..., z3 in P3, σ is defined parametrically by
z0 = x0y0

z1 = x0y1

z2 = x1y0

z3 = x1y1

It is easy to observe that σ is a well–defined map: the image is never [0, 0, 0, 0], and

depends uniquely on the pair of points and not on the choice of their coordinates. Moreover

σ is injective. Assume that σ([x0, x1], [y0, y1]) = σ([x′0, x
′
1], [y′0, y

′
1]). Then there exists a

non-zero constant λ such that 
x0y0 = λx′0y

′
0

x0y1 = λx′0y
′
1

x1y0 = λx′1y
′
0

x1y1 = λx′1y
′
1

Now, if y0 6= 0, then x0 = (λy′0/y0)x′0 and x1 = (λy′0/y0)x′1; if y1 6= 0, then x0 = (λy′1/y1)x′0
and x1 = (λy′1/y1)x′1; in both cases [x0, x1] = [x′0, x

′
1]. Similarly one proves that [y0, y1] =

[y′0, y
′
1].

Let Σ denote the image σ(P1 × P1). It is the quadric of equation z0z3 − z1z2 = 0; in-

deed, on one hand it is clear that σ(P1 × P1) ⊂ VP (z0z3 − z1z2); conversely, assume that
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z0z3 = z1z2 and z0 6= 0. Then, multiplying all coordinates by z0, we get: [z0, z1, z2, z3] =

[z2
0 , z0z1, z0z2, z0z3]; by assumption this coincides with [z2

0 , z0z1, z0z2, z1z2], and is therefore

equal to σ([z0, z2], [z0, z1]). If z0 = 0, the argument is similar, using another non-zero coor-

dinate.

The map σ is called the Segre map and Σ the Segre variety. The name comes from the

Italian mathematician Corrado Segre (Torino, 1863–1924), the “father” of the Italian school

of algebraic geometry.

2.6 Embedding of An in Pn.

We will see now how to unify the two notions introduced so far of affine and projective

variety. Precisely, after identifying An with the open subset U0 ⊂ Pn (or with any Ui) (as

in Section 1.3), we will prove that the Zariski topology on An coincides with the topology

induced by the Zariski topology on Pn.

Let Hi be the hyperplane of Pn of equation xi = 0, i = 0, . . . , n; it is closed in the

Zariski topology, and its complementar set Ui is open. So we have an open covering of Pn:

Pn = U0 ∪ U1 ∪ · · · ∪ Un. Let us recall that for any i there is a bijection ϕi : Ui → An such

that ϕi([x0, . . . , xi, . . . , xn]) = (x0
xi
, . . . , 1̂, . . . , xn

xi
). The inverse map is ji : An → Ui such that

ji(y1, . . . , yn) = [y1, . . . , 1, . . . , yn].

Proposition 2.6.1. The map ϕi is a homeomorphism, for i = 0, . . . , n.

Proof. Assume i = 0 (the other cases are similar).

We introduce two maps:

(i) dehomogeneization of polynomials with respect to x0.

It is a map a : K[x0, x1, . . . , xn]→ K[y1, . . . , yn] such that

a(F (x0, . . . , xn)) = aF (y1, . . . , yn) := F (1, y1, . . . , yn).

Note that a is a ring homomorphism.

(ii) homogeneization of polynomials with respect to x0.

It is a map h : K[y1, . . . , yn]→ K[x0, x1, . . . , xn] defined by

h(G(y1, . . . , yn)) = hG(x0, . . . , xn) := xdegG
0 G(

x1

x0

, . . . ,
xn

x0

).
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hG is always a homogeneous polynomial of the same degree as G. The map h is clearly not

a ring homomorphism. Note that always a(hG) = G but in general h(aF ) 6= F ; what we can

say is that, if F (x0, . . . , xn) is homogeneous, then there exists r ≥ 0 such that F = xr0(
h(aF )).

Let X ⊂ U0 be closed in the topology induced by the Zariski topology of the projective

space, i.e. X = U0 ∩ VP (I) where I is a homogeneous ideal of K[x0, x1, . . . , xn]. Define aI =

{aF | F ∈ I}: it is an ideal of K[y1, . . . , yn] (because a is a ring homomorphism). We prove

that ϕ0(X) = V (aI). Indeed, let P [x0, . . . , xn] be a point of U0; then ϕ0(P ) = (x1
x0
, . . . , xn

x0
) ∈

ϕ0(X) ⇐⇒ P [x0, . . . , xn] = [1, x1
x0
, . . . , xn

x0
] ∈ X = VP (I) ⇐⇒ F (1, x1

x0
, . . . , xn

x0
) = 0 ∀ aF ∈

aI ⇐⇒ ϕ0(P ) ∈ V (aI).

Conversely: let Y = V (α) be a Zariski closed subset of An, where α is an ideal of

K[y1, . . . , yn]. Let hα be the homogeneous ideal of K[x0, x1, . . . , xn] generated by the set

{hG | G ∈ α}. We prove that ϕ−1
0 (Y ) = VP (hα) ∩ U0. Indeed [1, x1, . . . , xn] ∈ ϕ−1

0 (Y ) ⇐⇒
(x1, . . . , xn) ∈ Y ⇐⇒ G(x1, . . . , xn) = hG(1, x1, . . . , xn) = 0 ∀ G ∈ α ⇐⇒ [1, x1, . . . , xn] ∈
VP (hα). �

From now on we will often identify An with U0 via ϕ0 (and similarly with Ui via ϕi). So

if P [x0, . . . , xn] ∈ U0, we will refer to x0, . . . , xn as the homogeneous coordinates of P and to
x1
x0
, . . . , xn

x0
as the non–homogeneous or affine coordinates of P .

Exercises 2.6.2. It will be useful to remember that any algebraically closed field is infinite.

1. Assume that K is an infinite field.

a) Prove that, if n ≥ 1, then in An
K the complementar set of any hypersurface has

infinitely many points.

b) Prove that, if K is algebraically closed and n ≥ 2, then also any hypersurface has

infinitely many points.

2. Prove that the Zariski topology on An is T1.

3. Let F ∈ K[x0, x1, . . . , xn] be a homogeneous polynomial. Check that its irreducible

factors are homogeneous. (Hint: prove that a product of two polynomials not both

homogeneous is not homogeneous.)

Solution of Exercise 1.

22



Let the hypersurface in question be defined by F (x1, . . . , xn) = 0, F non constant. We

can assume that the variable xn occurs in F . So we have an expression

F = f0 + f1xn + · · ·+ fdx
d
n,

with fi ∈ K[x1, . . . , xn−1] ∀i, d > 0 and fd 6= 0.

a) We proceed by induction on the number of variables. If n = 1, the statement is

true because K is infinite. Let n > 1: by the inductive assumption, there exist infinitely

many (a1, . . . , an−1) ∈ Kn−1 such that fd(a1, . . . , an−1) 6= 0. Then for any such (n− 1)-tuple

F (a1, . . . , an−1, xn) is a non-zero polynomial of degree d > 0 in K[xn]: it has finitely many

zeros, so there are infinitely many an ∈ K such that F (a1, . . . , an−1, an) 6= 0.

b) As in a), there exist infinitely many (a1, . . . , an−1) ∈ Kn−1 such that fd(a1, . . . , an−1) 6=
0. Since K is algebraically closed, for each of these (a1, . . . , an−1) there is at least one an ∈ K
such that F (a1, . . . , an−1, an) = 0.
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Chapter 3

The ideal of an algebraic set and the

Hilbert Nullstellensatz.

3.1 The ideal of an algebraic set

Let X ⊂ An be an affine variety, X = V (α), where α ⊂ K[x1, . . . , xn] is an ideal.

The ideal α defining X is not unique. We have already made this observation in the case

of the hypersurfaces (Section 2.3). For another example, let O = {(0, 0)} ⊂ A2 be the origin;

then O = V (x1, x2) = V (x2
1 , x2) = V (x2

1 , x
3
2) = V (x2

1 , x1x2, x
2
2) = . . . Nevertheless, there is

an ideal we can canonically associate to X: the biggest one among the ideals defining it.

We give the following definition:

Definition 3.1.1. Let Y ⊂ An be any set. The ideal of Y is

I(Y ) = {F ∈ K[x1, . . . , xn] | F (P ) = 0 for any P ∈ Y } = {F ∈ K[x1, . . . , xn] | Y ⊂ V (F )} :

it is the set of all polynomials vanishing on Y . Note that I(Y ) is in fact an ideal, because

the sum of two polynomials vanishing along Y also vanishes along Y , and the product of

any polynomial by a polynomial vanishing along Y again vanishes along Y .

Example 3.1.2. Maximal ideal of a point. If P (a1, . . . , an) is a point, then I(P ) =

〈x1− a1, . . . , xn− an〉. Indeed all the polynomials of 〈x1− a1, . . . , xn− an〉 vanish on P , and

moreover it is a maximal ideal.

The fact that 〈x1−a1, . . . , xn−an〉 is maximal can be understood looking at the quotient

ring K[x1, . . . , xn]/〈x1 − a1, . . . , xn − an〉: the idea is that in the quotient the variables

x1, . . . , xn are replaced by the constants a1, . . . , an, so it has to be K[a1, . . . , an] = K. Since

the quotient is a field, the ideal is maximal.
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Another proof of the maximality of 〈x1− a1, . . . , xn− an〉 can be given by exploiting the

expansion in power series around a := (a1, . . . , an) of any polynomial F (x1, . . . , xn). I first

recall that this expansion is possible for polynomials over any field, without involving any

differentiation process, but using only the formal definition of derivative for polynomials.

See for instance [W], pp. 21-23.

The proof goes as follows. Assume that F (a1, . . . , an) = 0 and use the Taylor expansion:

F (x1, . . . , xn) = F (a) +
n∑
i=1

(xi − ai)Fxi(a) +
n∑

i,j=1

(xi − ai)(xj − aj)Fxixj(a) + . . .

It follows that F ∈ 〈x1 − a1, . . . , xn − an〉.

Remark 2. The following relations follow immediately by the definition:

(i) if Y ⊂ Y ′, then I(Y ) ⊃ I(Y ′);

(ii) I(Y ∪ Y ′) = I(Y ) ∩ I(Y ′);

(iii) I(Y ∩ Y ′) ⊃ I(Y ) + I(Y ′).

In the projective ambient, we have an analogous situation.

Definition 3.1.3. If Z ⊂ Pn is any set, the homogeneous ideal of Z is, by definition, the

homogeneous ideal of K[x0, x1, . . . , xn] generated by the set

{G ∈ K[x0, x1, . . . , xn] | G is homogeneous and VP (G) ⊃ Z}.

It is denoted Ih(Z).

Relations similar to (i),(ii),(iii) of Remark 2 are satisfied. Ih(Z) is also the set of poly-

nomials F (x0, . . . , xn) such that every point of Z is a projective zero of F .

If X = V (α) we want to understand the relation between α and I(X). Let α ⊂
K[x1, . . . , xn] be an ideal. Let

√
α denote the radical of α:

√
α =: {F ∈ K[x1, . . . , xn] | ∃r ≥ 1 s.t. F r ∈ α}.

Note that
√
α is an ideal (why?) and that always α ⊂

√
α; if equality holds, then α is called

a radical ideal.

Proposition 3.1.4. The ideal of a subset of the affine space is radical. More precisely:

1. for any X ⊂ An, I(X) is a radical ideal;

25



2. for any Z ⊂ Pn, Ih(Z) is a homogeneous radical ideal.

Proof. 1. If F ∈
√
I(X), let r ≥ 1 such that F r ∈ I(X): if P ∈ X, then (F r)(P ) = 0 =

(F (P ))r in the base field K. Therefore F (P ) = 0.

2. is similar, taking into account that Ih(Z) is a homogeneous ideal (see Exercise 6).

�

We can interpret I as a map from P(An), the power set of the affine space, to P(K[x1, . . . , xn]),

the power set of the polynomial ring. On the other hand, V can be seen as a map in the

opposite sense. We have:

Proposition 3.1.5. Let α ⊂ K[x1, . . . , xn] be an ideal, let Y ⊂ An be any subset. Then:

(i) α ⊂ I(V (α));

(ii) Y ⊂ V (I(Y ));

(iii) V (I(Y )) = Y : the closure of Y in the Zariski topology of An.

Proof. (i) If F ∈ α and P ∈ V (α), then F (P ) = 0, so F ∈ I(V (α)).

(ii) If P ∈ Y and F ∈ I(Y ), then F (P ) = 0, so P ∈ V (I(Y )).

(iii) Taking closures in (ii), we get: Y ⊂ V (I(Y )) = V (I(Y )), because it is already closed.

Conversely, let X = V (β) be any closed set containing Y : X = V (β) ⊃ Y . Then

I(Y ) ⊃ I(V (β)) ⊃ β by (i); we apply V again: V (β) = X ⊃ V (I(Y )) so any closed

set containing Y contains V (I(Y )) so Y ⊃ V (I(Y )).

�

Similar properties relate homogeneous ideals of K[x0, x1, . . . , xn] and subsets of Pn; in

particular, if Z ⊂ Pn, then VP (Ih(Z)) = Z, the closure of Z in the Zariski topology of Pn. In

the projective case, one has to take care of the fact that any homogeneous ideal is generated

by the set of its homogeneous elements, and so, to prove an inclusion between homogeneous

ideals, it is enough to check it on the homogeneous elements.

3.2 Nullstellensatz

There is no characterization of I(V (α)) in general. We can only say that it is a radical ideal

containing α, so it contains also
√
α. To characterise I(V (α)) we have to put the properties

of the base field K into play.
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The following celebrated theorem gives the answer for algebraically closed fields.

Theorem 3.2.1 (Hilbert’s Nullstellensatz - Theorem of zeros). Let K be an alge-

braically closed field. Let α ⊂ K[x1, . . . , xn] be an ideal. Then I(V (α)) =
√
α.

Remark 3. The assumption on K is necessary. Let me recall that K is algebraically closed

if any non–constant polynomial of K[x] has at least one root in K, or, equivalently, if any

irreducible polynomial of K[x] has degree 1. So if K is not algebraically closed, there exists

an irreducible polynomial F ∈ K[x] of degree d > 1. Therefore F has no zeros in K, hence

V (F ) ⊂ A1
K is empty. So I(V (F )) = I(∅) = {G ∈ K[x] | ∅ ⊂ V (G)} = K[x]. But 〈F 〉 is a

maximal ideal in K[x], and 〈F 〉 ⊂
√
〈F 〉. If 〈F 〉 6=

√
〈F 〉, by the maximality

√
〈F 〉 = 〈1〉,

so ∃r ≥ 1 such that 1r = 1 ∈ 〈F 〉, which is false. Hence
√
〈F 〉 = 〈F 〉 6= K[x] = I(V (F )).

We will deduce the proof of Hilbert Nullstellensatz, after several steps, from another very

important theorem, known as “ Emmy Noether normalization Lemma”.

We start with some definitions.

Let K ⊂ E be fields, K subfield of E. Let {zi}i∈I be a family of elements of E.

Definition 3.2.2. The family {zi}i∈I is algebraically free over K or, equivalently, the el-

ements zi’s are algebraically independent over K if there is no non–zero polynomial F ∈
K[xi]i∈I , the polynomial ring in a set of variables indexed on I, that vanishes in the elements

of the family {zi}.

For example: if the family consists of only one element z, {z} is algebraically free over K

if and only if z is transcendental over K. The family {π,
√
π} is not algebraically free over

Q: it satisfies the non–trivial relation x2
1 − x2 = 0.

By convention, the empty family is free over any field K.

Let S be the set of the families of elements of E, that are algebraically free over K. S
is a non–empty set, partially ordered by inclusion and inductive. By Zorn’s lemma, S has

maximal elements, i.e. algebraically free families that do not remain free if any element of

E is added. Any such maximal algebraically free family is called a transcendence basis of

E over K. It can be proved that, if B,B′ are two transcendence bases, then they have the

same cardinality, called the transcendence degree of E over K. It is denoted tr.d.E/K.

Definition 3.2.3. A K–algebra is a ring A containing (a subfield isomorphic to) K.
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Let y1, . . . , yn be elements of E: the K–algebra generated by y1, . . . , yn is, by definition,

the minimum subring of E containing K, y1, . . . , yn: it is denoted K[y1, . . . , yn] and its ele-

ments are polynomials in the elements y1, . . . , yn with coefficients in K. Its quotient field

K(y1, . . . , yn) is the minimum subfield of E containing K, y1, . . . , yn.

A finitely generated K–algebra A is a K–algebra containing finitely many elements

y1, . . . , yn such that A = K[y1, . . . , yn].

Given elements y1, . . . , yn in an extension E of K, we can consider the evaluation homo-

morphism from the polynomial ring in n variables to the K-algebra generated by y1, . . . , yn

ϕ : K[x1, . . . , xn]→ K[y1, . . . , yn] such that F (x1, . . . , xn)→ F (y1, . . . , yn). (3.1)

The kernel of ϕ is formed by the polynomials vanishing at the n-tuple (y1, . . . , yn). Therefore

ϕ is injective if and only if y1, . . . , yn are algebraically independent over K, if and only if

ϕ gives an isomorphism between the K-algebra K[y1, . . . , yn] and the polynomial ring in n

variables.

Remark 4. A K-algebra A is finitely generated if and only if A is isomorphic to a quo-

tient of a polynomial ring in finitely many variables over K. Indeed, if A = K[y1, . . . , yn],

considering the evaluation map ϕ (3.1), from the homomorphism theorem it follows that

A ' K[x1, . . . , xn]/ kerϕ. Conversely, given a quotient A = K[x1, . . . , xn]/α, let ξ = [xi] be

the equivalence class of the variable xi in A. Then any element of A can be written as a

polynomial F (ξ1, . . . , ξn), therefore A is the K-algebra generated by ξ1, . . . , ξn.

Proposition 3.2.4. K(y1, . . . , yn) has a transcendence basis over K contained in the set

{y1, . . . , yn}.

Proof. Let S be the set of all subfamilies of {y1, . . . , yn} formed by algebraically independent

elements: S is a finite set so it has maximal elements with respect to the inclusion. We can

assume that {y1, . . . , yr} is such a maximal family. Then yr+1, . . . , yn are all algebraic over

K(y1, . . . , yr) so K(y1, . . . , yn) is an algebraic extension of K(y1, . . . , yr). If z ∈ K(y1, . . . , yn)

is any element, then z is algebraic over K(y1, . . . , yr), so the family {y1, . . . , yr, z} is not

algebraically free. �

Corollary 3.2.5. tr.d.K(y1, . . . , yn)/K ≤ n.

Let now A ⊂ B be rings, A a subring of B.
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Definition 3.2.6. Let b ∈ B: b is integral over A if it is a root of a monic polynomial of

A[x], i.e., there exist a1, . . . , an ∈ A such that

bn + a1b
n−1 + a2b

n−2 + · · ·+ an = 0.

Such a relation is called an integral equation, or an equation of integral dependence, for b

over A.

Note that, if A is a field, then b is integral over A if and only if b is algebraic over A.

Definition 3.2.7. B is called integral over A, or, B is an integral extension of A, if any

b ∈ B is integral over A.

We can state now the

Theorem 3.2.8. Normalization Lemma. Let A be a finitely generated K–algebra and an

integral domain. Let r := tr.d.K(y1, . . . , yn)/K. Then there exist elements z1, . . . , zr ∈ A,

algebraically independent over K, such that A is integral over K[z1, . . . , zr].

Proof. We postpone the proof to Chapter 4 . �

We start now the proof of the Nullstellensatz.

1st Step.

Let K be an algebraically closed field, letM⊂ K[x1, . . . , xn] be a maximal ideal. Then,

there exist a1, . . . , an ∈ K such that M = 〈x1 − a1, . . . , xn − an〉.

Proof. Let K ′ be the quotient ring K[x1, . . . , xn]/M: it is a field becauseM is maximal, and

it is a K–algebra finitely generated by the residues in K ′ of x1, . . . , xn. By the Normalization

Lemma, there exist z1, . . . , zr ∈ K ′, algebraically independent over K, such that K ′ is integral

over A := K[z1, . . . , zr]. We claim that A is a field: let f ∈ A, f 6= 0; f ∈ K ′ so there exists

f−1 ∈ K ′, and f−1 is integral over A; we fix an integral equation for f−1 over A:

(f−1)s + as−1(f
−1)s−1 + · · ·+ a0 = 0

where a0, . . . , as−1 ∈ A. We multiply this equation by f s−1:

f−1 + as−1 + · · ·+ a0f
s−1 = 0

hence f−1 ∈ A. So A is both a field and a polynomial ring over K, so r = 0 and A = K.

Therefore K ′ is an algebraic extension of K, which is algebraically closed, so K ′ ' K. Let
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us fix an isomorphism ψ : K ′ = K[x1, . . . , xn]/M ∼−→K and let p : K[x1, . . . , xn] → K ′ =

K[x1, . . . , xn]/M be the canonical epimorphism.

Let ai = ψ(p(xi)), i = 1, . . . , n. The kernel of ψ ◦ p isM, and xi− ai ∈ ker(ψ ◦ p) for any

i. So 〈x1 − a1, . . . , xn − an〉 ⊂ ker(ψ ◦ p) =M. Since 〈x1 − a1, . . . , xn − an〉 is maximal (see

Example 3.1.2), we conclude the proof of the 1st Step.

2nd Step (Weak Nullstellensatz).

Let K be an algebraically closed field, let α ( K[x1, . . . , xn] be a proper ideal. Then

V (α) 6= ∅ i.e. the polynomials of α have at least one common zero in An
K .

Proof. Since α is proper, there exists a maximal idealM containing α. Then V (α) ⊃ V (M).

By 1st Step,M = 〈x1−a1, . . . , xn−an〉, so V (M) = {P} with P (a1, . . . , an), hence P ∈ V (α).

For any maximal ideal containing α we get a point in V (α).

3rd Step (Rabinowitch method or Rabinowitch trick).

Let K be an algebraically closed field: we will prove that I(V (α)) ⊂
√
α. Since the

reverse inclusion always holds, this will conclude the proof.

Let F ∈ I(V (α)), F 6= 0 (if F = 0 the conclusion is clear, because each ideal contains

0), and let α = 〈G1, . . . , Gr〉. The assumption on F means: if P is a point such that

G1(P ) = · · · = Gr(P ) = 0, then F (P ) = 0. The Rabinowitch trick consists in introducing an

extra variable, and then specializing it. Let us consider the polynomial ring in n+1 variables

K[x1, . . . , xn+1] and let β be the ideal β = 〈G1, . . . , Gr, xn+1F − 1〉: clearly by assumption β

has no zeros in An+1, hence, by Step 2, 1 ∈ β, i.e. there exist H1, . . . , Hr+1 ∈ K[x1, . . . , xn+1]

such that

1 = H1G1 + · · ·+HrGr +Hr+1(xn+1F − 1).

This is an equality of polynomials, so equality still holds if we give to some of the variables

a special value. In particular we can specialize the new variable xn+1 replacing it with 1
F

.

More formally, we introduce the K-homomorphism ψ : K[x1, . . . , xn+1] → K(x1, . . . , xn)

defined by H(x1, . . . , xn+1)→ H(x1, . . . , xn,
1
F

).

The polynomials G1, . . . , Gr do not contain xn+1 so ψ(Gi) = Gi ∀ i = 1, . . . , r. Moreover

ψ(xn+1F − 1) = 0, ψ(1) = 1. Therefore

1 = ψ(H1G1 + · · ·+HrGr +Hr+1(xn+1F − 1)) = ψ(H1)G1 + · · ·+ ψ(Hr)Gr

where ψ(Hi) is a rational function with denominator a power of F . By multiplying this

relation by a common denominator, that is a power of F , we get an expression of the form:

Fm = H ′1G1 + · · ·+H ′rGr,
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so F ∈
√
α. �

Corollary 3.2.9. Let K be an algebraically closed field.

1. There is a bijection between the algebraic subsets of An and the radical ideals of

K[x1, . . . , xn]. The bijection is given by α → V (α) and X → I(X). In fact, if X

is closed in the Zariski topology, then V (I(X)) = X; if α is a radical ideal, then

I(V (α)) = α.

2. Let X, Y ⊂ An be Zariski closed sets. Then

(i) I(X ∩ Y ) =
√
I(X) + I(Y );

(ii) I(X ∪ Y ) = I(X) ∩ I(Y ) =
√
I(X)I(Y ).

3. The points of a hypersurface determine its reduced equation.

Proof. 1. is clear. 2. follows from next Lemma 3.2.10, using the Nullstellensatz. To prove

3., assume that F,G are square-free polynomials in K[x1 . . . , xn] such that V (F ) = V (G).

Notice that if F is square-free, the 〈F 〉 =
√
F . By the Nullstellensatz it follows that

√
F =

I(V (F )) = I(V (G)) =
√
G, so 〈F 〉 = 〈G〉, which means that F,G differ at most by units. �

Lemma 3.2.10. Let α, β be ideals of K[x1, . . . , xn]. Then

a)
√√

α =
√
α;

b)
√
α + β =

√√
α +
√
β;

c)
√
α ∩ β =

√
αβ =

√
α ∩
√
β.

Proof. a) if F ∈
√√

α, there exists r ≥ 1 such that F r ∈
√
α, hence there exists s ≥ 1

such that F rs ∈ α.

b) α ⊂
√
α, β ⊂

√
β imply α + β ⊂

√
α +
√
β hence

√
α + β ⊂

√√
α +
√
β.

Conversely, α ⊂ α + β, β ⊂ α + β imply
√
α ⊂

√
α + β,

√
β ⊂

√
α + β, hence

√
α +
√
β ⊂
√
α + β so

√√
α +
√
β ⊂

√√
α + β =

√
α + β.

c) αβ ⊂ α ∩ β ⊂ α (resp. ⊂ β) therefore
√
αβ ⊂

√
α ∩ β ⊂

√
α ∩
√
β. If F ∈

√
α ∩
√
β,

then F r ∈ α, F s ∈ β for suitable r, s ≥ 1, hence F r+s ∈ αβ, so F ∈
√
αβ.

�

Part 2.(i) of Corollary 3.2.9 implies that I(X∩Y ) = I(X)+I(Y ) if and only if I(X)+I(Y )

is a radical ideal (see Remark 2 (iii)).
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Remark 5. The weak form of the Nullstellensatz says that a system of algebraic equations

has at least one solution over an algebraically closed field if, and only if, the ideal generated

by the corresponding polynomials is proper, or, equivalently, if it is impossible to find a linear

combination of them, with coefficients in the polynomial ring, equal to the constant 1. The

proof of Nullstellensatz we have given is not constructive, in the sense that, given polynomials

F1, . . . , Fr, it does not say how to check if 1 belongs or not to the ideal 〈F1, . . . , Fr〉.
The problem of making the proof constructive is connected to the more general “ ideal

membership problem”, which asks, given an ideal α ⊂ K[x1 . . . , xn] and a polynomial G ∈
K[x1 . . . , xn], to decide if G ∈ α or not.

Answers to these problems can be given with the tools of computational algebra, in partic-

ular using the theory of Gröbner bases. There are effective versions of the Nullstellensatz that

allow to bound the degrees of the coefficients in a possible expression 1 = H1F1 + · · ·+HrFr,

depending on the degrees of F1, . . . , Fr, and hence to reduce the question to a problem in

linear algebra.

3.3 Homogeneous Nullstellensatz

We move now to the projective space. There exist proper homogeneous ideals ofK[x0, x1, . . . , xn]

without zeros in Pn, even assuming K algebraically closed: for example the maximal ideal

〈x0, x1, . . . , xn〉. For such an ideal I, the Nullstellensatz fails, indeed Ih(VP (I)) = Ih(∅) =

K[x0, . . . , xn], but
√
I 6= K]x0, . . . , xn], because 1 ∈ I if and only if 1 ∈

√
I.

The following characterization holds:

Proposition 3.3.1. Let K be an algebraically closed field and let I be a homogeneous ideal

of K[x0, x1, . . . , xn].

The following are equivalent:

(i) VP (I) = ∅;
(ii) either I = K[x0, x1, . . . , xn] or

√
I = 〈x0, x1, . . . , xn〉;

(iii) there exists d ≥ 1 such that I ⊃ K[x0, x1, . . . , xn]d, the homogeneous component of

K[x0, x1, . . . , xn] of degree d.

Proof. (i)⇒(ii) Let p : An+1 − {0} → Pn be the canonical surjection. We have: VP (I) =

p(V (I) − {0}), where V (I) ⊂ An+1. So if VP (I) = ∅, then either V (I) = ∅ or V (I) = {0}.
If V (I) = ∅ then I(V (I)) = I(∅) = K[x0, x1, . . . , xn]; if V (I) = {0}, then I(V (I)) =

〈x0, x1, . . . , xn〉 =
√
I by the Nullstellensatz.
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(ii)⇒(iii) Let
√
I = K[x0, x1, . . . , xn], then 1 ∈

√
I so 1r = 1 ∈ I(r ≥ 1). If

√
I =

〈x0, x1, . . . , xn〉, then for any variable xk there exists an index ik ≥ 1 such that xikk ∈ I. If

d ≥ i0 + i1 + · · ·+ in − n, then any monomial of degree d is in I, so K[x0, x1, . . . , xn]d ⊂ I.

(iii)⇒(i) because no point in Pn has all coordinates equal to 0. �

Theorem 3.3.2. Let K be an algebraically closed field and I be a homogeneous ideal of

K[x0, x1, . . . , xn]. If F is a homogeneous non–constant polynomial such that VP (F ) ⊃ VP (I)

(i.e. F vanishes on VP (I), or F ∈ Ih(VP (I))), then F ∈
√
I.

Proof. We have p(V (I) − {0}) = VP (I) ⊂ VP (F ). Since F is non–constant, we have also

V (F ) = p−1(VP (F )) ∪ {0}, so V (F ) ⊃ V (I); by the Nullstellensatz I(V (I)) =
√
I ⊃

I(V (F )) =
√

(F ) 3 F . �

Corollary 3.3.3 (homogeneous Nullstellensatz). Let I be a homogeneous ideal of K[x0, x1, . . . , xn]

such that VP (I) 6= ∅, K algebraically closed. Then
√
I = Ih(VP (I)).

Definition 3.3.4. A homogeneous ideal of K[x0, x1, . . . , xn] such that
√
I = 〈x0, x1, . . . , xn〉

is called irrelevant.

Corollary 3.3.5. Let K be an algebraically closed field. There is a bijection between the set

of projective algebraic subsets of Pn and the set of radical homogeneous non–irrelevant ideals

of K[x0, x1, . . . , xn].

Remark 6. Let X ⊂ Pn be an algebraic set, X 6= ∅. The affine cone of X, denoted by

C(X), is the following subset of An+1: C(X) = p−1(X)∪{0}, where p : (Kn+1)∗ → Pn is the

canonical projection (see Section 1.2). If X = VP (F1, . . . , Fr), with F1, . . . , Fr homogeneous,

then clearly C(X) = V (F1, . . . , Fr).

Note that, if K is infinite, then I(C(X)) is a homogeneous ideal. Indeed, assuming

X 6= ∅, if F = F0 + · · ·+Fd ∈ I(C(X)) and P (a0, . . . , an) ∈ C(X), then for any λ ∈ K \ {0}

F (λa0, . . . , λan) = 0 = F0 + λF1(a0, . . . , an) + · · ·+ λdFd(a0, . . . , an);

hence F0 = F1(a0, . . . , an) = · · · = Fd(a0, . . . , an) = 0, which means that F1, . . . , Fd ∈
I(C(X)).

Note also that any homogeneous polynomial vanishes on X if and only if it vanishes on

C(X), therefore I(C(X)) = Ih(X).

Exercises 3.3.6. 1. Give a non-trivial example of an ideal α of K[x1, . . . , xn] such that

α 6=
√
α.
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2. Let K be an algebraically closed with char K 6= 2. Show that the following closed

subsets of the affine plane are such that equality does not hold in the relation I(Y ∩
Y ′) ⊃ I(Y ) + I(Y ′): Y = V (x2 + y2 − 1) and Y ′ = V (y − 1).

3. Let α ⊂ K[x1, . . . , xn] be an ideal. Prove that α =
√
α if and only if the quotient ring

K[x1, . . . , xn]/α does not contain any non–zero nilpotent.

4. Consider Z ⊂ Q. Prove that if an element y ∈ Q is integral over Z, then y ∈ Z. (Hint:

fixed y = a/b ∈ Q integral over Z, write an integral equation for y, then use the unique

factorization in Z.)

5. Let us recall that a prime ideal of a ring R is an ideal P such that a 6∈ P , b 6∈ P implies

ab 6∈ P . Prove that any prime ideal is a radical ideal.

6. * Let I be a homogeneous ideal of K[x1, . . . , xn] satisfying the following condition: if F

is a homogeneous polynomial such that F r ∈ I for some positive integer r, then F ∈ I.

Prove that I is a radical ideal. (Hint: take F non homogeneous such that for some

r ≥ 1 F r ∈ I, then use induction on the number of non-zero homogeneous components

of F to prove that F ∈ I.)
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Chapter 4

The Normalization Lemma

Even if it is known as Normalization “ Lemma”, this is a deep theorem in algebra, with

many applications, not merely a lemma to prove the Nullstellensatz. Later we will see how

it is used to study the dimension of K-algebras (Chapter 8) and its interesting geometric

interpretation (Theorem 17.1.3).

It takes its name from Emmy Noether, who in 1926 proved it under the hypothesis that

K is infinite. The case where K is a finite field was proved by Oscar Zariski in 1943. To

prove the Normalization Lemma, we will first see a couple of results about integral elements

over a ring. Then we will see a proof over an infinite field, rather similar to the original

one. It is less technical than any proof of the general case. For other proofs see [AM] or [L].

Let A ⊆ B be rings, where A is a subring of B. In this case we also say that B is an

A-algebra. Note that B has a natural structure of A-module. If B is finitely generated

as A-module, then B is called a finite A-algebra. This means that there exist elements

b1, . . . , br ∈ B such that B = b1A + b2A + . . . + brA, i.e. any element of B is a linear

combination with coefficients in A of the generators b1, . . . , br: if b ∈ B, then there is an

expression b = a1b1 + · · ·+ arbr, with a1, . . . , ar ∈ A.

If B is finitely generated as a ring containing A, then B is called a finitely generated

A-algebra. In this case there exists a finite number of elements of B, b1, . . . , br, such that

B = A[b1, . . . , br], i.e., B is the minimal ring containing A and the elements b1, . . . , br. For

any element of B there is an expression as polynomial with coefficients in A in the elements

b1, . . . , br. Another way to express that B is a finitely generated A-algebra is saying that B is

(isomorphic to) a quotient of a polynomial ring in a finite number of variables with coefficients

in A. Indeed, if B = A[b1, . . . , br], we can define a surjective ring homomorphism ϕ mapping

any polynomial f(x1, . . . , xr) ∈ A[x1, . . . , xr] to f(b1, . . . , br). So, by the homomorphism
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theorem, B ' A[x1, . . . , xr]/ kerϕ.

Theorem 4.0.1. Let b ∈ B, let A[b] ⊆ B be the A-algebra generated by b: A ⊆ A[b] ⊆ B.

The following are equivalent:

1. b is integral over A;

2. A[b] is a finite A-algebra;

3. there exists a subring C of B, with A[b] ⊆ C ⊆ B, such that C is a finite A-algebra.

Proof. 1) ⇒ 2) A[b] is generated by all the powers of b as A-module; we will prove that it

is generated by finitely many powers of b. By assumption there is a relation bn + a1b
n−1 +

· · ·+ an = 0, with a1, . . . , an ∈ A. Therefore, for any r ≥ 0, bn+r = −(a1b
n+r−1 + · · ·+ anb

r).

By induction on r it follows that all positive powers of b belong to the A-module generated

by 1, b, . . . , bn−1.

2)⇒ 3) It is enough to take C = A[b].

3) ⇒ 1) Let c1, . . . , cr be generators of C as A-module: C = c1A + · · · + crA. Then,

for any i = 1, . . . , r, bci is a linear combination of c1, . . . , cr with coefficients in A. So there

exists an r × r matrix M = (mij)i,j=1...,r with entries in A such that

bci =
r∑
j=1

mijcj, (4.1)

i.e. (bEr −M)c = 0, where c = t(c1 . . . cr) and Er is the identity matrix. Multiplying both

members of equation (4.1) at the left by the adjoint matrix ad(bEr −M), we get det(bEr −
M)ci = 0 for any i. Since c1, . . . , cr generate C, there is an expression 1 = c1α1 + · · ·+ crαr.

Therefore det(bEr−M) = det(bEr−M)·1 = det(bEr−M)c1α1 +· · ·+det(bEr−M)crαr = 0.

The expansion of det(bEr −M) gives a relation of integral dependence of b over A. �

Corollary 4.0.2. If b ∈ B is integral over A, then A[b] is integral extension of A.

Proof. If y ∈ A[b], then A[y] ⊂ A[b] ⊂ B, where A[b] is a finite A-algebra by 2. of Theorem

4.0.1. The conclusion follows from the characterization 3. of integral elements of the same

Theorem. �

Remark 7. Equation (4.1) says that b is an eigenvalue of the matrix M . The conclusion is

that b is a root of the characteristic polynomial of M . But, since we work over a ring not over

a field, we cannot jump straight to the conclusion. In fact we have to use the assumption

that c1, . . . , cr generate C as A-module.
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Remark 8. We will need also the following easy property, known as “ Transitivity of

finiteness”. Let A ⊆ B. Suppose that N is a finitely generated B-module. Then N is also

an A-module, by restriction of the scalars. Assume also that B is finitely generated as an

A-module. Then N is finitely generated as an A-module. Indeed if y1, . . . , yn generate N

over B and x1, . . . , xm generate B as A-module, then the mn products xiyj generate N over

A.

Corollary 4.0.3. Let A ⊆ B.

1. Let b1, . . . , bn ∈ B be integral over A. Then A[b1, . . . , bn] is a finite A-module.

2. Transitivity of integral dependence. Let A ⊂ B ⊂ C be rings. If B is integral

extension of A and C is integral extension of B, then C is integral extension of A.

Proof. 1. By induction on n. The case n = 1 is part of Theorem 4.0.1. Assume n > 1,

let Ar = A[b1, . . . , br]; then by inductive hypothesis An−1 is a finitely generated A-module.

An = An−1[bn] is a finitely generated An−1-module by the case n = 1, since bn is integral

over A and hence also over An−1. Then the thesis follows by the transitivity of finiteness

(Remark 8).

2. Let c ∈ C, then we have an equation cn + b1c
n−1 + · · · + bn = 0, with bi ∈ B for any

index i. The ring B′ = A[b1, . . . , bn] is a finitely generated A-module by part 1., and B′[c] is

a finitely generated B′-module, since c is integral over B′. Hence B′[c] is a finite A-module,

by transitivity of finiteness (Remark 8), and therefore c is integral over A by Theorem 4.0.1

3). �

We are now ready to prove

Theorem 4.0.4. Normalization Lemma. Let A = K[y1, . . . , yn] be a finitely generated

K–algebra and an integral domain. Let r := tr.d. Q(A)/K = tr.d. K(y1, . . . , yn)/K. Then

there exist elements z1, . . . , zr ∈ A, algebraically independent over K, such that A is integral

over the K-algebra B = K[z1, . . . , zr].

Proof. We give a proof by induction on n, assuming that K is infinite.

If n = 1, then A = K[y]. There are two possibilities, either r = 1 or r = 0; r = 1 if and

only if y is transcendental over K, in this case A = B; r = 0, if and only if y is algebraic

over K, in which case A is an algebraic extension of finite degree of K and B = K.

Let n ≥ 2 and assume the theorem is true for K-algebras with n − 1 generators. Let

ϕ : K[x1, . . . , xn]→ A be the surjective homomorphism mapping a polynomial f(x1, . . . , xn)

to f(y1, . . . , yn). If ϕ is an isomorphism, then r = n and B = A. So we assume that
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ker ϕ 6= (0) and r < n: there exists a non-zero polynomial f such that f(y1, . . . , yn) = 0.

Possibly renaming the variables, we can assume that xn appears explicitly in f .

Assume first that f is monic of degree d with respect to xn; then f(y1, . . . , yn) = 0 is a rela-

tion of integral dependence for yn over K[y1, . . . , yn−1], which implies that A = K[y1, . . . , yn]

is a finite module over K[y1, . . . , yn−1], generated by 1, yn, . . . , y
d−1
n . By Theorem 4.0.1,

every element of A is integral over K[y1, . . . , yn−1]. By inductive assumption, there exists

B = K[z1, . . . , zr] with z1, . . . , zr algebraically independent over K, such that K[y1, . . . , yn−1]

is integral over B. By Transitivity of integral dependence (Corollary 4.0.3 2.), also A is in-

tegral over B.

It remains the case where in the kernel of ϕ there is no monic polynomial in xn. We

claim that we can “ change coordinates” linearly in K[x1, . . . , xn] in such a way that the

polynomial f becomes monic. This means that there is another surjection K[x1, . . . , xn]→ A

such that some element of the kernel is monic in xn.

We consider the linear change of coordinates xi → xi + aixn, for 1 ≤ i ≤ n − 1 and

xn → xn, where the ai’s are suitable elements of K we are going to choose. Write f as

sum of its homogeneous components f = fd + lower degree terms, where d = deg f . Under

this transformation, f → f(x1 + a1xn, . . . , xn−1 + an−1xn, xn). We claim it is possible to

choose the coefficients ai so that in this new polynomial the coefficient of xdn is non-zero, so

that f has degree d also in the variable xn. Just replacing we get f(x1 + a1xn, . . . , xn−1 +

an−1xn, xn) = fd(x1 +a1xn, . . . , xn−1 +an−1xn, xn)+lower degree terms. Then we expand the

top degree term and we get fd(x1 + a1xn, . . . , xn−1 + an−1xn, xn) = fd(a1, . . . , an−1, 1)xdn +

lower degree terms in xn. Adding gives

f(x1 + a1xn, . . . , xn−1 + an−1xn, xn) = fd(a1, . . . , an−1, 1)xdn + lower degree terms in xn.

Thus we just have to choose the ai’s so that fd(a1, . . . , an−1, 1) 6= 0. Since fd is a non-

zero homogeneous polynomial of degree d ≥ 1, fd(x1, . . . , xn−1, 1) is a non-zero polynomial

of degree less than or equal to d in x1, . . . , xn−1. Since the field K is infinite, we are done

thanks to Exercise 1 in Chapter 2. �

Remark 9. This proof has been adapted from MathOverflow, a “ question and answer

site for professional mathematicians”: https://mathoverflow.net/questions/92354/noether-

normalization

The same proof can be found in the book [R]. The original article of Emmy Noether is

unfortunately in German [N].

A nice article on Normalization Lemma, by Judith Sally, can be found in the book ”Emmy

Noether in Bryn Mawr”, published in the occasion of her 100th birthday ([jS]).
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Emmy Noether (1882-1935) is the founder of modern algebra; her story is very interesting

and in some aspects symbolic of the difficulties encountered by women mathematicians. As

quoted in Wikipedia “ In a letter to The New York Times, Albert Einstein wrote:

In the judgment of the most competent living mathematicians, Fräulein Noether was the

most significant creative mathematical genius thus far produced since the higher education of

women began. In the realm of algebra, in which the most gifted mathematicians have been

busy for centuries, she discovered methods which have proved of enormous importance in the

development of the present-day younger generation of mathematicians.

On 2 January 1935, a few months before her death, mathematician Norbert Wiener wrote

“ Miss Noether is ... the greatest woman mathematician who has ever lived; and the greatest

woman scientist of any sort now living, and a scholar at least on the plane of Madame Curie.

”

See also http://www.enciclopediadelledonne.it/biografie/emmy-noether/
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Chapter 5

The projective closure

5.1 Projective closure and its ideal

In this chapter we will identify the affine space An with the open subet U0 ⊂ Pn. As

we have seen in Section 2.6, this is possible via the homeomorphisms, inverse each other,

ϕ0 : U0 → An and j0 : An → U0. Similar considerations hold for any index i = 0, . . . , n.

Given an affine variety X ⊂ An = U0 ⊂ Pn, in this way it becomes a subet of Pn and it

makes sense to consider its closure in the Zariski topology of the projective space.

Definition 5.1.1. The projective closure of X, X, is the closure of X in the Zariski

topology of Pn.

Since the map ϕ0 is a homeomorphism, we have: X ∩An = X because X is closed in An.

The points of X ∩H0, where H0 is the hyperplane at infinity VP (x0), are called the “ points

at infinity” of X in the fixed embedding.

Remark 10. Note that, if K is an infinite field, then the projective closure of An is Pn, i.e.

the affine space is dense in the projective space.

Indeed, let F be a homogeneous polynomial of degree d vanishing along An = U0. We

can write F = F0x
d
0 + F1x

d−1
0 + · · · + Fd, where Fi is a homogeneous polynomial of degree

i in x1, . . . , xn for any i. By assumption, for every P (a1, . . . , an) ∈ An, P ∈ VP (F ), i.e.

F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). So aF ∈ I(An). We claim that I(An) = (0): if n = 1,

this follows from the principle of identity of polynomials, because K is infinite. If n ≥ 2,

assume that F (a1, ..., an) = 0 for all (a1, ..., an) ∈ Kn and consider F (a1, ..., an−1, x): either

it has positive degree in x for some choice of (a1, ..., an), but then it has finitely many zeros

against the assumption; or it is constant in x for any choice of (a1, . . . , an), so F belongs to
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K[x1, ..., xn−1] and we can conclude by induction. So the claim is proved. We get therefore

that F0 = F1 = . . . = Fd = 0 and F = 0.

We want to find the relation between the equations of X ⊂ An and those of its projective

closure X ⊂ Pn.

Proposition 5.1.2. Let X ⊂ An be an affine variety, X be its projective closure. Then

Ih(X) = hI(X) := 〈hF |F ∈ I(X)〉.

Proof. Let F ∈ Ih(X) be a homogeneous polynomial. If P (a1, . . . , an) ∈ X, then [1, a1, . . . , an] ∈
X, so F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). Hence aF ∈ I(X). There exists k ≥ 0 such that

F = (xk0)h(aF ) (see proof of Proposition 2.6.1), so F ∈ hI(X). Hence Ih(X) ⊂ hI(X).

Conversely, ifG ∈ I(X) and P (a1, . . . , an) ∈ X, thenG(a1, . . . , an) = 0 = hG(1, a1, . . . , an),

so hG ∈ Ih(X) (here X is seen as a subset of Pn). So hI(X) ⊂ Ih(X). Since Ih(X) = Ih(X)

(see Exercise 1), we have the claim. �

In particular, if X is a hypersurface and I(X) = 〈F 〉, then Ih(X) = 〈hF 〉.

Next example, that will occupy the rest of this Chapter, will show that, in general,

from I(X) = 〈F1, . . . , Fr〉, it does not follow hI(X) = 〈hF1, . . . ,
hFr〉. Only in the last

thirty years, thanks to the development of symbolic algebra and in particular of the theory

of Gröbner bases, the problem of characterizing the systems of generators of I(X), whose

homogeneization generates hI(X), has been solved.

5.2 An extended example: the skew cubic

The example of the skew cubic is of fundamental importance in algebraic geometry, because

of the many geometrical phenomena that appear, and are developed in different classes of

varieties of which the skew cubic is the first case.

Example 5.2.1 (The skew cubic). In this example we assume that K is infinite. The

affine skew cubic is the following closed subset X of A3: X = V (y − x2, z − x3) (we use

variables x, y, z). X is the image of the map ϕ : A1 → A3 such that ϕ(t) = (t, t2, t3). Note

that ϕ : A1 → X is a homeomorphism (see Exercise 3, Chapter 1). Let α be the ideal

〈y − x2, z − x3〉. Note that X = V (α). We claim that α = I(X) = {F ∈ K[x, y, z] |
F (x, x2, x3) = 0 for any x ∈ K}. Proceeding as in Chapter 3, Example 3.1.2, we consider

the development of any polynomial G ∈ K[x, y, z] in Taylor series around (x, x2, x3), and
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we get the claim. We observe also that α is a prime ideal; to see this, we consider the ring

homomorphism K[x, y, z] → K[x] such that F (x, y, z) → F (x, x2, x3): it is surjective and

its kernel is α, therefore the quotient ring K[x, y, z]/α is isomorphic to K[x], which is an

integral domain. Therefore α is prime.

Let X be the projective closure of X in P3. First we will study X geometrically, then we

will determine its homogeneous ideal. We claim that it is the image of the map ψ : P1 → P3

such that ψ([λ, µ]) = [λ3, λ2µ, λµ2, µ3]. We identify A1 with the open subset of P1 defined

by λ 6= 0 i.e. U0, and A3 with the open subset of P3 defined by x0 6= 0 (U0 again). Note that

ψ|A1 = ϕ, because ψ([1, t]) = [1, t, t2, t3] = via the identification of A3 with U0 = (t, t2, t3) =

ϕ(t). Moreover ψ([0, 1]) = [0, 0, 0, 1]. So ψ(P1) = X ∪ {[0, 0, 0, 1]}.
Let G be a homogeneous polynomial of K[x0, x1, x2, x3] such that X ⊂ VP (G). Then

G(1, t, t2, t3) = 0 ∀t ∈ K, so G(λ3, λ2µ, λµ2, µ3) = 0 ∀µ ∈ K, ∀λ ∈ K∗. Since K is

infinite, then G(λ3, λ2µ, λµ2, µ3) is the zero polynomial in λ and µ, so G(0, 0, 0, 1) = 0 and

VP (G) ⊃ ψ(P1), therefore X ⊃ ψ(P1).

Conversely, we prove that ψ(P1) is Zariski closed, more precisely

ψ(P1) = VP (F0, F1, F2) where F0 := x1x3 − x2
2 , F1 := x1x2 − x0x3, F2 := x0x2 − x2

1 .

One inclusion is clear: every point of P3 of coordinates [λ3, λ2µ, λµ2, µ3] satisfies the three

quadratic equations F0 = F1 = F2 = 0. Conversely, let Fi(y0, . . . , y3) = 0 ∀i = 1, . . . , 3, i.e.

y1y3 = y2
2, y1y2 = y0y3, y0y2 = y2

1. We observe that either y0 6= 0 or y3 6= 0, otherwise also

y1 = y2 = 0.

Assume y0 6= 0, then, using the three equations, we get

[y0, y1, y2, y3] = [y3
0, y

2
0y1, y

2
0y2, y

2
0y3] = [y3

0, y
2
0y1, y0y

2
1, y0y1y2] = [y3

0, y
2
0y1, y0y

2
1, y

3
1] = ψ([y0, y1]).

Similarly, if y3 6= 0, [y0, y1, y2, y3] = ψ([y2, y3]). So ψ(P1) = X.

The three polynomials F0, F1, F2 are the 2× 2 minors of the matrix

M =

(
x0 x1 x2

x1 x2 x3

)
with entries in K[x0, x1, x2, x3]. Let F = y − x2, G = z − x3 be the two generators of I(X);
hF = x0x2− x2

1 ,
hG = x2

0x3− x3
1 , hence VP (hF, hG) = VP (x0x2− x2

1 , x
2
0x3− x3

1) 6= X, because

VP (hF, hG) contains the whole line “ at infinity” VP (x0, x1), which is not contained in X.

We have seen that the projective closure of the affine skew cubic X is X = VP (F0, F1, F2);

we shall prove now the non-trivial fact:
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Proposition 5.2.2. Ih(X) = 〈F0, F1, F2〉.

Proof. For any integer number d ≥ 0, let Ih(X)d := Ih(X)∩K[x0, x1, x2, x3]d: it is a K-vector

space of dimension ≤
(
d+3

3

)
. We define a K-linear map ρd having Ih(X)d as kernel:

ρd : K[x0, x1, x2, x3]d → K[λ, µ]3d

such that ρd(F ) = F (λ3, λ2µ, λµ2, µ3). Since ρd is clearly surjective, we compute

dim Ih(X)d =

(
d+ 3

3

)
− (3d+ 1) = (d3 + 6d2 − 7d)/6.

For d ≥ 2, we define now a second K-linear map

ϕd : K[x0, x1, x2, x3]⊕3
d−2 → Ih(X)d

such that ϕd(G0, G1, G2) = G0F0+G1F1+G2F2. Our aim is to prove that ϕd is surjective. The

elements of its kernel are called the syzygies of degree d among the polynomials F0, F1, F2.

Two obvious syzygies of degree 3 are constructed by developing, according to the Laplace

rule, the determinant of the matrix obtained repeating one of the rows of M , for examplex0 x1 x2

x0 x1 x2

x1 x2 x3

 .

It gives x0F0 + x1F1 + x2F2 = 0, so (x0, x1, x2) is a syzygy of degree 3. Similarly (x1, x2, x3).

We put H1 = (x0, x1, x2) and H2 = (x1, x2, x3), they both belong to kerϕ3. Note that H1

and H2 give rise to syzygies of all degrees ≥ 3, in fact we can construct a third linear map

ψd : K[x0, x1, x2, x3]⊕2
d−3 → kerϕd

putting ψd(A,B) = H1A+H2B = (x0, x1, x2)A+(x1, x2, x3)B = (x0A+x1B, x1A+x2B, x2A+

x3B).

Claim. ψd is an isomorphism.

Assuming the claim, we are able to compute dim kerϕd = 2
(
d
3

)
, therefore

dim Im ϕd = 3

(
d+ 1

3

)
− 2

(
d

3

)
which coincides with the dimension of Ih(X)d previously computed. This proves that ϕd is

surjective for all d and concludes the proof of the Proposition.
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Proof of the Claim. Let (G0, G1, G2) belong to kerϕd. This means that the following

matrix N with entries in K[x0, x1, x2, x3] is non-invertible:

N :=

G0 G1 G2

x0 x1 x2

x1 x2 x3

 .

Therefore, the rows of N are linearly dependent over the quotient field of the polynomial ring

K(x0, . . . , x3). Since the last two rows are linearly independent, there exist reduced rational

functions a1
a0
, b1
b0
∈ K(x0, x1, x2, x3), such that

G0 =
a1

a0

x0 +
b1

b0

x1 =
a1b0x0 + a0b1x1

a0b0

and similarly

G1 =
a1b0x1 + a0b1x2

a0b0

, G2 =
a1b0x2 + a0b1x3

a0b0

The Gi’s are polynomials, therefore the denominator a0b0 divides the numerator in each of

the three expressions on the right hand side. Moreover, if p is a prime factor of a0, then p

divides the three products b0x0, b0x1, b0x2, hence p divides b0. We can repeat the reasoning

for a prime divisor of b0, so obtaining that a0 = b0 (up to invertible constants). We get:

G0 =
a1x0 + b1x1

b0

, G1 =
a1x1 + b1x2

b0

, G2 =
a1x2 + b1x3

b0

,

therefore b0 divides the numerators

c0 := a1x0 + b1x1, c1 := a1x1 + b1x2, c2 := a1x2 + b1x3.

Hence b0 divides also x1c0−x0c1 = b1(x2
1−x0x1) = −b1F2, and similarly x2c0−x0c2 = b1F1,

x2c1− x1c2 = −b1F0. But F0, F1, F2 are irreducible and coprime, so we conclude that b0 | b1.

But b0 and b1 are coprime, so finally we get b0 = a0 = 1. �

As an important by-product of the proof of Proposition 5.2.2 we have the minimal free

resolution of the R-module Ih(X), where R = K[x0, x1, x2, x3]:

0→ R⊕2 ψ−→ R⊕3 ϕ−→ Ih(X)→ 0

where ψ is represented by the transposed of the matrix M and ϕ by the triple of polynomials

(F0, F1, F2).
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Exercises 5.2.3. 1. Let X ⊂ An be a closed subset, X be its projective closure in Pn.

Prove that Ih(X) = Ih(X).

2. Find a system of generators of the ideal of the affine skew cubic X, such that, if you

homogeneize them, you get a system of generators for Ih(X).
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Chapter 6

Irreducible components

6.1 Irreducible topological spaces

The aim of this chapter is to introduce the irreducible components of the affine varieties, the

“ building blocks” of the algebraic varieties. The idea is that the irreducible varieties are a

generalization in any dimensions of the irreducible hypersurfaces: any hypersurface is a finite

union of irreducible hypersurfaces, similarly any algebraic variety (affine or projective) is a

finite unione of irreducible varieties. The notion of irreducible topological space is typical

of algebraic geometry and is interesting in this context, although it is not so for Hausdorff

topological spaces.

Definition 6.1.1. Let X be a topological space. X is irreducible if it is not empty and

the following condition holds: if X = X1 ∪X2 with X1, X2 closed subsets of X, then either

X = X1 or X = X2.

Equivalently, passing to the complementar sets, X is irreducible if it is non empty and,

for all pair of non–empty open subsets U , V , we have U ∩ V 6= ∅.

Note that, by definition, ∅ is not irreducible.

Proposition 6.1.2. X is irreducible if and only if any non–empty open subset U of X is

dense in X.

Proof. Let X be irreducible, let P be a point of X and let IP be an open neighbourhood of

P in X. IP and U are non–empty and open, so IP ∩ U 6= ∅, therefore P ∈ U . This proves

that U = X.
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Conversely, assume that all open subsets are dense. Let U , V 6= ∅ be open subsets. Let

P ∈ U be a point. By assumption P ∈ V = X, so V ∩ U 6= ∅ (U is an open neighbourhood

of P ). �

Example 6.1.3. 1. If X = {P} is a unique point, then X is irreducible.

2. Let K be an infinite field. Then A1 is irreducible, because proper closed subsets are

finite sets. The same holds for P1.

3. Let f : X → Y be a continuous map of topological spaces. If X is irreducible and f is

surjective, then Y is irreducible.

4. Let Y ⊂ X, Y 6= ∅, be a subset endowed with the induced topology. Then Y is

irreducible if and only if the following holds: if Y ⊂ Z1 ∪ Z2, with Z1 and Z2 closed in X,

then either Y ⊂ Z1 or Y ⊂ Z2; equivalently: if Y ∩ U 6= ∅, Y ∩ V 6= ∅, with U , V open

subsets of X, then Y ∩ U ∩ V 6= ∅.

Proposition 6.1.4. Let X be a topological space, Y a subset of X. Y is irreducible if and

only if Y is irreducible.

Proof. Note first that if U ⊂ X is open and U ∩ Y = ∅ then U ∩ Y = ∅. Otherwise, if

P ∈ U ∩ Y , let A be an open neighbourhood of P : then A ∩ Y 6= ∅. In particular, U is an

open neighbourhood of P so U ∩ Y 6= ∅.
Let Y be irreducible. If U and V are open subsets of X such that U ∩Y 6= ∅, V ∩Y 6= ∅,

then U ∩ Y 6= ∅ and V ∩ Y 6= ∅ so Y ∩ U ∩ V 6= ∅ by the irreducibility of Y . Hence

Y ∩ (U ∩ V ) 6= ∅. So Y is irreducible. If Y is irreducible, we get the irreducibility of Y in a

completely analogous way. �

Corollary 6.1.5. Let X be an irreducible topological space and let U be a non–empty open

subset of X. Then U is irreducible.

Proof. By Proposition 6.1.2 U = X, which is irreducible. By Proposition 6.1.4 U is irre-

ducible. �

6.2 Irreducible algebraic varieties

For algebraic sets (both affine and projective) irreducibility can be expressed in a purely

algebraic way.

Proposition 6.2.1. Let X ⊂ An ( resp. Pn) be an algebraic variety equipped with the Zariski

topology, i.e. the induced topology by the Zariski topology of the affine (or projective) space.

X is irreducible if and only if I(X) (resp. Ih(X)) is prime.
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Proof. Assume first that X is irreducible, X ⊂ An. Let F,G be polynomials in K[x1, . . . , xn]

such that FG ∈ I(X): then

V (F ) ∪ V (G) = V (FG) ⊃ V (I(X)) = X,

hence either X ⊂ V (F ) or X ⊂ V (G). In the former case, if P ∈ X then F (P ) = 0, so

F ∈ I(X), in the second case G ∈ I(X); hence I(X) is prime.

Assume now that I(X) is prime. Let X = X1 ∪X2 be the union of two closed subsets.

Then I(X) = I(X1) ∩ I(X2) (see Lesson 4). Assume that X1 6= X, then I(X1) strictly

contains I(X), otherwise, if I(X) = I(X1), it would follow X1 = V (I(X1)) = V (I(X)) = X

because both are closed. So there exists F ∈ I(X1) such that F 6∈ I(X). But for every

G ∈ I(X2), FG ∈ I(X1) ∩ I(X2) = I(X), which is prime: since F 6∈ I(X), then G ∈ I(X).

So I(X2) ⊂ I(X), and we conclude that I(X2) = I(X), so X2 = X.

If X ⊂ Pn, the proof is similar, taking into account the following Lemma.

Lemma 6.2.2. Let P ⊂ K[x0, x1, . . . , xn] be a homogeneous ideal. Then P is prime if and

only if, for every pair of homogeneous polynomials F,G such that FG ∈ P, either F ∈ P or

G ∈ P.

Proof of the Lemma. Let H,K be any polynomials such that HK ∈ P . Let H = H0 +

H1 + · · · + Hd, K = K0 + K1 + · · · + Ke (with Hd 6= 0 6= Ke) be their expressions as sums

of homogeneous polynomials. Then HK = H0K0 + (H0K1 + H1K0) + · · · + HdKe: the

last product is the homogeneous component of degree d+ e of HK. P being homogeneous,

HdKe ∈ P ; by assumption either Hd ∈ P or Ke ∈ P . In the former case, HK − HdK =

(H −Hd)K belongs to P while in the second one H(K −Ke) ∈ P . So in both cases we can

proceed by induction. �

We list now some consequences of Proposition 6.2.1.

1. Let K be an infinite field. Then An and Pn are irreducible, because I(An) = Ih(Pn) =

(0), and (0) is prime because any polynomial ring with coefficients in a field is an integral

domain.

2. Let Y ⊂ Pn be closed. Y is irreducible if and only if its affine cone C(Y ) is irreducible.

3. Let Y = V (F ) ⊂ An, be a hypersurface over an algebraically closed field K. If F is

irreducible, then Y is irreducible.

4. LetK be algebraically closed. There is a bijection between prime ideals ofK[x1, . . . , xn]

and irreducible algebraic subsets of An. In particular, the maximal ideals correspond to the
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points. Similarly, there is a bijection between homogeneous non–irrelevant prime ideals of

K[x0, x1, . . . , xn] and irreducible algebraic subsets of Pn.

6.3 Irreducible components

Our next task is to prove that any algebraic variety can be written as a finite union of

irreducible varieties.

Definition 6.3.1. A topological space X is called noetherian if it satisfies the following

equivalent conditions:

(i) the ascending chain condition for open subsets;

(ii) the descending chain condition for closed subsets;

(iii) any non–empty set of open subsets of X has maximal elements;

(iv) any non–empty set of closed subsets of X has minimal elements.

The proof of the equivalence is standard (compare with the properties defining noetherian

rings).

Example 6.3.2. An is noetherian: if the following is a descending chain of closed subsets

of An

Y1 ⊃ Y2 ⊃ · · · ⊃ Yk ⊃ . . . ,

then

I(Y1) ⊂ I(Y2) ⊂ · · · ⊂ I(Yk) ⊂ . . .

is an ascending chain of ideals of K[x1, . . . , xn], hence it is stationary from a suitable m on;

therefore V (I(Ym)) = Ym = V (I(Ym+1)) = Ym+1 = . . . .

Similarly Pn is noetherian.

Proposition 6.3.3. Let X be a noetherian topological space and Y be a non–empty closed

subset of X. Then Y can be written as a finite union Y = Y1 ∪ · · · ∪ Yr of irreducible closed

subsets. The maximal Yi’s in the union are uniquely determined by Y and are called the

“ irreducible components” of Y . They are the maximal irreducible subsets of Y .

Proof. By contradiction. Let S be the set of the non–empty closed subsets of X which are

not a finite union of irreducible closed subsets: assume S 6= ∅. By noetherianity S has

minimal elements, fix one of them Z. Z is not irreducible, so Z = Z1 ∪ Z2, Zi 6= Z for

i = 1, 2. So Z1, Z2 6∈ S, hence Z1, Z2 are both finite unions of irreducible closed subsets, so

such is Z: a contradiction.
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Now assume that Y = Y1 ∪ · · · ∪ Yr, with Yi 6⊆ Yj if i 6= j and Yi irreducible closed

for all i. If there is another similar expression Y = Y ′1 ∪ · · · ∪ Y ′s , Y ′i 6⊆ Y ′j for i 6= j, then

Y ′1 ⊂ Y1 ∪ . . . Yr, so Y ′1 =
⋃r
i=1(Y ′1 ∩ Yi), hence Y ′1 ⊂ Yi for some i, and we can assume

i = 1. Similarly, Y1 ⊂ Y ′j , for some j, so Y ′1 ⊂ Y1 ⊂ Y ′j , so j = 1 and Y1 = Y ′1 . Now let

Z = Y − Y1 = Y2 ∪ · · · ∪ Yr = Y ′2 ∪ · · · ∪ Y ′s and proceed by induction. �

Corollary 6.3.4. Any algebraic variety in An (resp. in Pn) can be written in a unique way

as the finite union of its irreducible components.

Note that the irreducible components of X are its maximal irreducible algebraic subsets.

They correspond to the minimal prime ideals over I(X). Since I(X) is radical, these minimal

prime ideals coincide with the primary ideals appearing in the primary decomposition of

I(X).

6.4 Quasi–projective varieties

Often the irreducible closed subsets of An are called affine varieties, i.e., the term variety is

reserved to the irreducible ones. Similarly for the irreducible closed subsets of Pn.

Definition 6.4.1. A locally closed subset in Pn is the intersection of an open and a closed

subset. An irreducible locally closed subset of Pn is called a quasi–projective variety: it is

open in an irreducible closed subset Z of Pn, therefore it is dense in Z.

We conclude this chapter with the (non-trivial) proof of the irreducibility of the product

of irreducible affine varieties.

Proposition 6.4.2. Let X ⊂ An and Y ⊂ Am be irreducible affine varieties. Then X × Y
is an irreducible subvariety of An+m.

Proof. Let X × Y = W1 ∪W2, with W1,W2 closed. For any P ∈ X, the map {P} × Y → Y

which takes (P,Q) to Q is a homeomorphism, so {P} × Y is irreducible. {P} × Y =

(W1 ∩ ({P} × Y )) ∪ (W2 ∩ ({P} × Y )), so ∃i ∈ {1, 2} such that {P} × Y ⊂ Wi. Let

Xi = {P ∈ X | {P} × Y ⊂ Wi}, i = 1, 2. Note that X = X1 ∪X2.

Claim. Xi is closed in X.

Let X i(Q) = {P ∈ X | (P,Q) ∈ Wi}, Q ∈ Y . We have: (X × {Q}) ∩Wi = X i(Q)× {Q} '
X i(Q); X×{Q} and Wi are closed in X×Y , so X i(Q)×{Q} is closed in X×Y and also in

X × {Q}, so X i(Q) is closed in X. Note that Xi =
⋂
Q∈Y X

i(Q), hence Xi is closed, which

proves the Claim.
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Since X is irreducible, X = X1 ∪ X2 implies that either X = X1 or X = X2, so either

X × Y = W1 or X × Y = W2. �

Exercises 6.4.3. 1. Let X 6= ∅ be a topological space. Prove that X is irreducible if and

only if all non–empty open subsets of X are connected.

2. Prove that the cuspidal cubic Y ⊂ A2
C of equation x3 − y2 = 0 is irreducible. (Hint:

express Y as image of A1 in a continuous map...)

3. Give an example of two irreducible subvarieties of P3 whose intersection is reducible.

4. Find the irreducible components of the following algebraic sets over the complex field:

a) V (y4 − x2, y4 − x2y2 + xy2 − x3) ⊂ A2;

b) V (y2 − xz, z2 − y3) ⊂ A3.

5. Let Z be a topological space and let {Uα}α∈I be an open covering of Z such that

Uα ∩ Uβ 6= ∅ for α 6= β and that all Uα’s are irreducible. Prove that Z is irreducible.
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Chapter 7

Dimension

7.1 Topological dimension

There are a few equivalent ways to give the definition of dimension for algebraic varieties.

In this section we will first see a topological definition, then an algebraic characterization.

In a later lesson (Theorem 17.1.3), we will see a more geometrical interpretation.

Let X be a topological space.

Definition 7.1.1. The topological dimension of X is the supremum of the lengths of finite

chains of distinct irreducible closed subsets of X, where by definiton the following chain has

length n:

X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn.

The topological dimension of X is denoted by dimX. It is also called combinatorial or

Krull dimension.

Example 7.1.2. 1. dimA1 = 1: the maximal length chains of irreducible closed subsets

all have the form {P} ⊂ A1.

2. dimAn: a chain of length n is

{0} = V (x1, . . . , xn) ⊂ V (x1, . . . , xn−1) ⊂ · · · ⊂ V (x1) ⊂ An.

Note that V (x1, . . . , xi) is irreducible for any i ≤ n, because the ideal 〈x1, . . . , xi〉 is

prime. IndeedK[x1, . . . , xn]/〈x1, . . . , xi〉 ' K[xi+1, . . . , xn], which is an integral domain.

Therefore we get that dimAn ≥ n. We will see shortly that proving equality is non

trivial. We note also that, from every chain of irreducible closed subsets of An, passing

to their ideals, we get a chain of the same length of prime ideals in K[x1, . . . , xn].
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3. Let X be irreducible. Then dimX = 0 if and only if X is the closure of every point of

it.

We prove now some useful relations between the dimensions of X and of its subspaces.

Proposition 7.1.3. 1. If Y ⊂ X is a subspace of the topological space X with the induced

topology, then dimY ≤ dimX. In particular, if dimX is finite, then also dimY is

finite. In this case, the number dimX − dimY is called the codimension of Y in X.

2. If X =
⋃
i∈I Ui is an open covering, then dimX = supi{dimUi}.

3. If X is noetherian and X1, . . . , Xs are its irreducible components, then dimX =

supi dimXi.

4. If Y ⊂ X is closed, X is irreducible, dimX is finite and dimX = dimY , then Y = X.

Proof. 1. Let Y0 ⊂ Y1 ⊂ · · · ⊂ Yn be a chain of irreducible closed subsets of Y . Then taking

closures we get the following chain of irreducible closed subsets of X: Y0 ⊆ Y1 ⊆ · · · ⊆ Yn.

Note that, for any index i, Yi ∩ Y = Yi, because Yi is closed into Y , so if Yi = Yi+1,

then Yi = Yi+1. Therefore the two chains have the same length and we can conclude that

dimY ≤ dimX.

2. Let X0 ⊂ X1 ⊂ · · · ⊂ Xn be a chain of irreducible closed subsets of X. Let P ∈ X0

be a point: there exists an index i ∈ I such that P ∈ Ui. So ∀k = 0, . . . , n Xk ∩ Ui 6= ∅:
it is an irreducible closed subset of Ui, irreducible because open in Xk which is irreducible.

Consider

X0 ∩ Ui ⊂ X1 ∩ Ui ⊂ · · · ⊂ Xn ∩ Ui;

it is a chain of length n, because Xk ∩ Ui = Xk: in fact Xk ∩ Ui is open in Xk hence dense.

Therefore, for any chain of irreducible closed subsets of X, there exists a chain of the same

length of irreducible closed subsets of some Ui. So dimX ≤ sup dimUi. By 1., equality

holds.

3. Any chain of irreducible closed subsets of X is completely contained in an irreducible

component of X. The conclusion follows as in 2.

4. If Y0 ⊂ Y1 ⊂ · · · ⊂ Yn is a chain of irreducible closed subsets of Y of maximal length,

then it is also a maximal length chain in X, because dimX = dimY . Hence X = Yn, because

X is irreducible, and we conclude that X ⊂ Y . �

Corollary 7.1.4. dimPn = dimAn.
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Proof. The equality follows from Pn = U0 ∪ · · · ∪Un, and the homeomorphism of Ui with An

for all i. �

If X is noetherian and all its irreducible components have the same dimension r, then

X is said to have pure dimension r. Note that the topological dimension is invariant by

homeomorphism. By definition, a curve is an algebraic set of pure dimension 1; a surface is

an algebraic set of pure dimension 2.

7.2 Dimension of algebraic varieties

We want to study the dimensions of affine algebraic sets. The following definition results to

be very important.

Definition 7.2.1. Let X ⊂ An be an algebraic set. The coordinate ring of X is

K[X] := K[x1, . . . , xn]/I(X).

It is a finitely generated reduced K–algebra, i.e. there are no non–zero nilpotents, because

I(X) is radical (see Exercise 3, Chapter 3).

There is the canonical epimorphism K[x1, . . . , xn] → K[X] such that F → [F ]. The

elements of K[X] can be interpreted as polynomial functions on X: to a polynomial F , we

can associate the function f : X → K such that P (a1, . . . , an)→ F (a1, . . . , an).

Two polynomials F , G define the same function on X if, and only if, F (P ) = G(P ) for

every point P ∈ X, i.e. if F −G ∈ I(X), which means exactly that F and G have the same

image in K[X].

K[X] is generated as K–algebra by [x1], . . . , [xn]: they can be interpreted as coordinate

functions on X. We will denote them by t1, . . . , tn. In fact ti : X → K is the function which

associates to P (a1, . . . , an) the coordinate ai. Note that the function f can be interpreted as

F (t1, . . . , tn): the polynomial F evaluated at the n– tuple of the coordinate functions.

In the projective space we can do an analogous construction. If Y ⊂ Pn is closed, then

by definition the homogeneous coordinate ring of Y is

S(Y ) := K[x0, x1, . . . , xn]/Ih(Y ).

Also S(Y ) is a finitely generated reduced K–algebra, but its elements cannot be interpreted

as functions on Y . They are functions on the cone C(Y ).

We note that, from the fact that Ih(Y ) is homogeneous it follows that also S(Y ) is a

graded ring, with the graduation induced by the polynomial ring. Indeed, if F −G ∈ Ih(Y ),
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and F = F0 + . . . + Fd, G = G0 + . . . + Ge are their decompositions in homogeneous

components, then it follows that F0 − G0 ∈ Ih(Y ), F1 − G1 ∈ Ih(Y ), and so on. Therefore

S(Y ) = ⊕d≥0S(Y )d, where S(Y )d is the subgroup of the classes of homogeneous polynomials

of degree d. S(Y )d is also a K-vector space of finite dimension. The function that associates

to any integer d the dimension of S(Y )d as K-vector space is called the Hilbert function of

Y .

Definition 7.2.2. Let R be a ring. The Krull dimension of R is the supremum of the lengths

of the chains of prime ideals of R

P0 ⊂ P1 ⊂ · · · ⊂ Pr.

Similarly, the heigth of a prime ideal P is the sup of the lengths of the chains of prime ideals

contained in P : it is denoted htP .

Proposition 7.2.3. Let K be an algebraically closed field. Let X be an affine algebraic set

contained in An. Then dimX = dimK[X]. In particular dimAn = dimK[x1, . . . , xn].

Proof. By the Nullstellensatz and its Corollary 3.2.9 the chains of irreducible closed subsets

ofX correspond bijectively to the chains of prime ideals ofK[x1, . . . , xn] containing I(X), and

therefore also to the chains of prime ideals of the quotient ring K[X] = K[x1, . . . , xn]/I(X).

�

The dimension theory for commutative rings contains some important theorems about

the dimension of K–algebras. The following theorem states the basic properties in the case

of integral domains and the algebraic characterization of dimension for affine varieties.

Theorem 7.2.4. Let K be any field. Let A be a finitely generated K–algebra and an integral

domain.

1. dimA = tr.d.Q(A)/K, where Q(A) is the quotient field of A. In particular dimA is

finite.

2. Let P ⊂ A be any prime ideal. Then dimA = htP + dimA/P.

Proof. We postpone the proof to next chapter. It relies on the Normalization Lemma and on

the Cohen-Seidenberg theorems about the structure of prime ideals for integral extensions

of K-algebras. �

Corollary 7.2.5. Let K be an algebraically closed field.

1. dimAn = dimPn = n.
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2. If X is an irreducible affine variety, then dimX = tr.d.K(X)/K, where K(X) denotes

the quotient field of K[X].

3. If X ⊂ An is an irreducible affine variety, then dimX = n− htI(X).

Proof. 1. dimK[x1, . . . , xn] = tr.d.K(x1, . . . , xn)/K = n.

2. follows immediately from Theorem 7.2.4, 1.

3. is Theorem 7.2.4, 2, applied to the case A = K[x1, . . . , xn] and P = I(X). �

Note that the homogeneous coordinate ring of Pn is K[x0, . . . , xn], whose dimension is

n + 1, strictly bigger than the dimension of Pn. Similarly, if Y is a projective algebraic

variety, then dimS(Y ) = dimC(Y ), the affine cone over Y .

Corollary 7.2.5 tells us how to compute the dimension of an affine irreducible variety over

an algebraically closed field K. If X is a reducible affine variety, and X = X1 ∪ · · · ∪ Xr

is its decomposition as union of irreducible components, then Proposition 7.1.3 tells us that

dimX is the maximum of the dimensions dimXi.

The following is the characterization of the algebraic varieties of codimension 1 in An.

Proposition 7.2.6. Let X ⊂ An be an affine variety over an algebraically closed field. Then

X is a hypersurface if and only if X is of pure dimension n− 1.

Proof. Let X ⊂ An be a hypersurface, with I(X) = (F ) = (F1 . . . Fs), where F1, . . . , Fs

are the (distinct) irreducible factors of F all of multiplicity one. Then X = V (F1 . . . Fs) =

V (F1)∪ . . .∪ V (Fs); therefore V (F1),. . ., V (Fs) are the irreducible components of X, whose

ideals are (F1), . . ., (Fs). So by Corollary 7.2.5 it is enough to prove that ht(Fi) = 1, for

i = 1, . . . , s.

If P ⊂ (Fi) is a prime ideal, then either P = (0) or there exists G ∈ P , G 6= 0. In the

second case, let A be an irreducible factor of G belonging to P : A ∈ (Fi) so A = HFi. Since

A is irreducible, either H or Fi is invertible; but Fi is irreducible, so H is invertible, hence

(A) = (Fi) ⊂ P . Therefore either P = (0) or P = (Fi), and it follows that ht(Fi) = 1.

Conversely, assume that X is irreducible of dimension n − 1. Since X 6= An, there

exists F ∈ I(X), F 6= 0, with irreducible factorization F = F1 . . . Fs. Hence X ⊂ V (F ) =

V (F1)∪ . . .∪V (Fs). By the irreducibility of X, X ⊂ V (Fi), which is irreducible of dimension

n− 1, by the first part. So X = V (Fi) (by Proposition 7.1.3, 4). �

This proposition does not generalise to higher codimension. There exist codimension 2

algebraic subsets of An whose ideal is not generated by two polynomials. An example in A3

is the curve X parametrised by (t3, t4, t5). It is possible to show that a minimal system of
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generators of I(X) is formed by the three polynomials x3 − yz, y2 − xz, z2 − x2y. One can

easily show that I(X) cannot be generated by two polynomials. For a proof and a discussion

of this example, and more generally of the ideals of the curves admitting a parametrization

of the form x = tn1 , y = tn2 , z = tn3 , see [K], Chapter V.

Proposition 7.2.7. Let X ⊂ An
K, Y ⊂ Am

K be irreducible closed subsets, over an algebraically

closed field K. Then dimX × Y = dimX + dimY .

Proof. Let r = dimX, s = dimY ; let t1, . . . , tn (resp. u1, . . . , um) be coordinate functions

on An (resp. Am). We can assume that t1, . . . , tr is a transcendence basis of Q(K[X]) and

u1, . . . , us a transcendence basis of Q(K[Y ]). By definition, K[X × Y ] is generated as K–

algebra by t1, . . . , tn, u1, . . . , um: we want to show that t1, . . . , tr, u1, . . . , us is a transcendence

basis of Q(K[X × Y ]) over K. Assume that F (x1, . . . , xr, y1, . . . , ys) is a polynomial which

vanishes on t1, . . . , tr, u1, . . . , us, i.e. F defines the zero function on X × Y . Then, ∀ P ∈ X,

F (P ; y1, . . . , ys) is zero on Y , i.e. F (P ;u1, . . . , us) = 0. Since u1, . . . , us are algebraically inde-

pendent, every coefficient ai(P ) of F (P ; y1, . . . , ys) is zero, ∀ P ∈ X. Since t1, . . . , tr are alge-

braically independent, the polynomials ai(x1, . . . , xr) are zero, so F (x1, . . . , xr, y1, . . . , ys) = 0.

So t1, . . . , tr, u1, . . . , us are algebraically independent. Since this is certainly a maximal alge-

braically free set, it is a transcendence basis. �

Exercises 7.2.8. 1. Prove that a proper closed subset of an irreducible curve is a finite

set. Deduce that any bijection between irreducible curves is a homeomorphism.

2. Let X ⊂ A2 be the cuspidal cubic of equation: x3− y2 = 0, let K[X] be its coordinate

ring. Prove that all elements of K[X] can be written in a unique way in the form

f(x) + yg(x), where f, g are polynomials in the variable x. Deduce that K[X] is not

isomorphic to a polynomial ring.
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Chapter 8

Dimension of K-algebras.

The purpose of this chapter is to prove Theorem 7.2.4. In reality we will not give a complete

proof of it, but we will only enunciate the Cohen-Seidenberg theorems and then we will see

how, from them and from the Normalization Lemma, the theorem follows.

8.1 Prime ideals of integral extensions

Let R ⊂ T be rings, R subring of T . We are interested in relations between the prime ideals

of R and those of T . We are principally concerned with the case where T is integral over R,

but we formulate the definitions in greater generality.

It is easily seen that if Q is a prime ideal of T , then Q ∩ R is a prime ideal of R, called

contraction of Q in R. We list four properties that might hold for a pair R ⊂ T .

(LO) Lying over. For any prime ideal P in R there exists a prime ideal Q in T with

Q∩R = P .

(GU) Going up. Given prime ideals P ⊂ P0 in R and Q in T with Q ∩ R = P , there exists

a prime ideal Q0 in T satisfying Q ⊂ Q0 and Q0 ∩R = P0.

(GD) Going down. Given prime ideals P ⊂ P0 in R and Q0 in T with Q0 ∩ R = P0, there

exists a prime ideal Q in T satisfying Q ⊂ Q0 and Q∩R = P .

(INC) Incomparable. Two different prime ideals in T with the same contraction in R cannot

be comparable: if Q ( Q0 are prime ideals of T , then Q∩R ( Q0 ∩R.

Next Theorem 8.1.4 states conditions on the pair of rings that ensure the validity of the

above properties. We first need some definitions.
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Proposition 8.1.1. Let R ⊂ T . The set R of all elements of T that are integral over R is

a subring of T .

Proof. It relies on Theorem 4.0.1. If x, y ∈ R, R[x, y] is a finite R-module. Therefore

x+ y, x− y, xy are integral over R, because they all belong to R[x, y]. �

Definition 8.1.2. R is called the integral closure of R in T . R is called integrally closed

in T if R = R. An integral domain that is integrally closed in its field of fractions is called

normal.

Next Proposition extends Exercise 4 of Chapter 3.

Proposition 8.1.3. If A is a UFD, then it is a normal ring. In particular, any polynomial

ring with coefficients in a field is normal.

Proof. Indeed, let f/g ∈ Q(A) be an element of the quotient field of A, with f, g coprime.

Assume that f/g is integral over A: we have an equation of integral dependence

(f/g)r + a1(f/g)r−1 + · · ·+ ar = 0,

with coefficients a1, . . . , ar ∈ A. Multiplying everything by gr we get:

f r = −a1f
r−1g − · · · − argr = g(−a1f

r−1 − · · · − argr−1,

therefore g|f r. So each irreducible factor of g divides f . Since f, g are coprime, we conclude

that g = ±1 and f/g ∈ A. �

Theorem 8.1.4. Let R ⊂ T be rings with T integral over R. Then:

1. the pair R ⊂ T satisfies (LO), (INC) and (GU);

2. if moreover R and T are integral domains and R is normal, then also (GD) is satisfied.

Proof. For a proof, see for instance [AM] or [P]. �

8.2 Length of chains of prime ideals in K-algebras

Next Theorem 8.2.2 is the key to prove Theorem 7.2.4. First we need to state one more

property of integral extensions. It extends what we proved in the first step of the proof of

the Nullstellensatz.

Proposition 8.2.1. Let R ⊂ T be integral domains, T integral over R. Then T is a field if

and only if R is a field.
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Proof. Suppose R is a field, let y ∈ T, y 6= 0. Let

yn + r1y
n−1 + · · ·+ rn = 0, ri ∈ R

be an equation of integral dependence for y of smallest possible degree. Since T is an integral

domain we have rn 6= 0, otherwise we simplify and get an equation of integral dependence

of lower degree, so y−1 = −r−1
n (yn−1 + r1y

n−2 + · · ·+ rn−1) ∈ T . Hence T is a field.

Conversely, suppose that T is a field; let x ∈ R, x 6= 0. Then x−1 ∈ T , so it is integral

over R, so that we have an equation

x−m + s1x
−m+1 + · · ·+ sm = 0, si ∈ R.

It follows that x−1 = −(s1 + s2x+ · · ·+ smx
m−1) ∈ R, therefore R is a field. �

Theorem 8.2.2. Let K be a field, let A be a finitely generated K-algebra, integral extension

of K[z1, . . . , zn], with z1, . . . , zn algebraically independent over K. Then:

a) Every chain of prime ideals of A: P0 ⊂ P1 ⊂ · · · ⊂ Pl has length l ≤ n;

b) Assume that the chain is non-extendable, then l = n if and only if

P0 ∩K[z1, . . . , zn] = (0).

Proof. By induction on n.

If n = 0, then A is integral extension of K. We claim that every prime ideal P of A is

maximal; indeed, first observe that also A/P is integral extension of K, because, if a ∈ A,

from an equation of algebraic dependence for a over K, passing to the quotient we get a

similar equation for [a] over K. So by Proposition 8.2.1 it follows that A/P is a field, and

we conclude that P is maximal. So l = 0. Moreover P ∩K = (0).

Let n ≥ 1, and let P0 ⊂ P1 ⊂ · · · ⊂ Pl be a chain of prime ideals in A. Let Qi =

Pi ∩K[z1, . . . , zn]. Then, by Theorem 8.1.4, (INC), Q0 ⊂ · · · ⊂ Ql is a chain of prime ideals

in K[z1, . . . , zn]. If l = 0 we are done, so assume l ≥ 1. Then Q1 contains a non-zero element,

and, since Q1 is prime and K[z1, . . . , zn] is a UFD, there exists f ∈ Q1 irreducible. We pass

to the quotient with respect to (f), that is contained in Qi for any i ≥ 1. So we get a chain

of length l − 1 in K[z1, . . . , zn]/(f), which is an integral domain:

Q1/(f) ⊂ · · · ⊂ Ql/(f).

By the Normalization Lemma, K[z1, . . . , zn]/(f) is an integral extension of a polynomial ring

K[y1, . . . , yn−1]. Hence, by the induction hypothesis, we have l− 1 ≤ n− 1, i.e. l ≤ n. This

proves part a).
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Assume now that the chain P0 ⊂ P1 ⊂ · · · ⊂ Pl is not extendable. Assume Q0 =

P0 ∩ K[z1, . . . , zn] = (0). Let A′ = A/P0, P ′i = Pi/P0 for any i. The composite map

K[z1, . . . , zn] ↪→ A→ A/P0 is injective becauseQ0 = (0), soA/P0 is integral overK[z1, . . . , zn].

We have that K[z1, . . . , zn] is a normal ring (see Proposition 8.1.3). Hence, we can apply

Theorem 8.1.4 (GD) to this extension of rings, as follows. We have Q0 ( Q1. As before

there exists f ∈ Q1 irreducible, generating a prime ideal with (f) ⊂ Q1. We have also

Q1 = P ′1 ∩K[z1, . . . , zn], so by (GD) property there exists a prime ideal N ⊂ P ′1 of A′ such

that N ∩ K[z1, . . . , zn] = (f). But the chain P ′0 ⊂ P ′1 is not extendable and P ′0 = (0),

hence N = P ′1, and (f) = Q1. It follows that K[z1, . . . , zn]/(f) is a subring of A/P1 (in the

sense that the induced map K[z1, . . . , zn]/(f) → A/P1 is injective) and this is an integral

extension. Again by Normalization Lemma, K[z1, . . . , zn]/(f) is integral over a polynomial

ring K[y1, . . . , yn−1]. Since (0) = P1/P1 ⊂ · · · ⊂ Pl/P1 is a non-extendable chain of prime

ideals of A/P1, such that (0) ∩K[y1, . . . , yn−1] = (0), by inductive assumption we conclude

that l − 1 = n− 1.

If Q0 6= 0, let g ∈ Q0 non 0. The ring K[z1, . . . , zn]/(g) is integral over a polynomial ring

in n− 1 variables, so the chain Q0/(g) ⊂ · · · ⊂ Ql/(g) has length at most n− 1 and l < n.

�

8.3 Consequences

The following series of Corollaries of Theorem 8.2.2 proves the desired results and more.

Corollary 8.3.1. Let A be an integral domain finitely generated as K-algebra. Let n =

tr.d.Q(A)/K. Then

1. all non-extendable chains of prime ideals of A have length n.

2. The Krull dimension of A is finite and equal to n.

3. Let Q ⊂ P be two prime ideals of A. If

Q = P0 ⊂ P1 ⊂ · · · ⊂ Pl = P

is a non-extendable chain of prime ideals between Q and P, then l = tr.d.Q(A/Q)/K−
tr.d.Q(A/P)/K.

4. Every maximal ideal of A has height n.

61



Proof. By the Normalization Lemma there exist n algebraically independent elements z1, . . . , zn ∈
A, such that A is integral over K[z1, . . . , zn]. Since A is a domain, for any non-extendable

chain of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pl, we have P0 = (0), because (0) is prime and

contained in any ideal, hence Q0 = P0 ∩ K[z1, . . . .zn] = (0). The proof of (1) follows by

Theorem 8.2.2. (2) follows from (1).

To prove (3), note that, by (1), we can extend Q = P0 ⊂ P1 ⊂ · · · ⊂ Pl = P to a

non-extendable chain of prime ideals of A of length n:

(0) ⊂ · · · ⊂ Q = P0 ⊂ P1 ⊂ · · · ⊂ Pl = P ⊂ Pl+1 ⊂ . . . .

The part of the chain from Q up has length equal to dimA/Q = tr.d.Q(A/Q)/K, be-

cause there is a natural bijection between the set of prime ideals of A/Q and that of prime

ideals of A containing Q. Similarly the part from P up has length equal to dimA/P =

tr.d.Q(A/P)/K. So (3) follows.

(4) follows because the last ideal in a non-extendable chain of prime ideals of A must be

a maximal ideal. �

Corollary 8.3.2. Let P ⊂ K[x1, . . . , xn] be a prime ideal of the polynomial ring in n vari-

ables. Then dimA/P = n− ht(P).

Proof. Let

(0) = P0 ⊂ · · · ⊂ P ⊂ · · · ⊂ Pn (8.1)

be a non-extendable chain of length n of prime ideals in K[x1, . . . , xn] passing through P .

The subchain (0) = P0 ⊂ · · · ⊂ P is a non-extendable chain of prime ideals contained in P ,

so it has length htP , whereas the subchain P ⊂ · · · ⊂ Pn has length dimA/P , so the thesis

follows. �

Note that the first part of Theorem 7.2.4 follows from Corollary 8.3.1, 2. and the second

part is Corollary 8.3.2.

If A is any integral domain, the property that all non-extendable chains of prime ideals

of A have the same length does not hold in general. There are even examples (not easy

to construct) of noetherian domains whose Krull dimension is not finite or where there are

non-extendable chains of prime ideals of different lengths. The rings where the property in

Corollary 8.3.1 (3) holds are called catenary rings.
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Chapter 9

Regular and rational functions.

9.1 Regular functions

In this chapter, we will define the regular functions on algebraic varieties, not only on closed

subsets of affine or projective space, but more in general on locally closed subsets. This

will allow to associate to any algebraic variety an algebraic invariant, its ring of regular

functions. An analogous construction will be given also for a more general class of functions,

the rational functions, that will bring to a second invariant, the field of rational functions.

Let X ⊂ Pn be a locally closed subset and P be a point of X. Let ϕ : X → K be a

function.

Definition 9.1.1. 1. ϕ is regular at P if there exists a suitable neighbourhood of P in

which ϕ can be expressed as a quotient of homogeneous polynomials of the same degree;

more precisely, if there exist an open neighbourhood U of P in X and homogeneous

polynomials F , G ∈ K[x0, x1, . . . , xn] with degF = degG, such that U ∩ VP (G) = ∅
and ϕ(Q) = F (Q)/G(Q), for all Q ∈ U . Note that the quotient F (Q)/G(Q) is well

defined.

2. ϕ is regular on X if ϕ is regular at every point P of X.

This definition of regular function is of local character; we can express it saying that ϕ is

regular if it can locally be expressed by quotients of homogeneous polynomials of the same

degree.

The set of regular functions on X is denoted by O(X): it contains K (identified with the set
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of constant functions), and can be given the structure of a K–algebra, by the definitions:

(ϕ+ ψ)(P ) = ϕ(P ) + ψ(P )

(ϕψ)(P ) = ϕ(P )ψ(P ),

for P ∈ X. (Check that ϕ+ ψ and ϕψ are indeed regular on X.)

Proposition 9.1.2. Let ϕ : X → K be a regular function. Let K be identified with A1 with

Zariski topology. Then ϕ is continuous.

Proof. It is enough to prove that ϕ−1(c) is closed in X, ∀ c ∈ K. For all P ∈ X, choose an

open neighbourhood UP and homogeneous polynomials FP , GP such that ϕ|UP
= FP/GP .

Then

ϕ−1(c) ∩ UP = {Q ∈ UP |FP (Q)− cGP (Q) = 0} = UP ∩ VP (FP − cGP )

is closed in UP . The proposition then follows from:

Lemma 9.1.3. Let T be a topological space, T = ∪i∈IUi be an open covering of T , Z ⊂ T

be a subset. Then Z is closed if and only if Z ∩ Ui is closed in Ui for all i.

Proof. Assume that Ui = X \ Ci and Z ∩ Ui = Zi ∩ Ui, with Ci and Zi closed in X.

Claim: Z =
⋂
i∈I(Zi ∪ Ci), hence it is closed.

In fact: if P ∈ Z, then P ∈ Z ∩ Ui for a suitable i. Therefore P ∈ Zi ∩ Ui, so P ∈ Zi ∪ Ci.
If P /∈ Zj ∩ Uj for some j, then P /∈ Uj so P ∈ Cj and therefore P ∈ Zj ∪ Cj.

Conversely, if P ∈
⋂
i∈I(Zi ∪ Ci), then ∀ i, either P ∈ Zi or P ∈ Ci. Since ∃j such that

P ∈ Uj, hence P /∈ Cj, so P ∈ Zj, so P ∈ Zj ∩ Uj = Z ∩ Uj. �

�

Corollary 9.1.4. 1. Let ϕ ∈ O(X): then ϕ−1(0) is closed. It is denoted V (ϕ) and called

the set of zeros of ϕ.

2. Let X be a quasi–projective (irreducible) variety and ϕ, ψ ∈ O(X). Assume that there

exists U , open non –empty subset such that ϕ|U = ψ|U . Then ϕ = ψ.

Proof. 1. is clear. To prove 2. we note that ϕ − ψ ∈ O(X) so V (ϕ − ψ) is closed. By

assumption V (ϕ− ψ) ⊃ U , which is dense, because X is irreducible. So V (ϕ− ψ) = X.

�

If X ⊂ An is locally closed in an affine space, we can use on X both homogeneous and

non–homogeneous coordinates. If ϕ is a regular function according to Definition 9.1.1, from a

local expression of ϕ of the form F/G, with F,G homogeneous of the same degree on an open
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subset of X, we pass to the expression aF/aG for the same function in non-homogeneous

coordinates. Note that now aF, aG are no longer homogeneous nor of the same degree, in

general.

On the other hand, assume we have a function on X locally represented by quotients of

polynomials in n variables; if A/B is such a local expression, with degA = a, deg = b, a ≤ b,

the same function is represented in homogeneous coordinates by the following quotient of

homogeneous polynomials of the same degree: (xa−b0 )hA/hB. Similarly if a ≥ b.

From this discussion it follows that all polynomial functions are regular: for instance,

if F (x1, . . . , xn) is a polynomial of degree d, the polynomial function defined by F can be

expressed in homogeneous coordinates in the form
hF (x0,...,xn)

xd0
. In particular, if X is an affine

variety, K[X] ⊂ O(X).

If α ⊂ K[X] is an ideal, we can consider V (α) :=
⋂
ϕ∈α V (ϕ): it is closed into X.

Note that α is of the form α = α/I(X), where α is the inverse image of α in the canonical

epimorphism, it is an ideal of K[x1, . . . , xn] containing I(X), hence V (α) = V (α)∩X = V (α).

If K is algebraically closed, the following relative form follows immediately from the

Nullstellensatz.

Proposition 9.1.5 (Relative Nullstellensatz). Let K be an algebraically closed field, let X

be an affine variety closed in An
K and K[X] its coordinate ring.

1. If α ⊂ K[X] is a proper ideal then V (α) 6= ∅.

2. If f ∈ K[X] and f vanishes at all points P ∈ X such that g1(P ) = · · · = gm(P ) = 0

(g1, . . . , gm ∈ K[X]), then f r ∈ 〈g1, . . . , gm〉 ⊂ K[X], for some r ≥ 1.

Theorem 9.1.6. Let K be an algebraically closed field. Let X ⊂ An
K be closed in the Zariski

topology. Then O(X) ' K[X]. It is an integral domain if and only if X is irreducible.

Proof. We have already noticed that K[X] ⊂ O(X). It remains to prove the opposite

inclusion. So let f ∈ O(X).

(i) Assume first that X is irreducible. For all P ∈ X fix an open neighbourhood UP of

P and polynomials FP , GP such that VP (GP ) ∩ UP = ∅ and f |UP
= FP/GP . Let fP , gP be

the functions in K[X] defined by FP and GP . Then gPf = fP holds on UP , so it holds on X

(by Corollary 9.1.4 (2), because X is irreducible). Let α ⊂ K[X] be the ideal α = 〈gP 〉P∈X ,

generated by all denominators of the various local expressions of ϕ; α has no zeros on X,

because for any P gP (P ) 6= 0, so α = K[X]. Therefore there exist suitable polynomial
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functions hP ∈ K[X] such that 1 =
∑

P∈X hPgP (sum with finite support). Hence in O(X)

we have the relation: f = f
∑
hPgP =

∑
hP (gPf) =

∑
hPfP ∈ K[X].

(ii) Let X be reducible: from gPf = fP on UP , we cannot deduce that the same equality

holds on X. The idea is to change suitably the local expressions. For any P ∈ X, there

exists R ∈ K[x1, . . . , xn] such that R(P ) 6= 0 and R ∈ I(X \UP ), so r ∈ O(X) is zero outside

UP . So rgPf = fP r on X and we conclude as above, after replacing gP with gP r and fP

with fP r. �

The characterization of regular functions on projective varieties is completely different:

we will see in Theorem 15.2.2 that, if X is an irreducible projective variety, then O(X) ' K,

i.e. the unique regular functions are constant.

This gives the motivation for introducing the following weaker concept of rational func-

tion.

9.2 Rational functions

Definition 9.2.1. Let X be a quasi–projective variety. A rational function on X is a germ

of regular functions on some open non–empty subset of X.

Precisely, let K be the set {(U, f)| U 6= ∅, open subset of X, f ∈ O(U)}. The following

relation on K is an equivalence relation:

(U, f) ∼ (U ′, f ′) if and only if f |U∩U ′ = f ′|U∩U ′ .

Reflexive and symmetric properties are quite obvious. Transitive property: let (U, f) ∼
(U ′, f ′) and (U ′, f ′) ∼ (U ′′, f ′′). Then f |U∩U ′ = f ′|U∩U ′ and f ′|U ′∩U ′′ = f ′′|U ′∩U ′′ , hence

f |U∩U ′∩U ′′ = f ′′|U∩U ′∩U ′′ . U ∩ U ′ ∩ U ′′ is a non–empty open subset of U ∩ U ′′, which is

irreducible and quasi–projective, so by Corollary 9.1.4 f |U∩U ′′ = f ′′|U∩U ′′ .

Let K(X) := K/ ∼: its elements are by definition the rational functions on X. K(X)

can be given the structure of a field in the following natural way.

Let 〈U, f〉 denote the class of (U, f) in K(X). We define:

〈U, f〉+ 〈U ′, f ′〉 = 〈U ∩ U ′, f + f ′〉,

〈U, f〉〈U ′, f ′〉 = 〈U ∩ U ′, ff ′〉

(check that the definitions are well posed!).
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There is a natural inclusion: K → K(X) such that c→ 〈X, c〉. Moreover, if 〈U, f〉 6= 0 =

〈X, 0〉, then U \ V (f) is not empty, so there exists 〈U, f〉−1 = 〈U \ V (f), f−1〉: the axioms

of a field are all satisfied.

There is also a natural injective map: O(X)→ K(X) such that ϕ→ 〈X,ϕ〉.

Summarizing, K(X) is a field, called the field of rational functions of the quasi-

projective variety X. It is an extension of the base field K, and contains the ring of regular

functions O(X).

Proposition 9.2.2. If X ⊂ An is an irreducible affine variety over an algebraically closed

field, then K(X) ' Q(O(X)) = Q(K[X]) = K(t1, . . . , tn), where t1, . . . , tn are the coordinate

functions on X.

Proof. The isomorphism is as follows:

(i) ψ : K(X)→ Q(O(X))

If 〈U,ϕ〉 ∈ K(X), then there exists V ⊂ U , open and non–empty, such that ϕ |V = F/G,

where F,G ∈ K[x1, . . . , xn] and V (G) ∩ V = ∅. We set ψ(〈U,ϕ〉) = f/g.

(ii) ψ′ : Q(O(X))→ K(X)

If f/g ∈ Q(O(X)), we set ψ′(f/g) = 〈X \ V (g), f/g〉.
It is easy to check that ψ and ψ′ are well defined and inverse each other. �

Corollary 9.2.3. If X is an irreducible affine variety over an algebraically closed field, then

dimX is equal to the transcendence degree over K of its field of rational functions.

Proof. It follows from Corollary 7.2.5. �

Proposition 9.2.4. If X is a quasi–projective variety and U 6= ∅ is an open subset, then

K(X) ' K(U).

Proof. We have the maps: K(U) → K(X) such that 〈V, ϕ〉 → 〈V, ϕ〉, and K(X) → K(U)

such that 〈A,ψ〉 → 〈A ∩ U, ψ |A∩U〉: they are K–homomorphisms inverse each other. �

Note. The term K-homomorphism means that the elements of K remain fixed.

Corollary 9.2.5. If X is an irreducible projective variety contained in Pn, if i is an index

such that X∩Ui 6= ∅ (where Ui is the open subset where xi 6= 0), then dimX = dimX∩Ui =

tr.d.K(X)/K.

Proof. By Proposition 7.1.3, dimX = supi dim(X ∩Ui). By Corollary 9.2.3 and Proposition

9.2.4, if X ∩ Ui is non–empty, dim(X ∩ Ui) = tr.d.K(X ∩ Ui)/K = tr.d.K(X)/K: it is

independent of i. �
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If 〈U,ϕ〉 ∈ K(X), we can consider all possible representatives of it, i.e. all pairs 〈Ui, ϕi〉
such that 〈U,ϕ〉 = 〈Ui, ϕi〉. Then Ũ =

⋃
i Ui is the maximum open subset of X on which ϕ

can be seen as a function: it is called the domain of definition (or of regularity) of 〈U,ϕ〉, or

simply of ϕ. It is sometimes denoted domϕ. If P ∈ Ũ , we say that ϕ is regular at P.

We can consider the set of all rational functions on X which are regular at P : it is denoted

by OP,X . It is a subring of K(X) containing O(X), called the local ring of X at P . In fact,

OP,X is a local ring, whose maximal ideal, denoted MP,X , is the set of rational functions ϕ

such that ϕ(P ) is defined and ϕ(P ) = 0. To see this, observe that an element of OP,X can

be represented as 〈U, F/G〉: its inverse in K(X) is 〈U \VP (F ), G/F 〉, which belongs to OP,X
if and only if F (P ) 6= 0. We will see in Section 9.3 that OP,X is the localization K[X]IX(P ).

As in Proposition 9.2.4 for the fields of rational functions, also for the local rings of points

it can easily be proved that, if U 6= ∅ is an open subset of X containing P , then OP,X ' OP,U .

So the ring OP,X only depends on the local behaviour of X in the neighbourhood of P .

The residue field of OP,X is the quotient OP,X/MP,X . This field results to be naturally

isomorphic to the base field K. In fact consider the evaluation map OP,X → K such that ϕ

goes to ϕ(P ): it is surjective with kernel MP,X , so OP,X/MP,X ' K.

Example 9.2.6. 1. The cuspidal cubic.

Let X ⊂ A2 be the curve V (x3
1 − x2

2). Then F = x2, G = x1 define the function ϕ =

x2/x1 which is regular at the points P (a1, a2) such that a1 6= 0. Another representation

of the same function is ϕ = x2
1/x2, which shows that ϕ is regular at P if a2 6= 0. If ϕ

admits another representation F ′/G′, then G′x2 − F ′x1 vanishes on an open subset of

X, which is irreducible (see Exercise 2, Chapter 6), hence G′x2 − F ′x1 vanishes on X,

and therefore G′x2−F ′x1 ∈ 〈x3
1−x2

2〉. We can write G′x2−F ′x1 = H(x1, x2)(x3
1−x2

2),

for a suitable H, so (G′ + Hx2)x2 = (F ′ + Hx2
1)x1. By the UFD property, it follows

that there exists A(x1, x2) such that G′ +Hx2 = x1A, F ′ +Hx2
1 = x2A, so (F ′, G′) =

(x2A− x2
1H, x1A− x2H) = A(x2, x1)−H(x2

1, x2).

This shows that there are essentially only the above two representations of ϕ. So

ϕ ∈ K(X) and its domain of regularity is X \ {0, 0}. We will see later (Example

10.1.2) another way to explain why the domain of definition cannot be all X.

2. The stereographic projection.

Let X ⊂ P2 be the curve VP (x2
1 +x2

2−x2
0). Let f := x1/(x0−x2) denote the germ of the

regular function defined by x1/(x0−x2) on X \VP (x0−x2) = X \{[1, 0, 1]} = X \{P}.
On X we have x2

1 = (x0 − x2)(x0 + x2) so f is represented also as (x0 + x2)/x1 on
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X \ VP (x1) = X \ {P,Q}, where Q = [1, 0,−1]. If we identify K with the affine line

VP (x2) \ VP (x0) (the points of the x1–axis lying in the affine plane U0), then f can be

interpreted as the stereographic projection of X centered at P , which takes A[a0, a1, a2]

to the intersection of the line AP with the line VP (x2). To see this, observe that AP

has equation a1x0 +(a2−a0)x1−a1x2 = 0; and AP ∩VP (x2) is the point [a0−a2, a1, 0].

9.3 Algebraic characterization of the local ring OP,X.

Let us recall the construction of the ring of fractions of a ring A with respect to a multi-

plicative subset S.

Let A be a ring and S ⊂ A be a multiplicative subset. The following relation in A × S
is an equivalence relation:

(a, s) ' (b, t) if and only if ∃ u ∈ S such that u(at− bs) = 0.

Then the quotient A× S/' is denoted S−1A or AS and [(a, s)] is denoted a
s
. AS becomes a

commutative ring with unit with operations a
s

+ b
t

= at+bs
st

and a
s
b
t

= ab
st

(check that they are

well–defined). With these operations, AS is called the ring of fractions of A with respect to

S, or the localization of A in S.

There is a natural homomorphism j : A→ S−1A such that j(a) = a
1
, which makes S−1A

an A–algebra (in the sense that it contains a homomorphic image of A). Note that j is the

zero map if and only if 0 ∈ S. More precisely if 0 ∈ S then S−1A is the zero ring: this case

will always be excluded in what follows. Moreover j is injective if and only if every element

in S is not a zero divisor. In this case j(A) will be identified with A.

Example 9.3.1.

1. Let A be an integral domain and set S = A \ {0}. Then AS = Q(A): the quotient

field of A.

2. If P ⊂ A is a prime ideal, then S = A \ P is a multiplicative set and AS is denoted

AP and called the localization of A at P .

3. If f ∈ A, then the multiplicative set generated by f is

S = {1, f, f 2, . . . , fn, . . .} :

AS is denoted Af .

4. If S = {x ∈ A | x is regular}, then AS is called the total ring of fractions of A: it is

the maximum ring in which A can be canonically embedded.

69



It is easy to verify that the ring AS enjoys the following universal property:

(i) if s ∈ S, then j(s) is invertible;

(ii) if B is a ring with a given homomorphism f : A → B such that for any s ∈ S f(s)

is invertible, then f factorizes through AS, i.e. there exists a unique homomorphism f such

that f ◦ j = f .

We will see now the relations between ideals of AS and ideals of A.

If α ⊂ A is any ideal, then αAS = {a
s
| a ∈ α} is called the extension of α in AS and

denoted also αe. It is an ideal, precisely the ideal generated by the set {a
1
| a ∈ α}.

If β ⊂ AS is an ideal, then j−1(β) =: βc is called the contraction of β and is clearly an

ideal.

The following Proposition gives the complete picture.

Proposition 9.3.2. 1. For any ideal α ⊂ A : αec ⊃ α;

2. for any ideal β ⊂ AS : β = βce;

3. αe is proper if and only if α ∩ S = ∅;
4. αec = {x ∈ A | ∃s ∈ S such that sx ∈ α}.

Proof. 1. and 2. are straightforward.

3. if 1 = a
s
∈ αe, then there exists u ∈ S such that u(s − a) = 0, i.e. us = ua ∈ S ∩ α.

Conversely, if s ∈ S ∩ α then 1 = s
s
∈ αe.

4.

αec = {x ∈ A | j(x) =
x

1
∈ αe} =

= {x ∈ A | ∃a ∈ α, t ∈ S such that
x

1
=
a

t
} =

= {x ∈ A | ∃a ∈ α, t, u ∈ S such that u(xt− a) = 0}.

Hence, if x ∈ αec, then: (ut)x = ua ∈ α. Conversely: if there exists s ∈ S such that

sx = a ∈ α, then x
1

= a
s
, i.e. j(x) ∈ αe. �

If α is an ideal of A such that α = αec, α is called saturated with S. For example, if P is

a prime ideal and S ∩P = ∅, then P is saturated and Pe is prime. Conversely, if Q ⊂ AS is

a prime ideal, then Qc is prime in A.

Corollary 9.3.3. There is a bijection between the set of prime ideals of AS and the set of

prime ideals of A not intersecting S. In particular, if S = A \ P, P prime, the prime ideals

of AP correspond bijectively to the prime ideals of A contained in P, hence AP is a local ring

with maximal ideal Pe, denoted PAP , and residue field AP/PAP . Moreover dimAP = htP.
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In particular we get the characterization of OP,X . Let X ⊂ An be an affine variety, let

P be a point of X and I(P ) ⊂ K[x1, . . . , xn] be the ideal of P . Let IX(P ) := I(P )/I(X)

be the ideal of K[X] formed by the regular functions on X vanishing at P . Then we can

construct the localization

O(X)IX(P ) =

{
f

g
| f, g ∈ O(X), g(P ) 6= 0

}
⊂ K(X).

It is canonically identified with OP,X . In particular, if K is algebraically closed:

dimOP,X = ht IX(P ) = dimO(X) = dimX.

There is a bijection between prime ideals of OP,X and prime ideals of O(X) contained in

IX(P ); they also correspond to prime ideals of K[x1, . . . , xn] contained in I(P ) and containing

I(X).

If X is an affine variety, it is possible to define the local ring OP,X also if X is reducible,

in a purely algebraic way, simply as localization of K[X] at the maximal ideal IX(P ). The

natural map j from K[X] to OP,X is injective if and only if K[X] \ IX(P ) does not contain

any zero divisor. A non-zero function f is a zero divisor in K[X] if there exists a non-zero

g such that fg = 0, i.e. X = V (f) ∪ V (g) is an expression of X as union of proper closed

subsets. For j to be injective it is required that every zero divisor f belongs to IX(P ), which

means that all the irreducible components of X pass through P .

Exercises 9.3.4. 1. Prove that the irreducible affine varieties and the open subsets of

irreducible affine varieties are quasi–projective varieties.

2. Let X = {P,Q} be the union of two points in an affine space over K. Prove that

O(X) is isomorphic to K ×K.
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Chapter 10

Regular maps

10.1 Regular maps or morphisms

Let X, Y be quasi–projective varieties (or more generally locally closed sets). Let ϕ : X → Y

be a map.

Definition 10.1.1. ϕ is a regular map or a morphism if

(i) ϕ is continuous for the Zariski topology;

(ii) ϕ preserves regular functions, i.e. for all U ⊂ Y (U open and non–empty) and for all

f ∈ O(U), then f ◦ ϕ ∈ O(ϕ−1(U)):

X
ϕ−→ Y

↑ ↑
ϕ−1(U)

ϕ|−→ U
f→ K

Note that:

a) for all X the identity map 1X : X → X is regular;

b) for all X, Y , Z and regular maps X
ϕ→ Y , Y

ψ→ Z, the composite map ψ ◦ ϕ is regular.

An isomorphism of varieties is a regular map which possesses regular inverse, i.e. a

regular map ϕ : X → Y such that there exists a regular map ψ : Y → X verifying the

conditions ψ ◦ ϕ = 1X and ϕ ◦ ψ = 1Y . In this case X and Y are said to be isomorphic, and

we write: X ' Y .

If ϕ : X → Y is regular, there is a natural K–homomorphism ϕ∗ : O(Y )→ O(X), called

the comorphism associated to ϕ, defined by: f → ϕ∗(f) := f ◦ ϕ.

The construction of the comorphism is functorial, which means that:
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a) 1∗X = 1O(X);

b) (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.
This implies that, if X ' Y , then O(X) ' O(Y ). In fact, if ϕ : X → Y is an isomorphism

and ψ is its inverse, then ϕ ◦ ψ = 1Y , so (ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗ = (1Y )∗ = 1O(Y ) and similarly

ψ ◦ ϕ = 1X implies ϕ∗ ◦ ψ∗ = 1O(X).

Example 10.1.2.

1) The homeomorphism ϕi : Ui → An of Section 2.6 is an isomorphism.

2) There exist homeomorphisms which are not isomorphisms. Let Y = V (x3− y2) ⊂ A2,

the cuspidal cubic. We have seen (see Exercise 2, Chapter 7) that K[Y ] 6' K[A1], hence Y

is not isomorphic to the affine line A1. Nevertheless, the map

ϕ : A1 → Y such that t→ (t2, t3)

is regular, bijective and also a homeomorphism (see Exercise 1, Lesson 7).

Its inverse ϕ−1 : Y → A1 is defined by

(x, y)→

{
y
x

if x 6= 0

0 if (x, y) = (0, 0).

Note that ϕ−1 cannot be regular at the point (0, 0).

10.2 Affine case

Next Proposition tells us how a morphism is given in practice, when the codomain is con-

tained in an affine space.

Proposition 10.2.1. Let ϕ : X → Y ⊂ An be a map. Then ϕ is regular if and only

if ϕi := ti ◦ ϕ is a regular function on X, for all i = 1, . . . , n, where t1, . . . , tn are the

coordinate functions on Y .

Proof. If ϕ is regular, then ϕi = ϕ∗(ti) is regular by definition.

Conversely, assume that ϕi is a regular function on X for all i. Let Z ⊂ Y be a closed

subset and we have to prove that ϕ−1(Z) is closed in X. Since any closed subset of An is an

intersection of hypersurfaces, it is enough to consider ϕ−1(Y ∩V (F )) with F ∈ K[x1, . . . , xn]:

ϕ−1(Y ∩ V (F )) = {P ∈ X|F (ϕ(P )) = F (ϕ1, . . . , ϕn)(P ) = 0} = V (F (ϕ1, . . . , ϕn)).
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But note that F (ϕ1, . . . , ϕn) ∈ O(X): it is the composition of F with the regular functions

ϕ1, . . . , ϕn. Hence ϕ−1(Y ∩ V (F )) is closed, so we can conclude that ϕ is continuous. If

U ⊂ Y and f ∈ O(U), for any point P of U choose an open neighbourhood UP such that

f = FP/GP on UP . So f ◦ ϕ = FP (ϕ1, . . . , ϕn)/GP (ϕ1, . . . , ϕn) on ϕ−1(UP ), hence it is

regular on each ϕ−1(UP ) and by consequence on ϕ−1(U). �

Remark 11. If ϕ : X → Y is a regular map and Y ⊂ An, by Proposition 10.2.1 we can

represent ϕ in the form ϕ = (ϕ1, . . . , ϕn), where ϕ1, . . . , ϕn ∈ O(X) and ϕi = ϕ∗(ti). Note

that ϕ1, . . . , ϕn are not arbitrary in O(X) but such that Im ϕ ⊂ Y .

Let us recall that, if Y is closed in An and K is algebraically closed, then t1, . . . , tn

generate O(Y ), hence ϕ1, . . . , ϕn generate ϕ∗(O(Y )) as K-algebra. This observation is the

key for the following important result.

Theorem 10.2.2. Let K be an algebraically closed field. Let X be a locally closed algebraic

set and Y be an affine algebraic set. Let Hom(X, Y ) denote the set of regular maps from X

to Y and Hom(O(Y ),O(X)) denote the set of K– homomorphisms from O(Y ) to O(X).

Then the map Hom(X, Y ) → Hom(O(Y ),O(X)), such that ϕ : X → Y goes to ϕ∗ :

O(Y )→ O(X), is bijective.

Proof. Let Y ⊂ An and let t1, . . . , tn be the coordinate functions on Y , soO(Y ) = K[t1, . . . , tn].

Let u : O(Y )→ O(X) be a K–homomorphism: we want to define a morphism u] : X → Y

whose associated comorphism is u. By Remark 11, if u] exists, its components have to be

u(t1), . . . , u(tn). So we define

u] : X → An

P → (u(t1)(P )), . . . , u(tn)(P )).

This is a morphism by Proposition 10.2.1. We claim that u](X) ⊂ Y . Let F ∈ I(Y ) and

P ∈ X: then

F (u](P )) = F (u(t1)(P ), . . . , u(tn)(P )) =

= F (u(t1), . . . , u(tn))(P ) =

= u(F (t1, . . . , tn))(P ) because u is K-homomorphism =

= u(0)(P ) =

= 0(P ) = 0. (10.1)
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So u] is a regular map from X to Y .

We consider now (u])∗ : O(Y )→ O(X): it maps a function f to f◦u] = f(u(t1), . . . , u(tn)) =

u(f), so (u])∗ = u. Conversely, if ϕ : X → Y is regular, then (ϕ∗)] maps P to

(ϕ∗(t1)(P ), . . . , ϕ∗(tn)(P )) = (ϕ1(P ), . . . , ϕn(P )),

so (ϕ∗)] = ϕ. �

Note that, by definition, 1]O(X) = 1X , for all affine X; moreover (v ◦ u)] = u] ◦ v] for all

u : O(Z) → O(Y ), v : O(Y ) → O(X), K–homomorphisms of rings of regular functions of

affine algebraic sets: this means that also this construction is functorial.

The construction of the comorphism associated to a regular function and the result of

Theorem 10.2.2 can be rephrased using the language of categories. We will see it in Chapter

11.

If X and Y are quasi–projective varieties and ϕ : X → Y is a regular map, it is not

always possible to define a comorphism K(Y ) → K(X). If f is a rational function on

Y with domf = U , it can happen that ϕ(X) ∩ domf = ∅, in which case f ◦ ϕ does not

exist. Nevertheless, if we assume that ϕ is dominant, i.e. ϕ(X) = Y , then certainly

ϕ(X) ∩ U 6= ∅, hence 〈ϕ−1(U), f ◦ ϕ〉 ∈ K(X). We obtain a K–homomorphism, which is

necessarily injective, K(Y ) → K(X), also denoted by ϕ∗. Note that in this case, we have:

dimX ≥ dimY . As above, it is possible to check that, if X ' Y , then K(X) ' K(Y ), hence

dimX = dimY . Moreover, if P ∈ X and Q = ϕ(P ), then ϕ∗ induces a map OQ,Y → OP,X ,

such that ϕ∗MQ,Y ⊂MP,X . Also in this case, if ϕ is an isomorphism, then OQ,Y ' OP,X .

10.3 Projective case

We will see now how to express in practice a regular map when the target is contained in a

projective space. Let X ⊂ Pn be a quasi–projective variety and ϕ : X → Pm be a map.

Proposition 10.3.1. ϕ is a morphism if and only if, for any P ∈ X, there exist an open

neighbourhood UP of P and n + 1 homogeneous polynomials F0, . . . , Fm of the same degree

in K[x0, x1, . . . , xn], such that, if Q ∈ UP , then ϕ(Q) = [F0(Q), . . . , Fm(Q)]. In particular,

for any Q ∈ UP , there exists an index i such that Fi(Q) 6= 0.

Proof. “⇒” Let P ∈ X, Q = ϕ(P ) and assume that Q ∈ U0. Then U := ϕ−1(U0) is an open

neighbourhood of P and we can consider the restriction ϕ|U : U → U0, which is regular.
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Possibly after restricting U , using non–homogeneous coordinates on U0, we can assume

that ϕ|U = (F1/G1, . . . , Fm/Gm), where (F1, G1), . . ., (Fm, Gm) are pairs of homogeneous

polynomials of the same degree such that VP (Gi)∩U = ∅ for all index i. We can reduce the

fractions Fi/Gi to a common denominator F0, so that degF0 = degF1 = · · · = degFm and

ϕ|U = (F1/F0, . . . , Fm/F0) = [F0, F1, . . . , Fm], with F0(Q) 6= 0 for Q ∈ U .

“⇐” Possibly after restricting UP , we can assume Fi(Q) 6= 0 for all Q ∈ UP and suitable

i. Let i = 0: then ϕ|UP
: UP → U0 operates as follows:

ϕ|UP
(Q) = (F1(Q)/F0(Q), . . . , Fm(Q)/F0(Q)),

so it is a morphism by Proposition 10.2.1. From this remark, one deduces that also ϕ is a

morphism. �

10.4 Examples of morphisms

Example 10.4.1 (Stereographic projection).

Let X ⊂ P2, X = VP (x2
1 + x2

2 − x2
0), be the projective closure of the unitary circle. We

define ϕ : X → P1 by

[x0, x1, x2]→

{
[x0 − x2, x1] if (x0 − x2, x1) 6= (0, 0)

[x1, x0 + x2] if (x1, x0 + x2) 6= (0, 0).

ϕ is well–defined because, on X, x2
1 = (x0 − x2)(x0 + x2). Moreover

(x1, x0 − x2) 6= (0, 0)⇔ [x0, x1, x2] ∈ X \ {[1, 0, 1]},

(x0 + x2, x1) 6= (0, 0)⇔ [x0, x1, x2] ∈ X \ {[1, 0,−1]}.

The map ϕ is the natural extension of the rational function f : X \ {[1, 0, 1]} → K such

that [x0, x1, x2] → x1/(x0 − x2) (Example 9.2.6, 2). Now if we identify P1 with the line

VP (x2) ⊂ P2, the North pole N [1, 0, 1], centre of the stereographic projection, goes to the

point at infinity of the line P1.

By geometric reasons ϕ is invertible and ϕ−1 : P1 → X takes [λ, µ] to [λ2+µ2, 2λµ, µ2−λ2]

(note the connection with the Pitagorean triples!). Indeed the line through N and [λ, µ, 0]

has equation: µx0 − λx1 − µx2 = 0. Its intersections with X are represented by the system:{
µx0 − λx1 − µx2 = 0

x2
1 + x2

2 − x2
0 = 0
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Assuming µ 6= 0 this system is equivalent to the following:{
µx0 − λx1 − µx2 = 0

µ2x2
0 = µ2(x2

1 + x2
2) = (λx1 + µx2)2

Therefore, either x1 = 0 and x0 = x2, or{
(µ2 − λ2)x1 − 2λµx2 = 0

µx0 = λx1 + µx2

which gives the required expression.

Example 10.4.2. Affine transformations and affinities.

Let A = (aij) be a n× n matrix with entries in K, let B = (b1, . . . , bn) ∈ An be a point.

The map τA : An → An defined by (x1, . . . , xn)→ (y1, . . . , yn), such that

{yi =
∑
j

aijxj + bi, i = 1, . . . , n,

is a regular map called an affinity of An. In matrix notation τA is Y = AX + B. If A is

of rank n, then τA is said non–degenerate and is an isomorphism: the inverse map τ−1
A is

represented by X = A−1Y − A−1B. More in general, an affine transformation from An to

Am is a map represented in matrix form by Y = AX + B, where A is a m × n matrix and

B ∈ Am. It is injective if and only if rkA = n and surjective if and only if rkA = m.

The isomorphisms of an algebraic set X in itself are called automorphisms of X:

they form a group for the usual composition of maps, denoted by Aut X. If X = An, the

non–degenerate affine transformations form a subgroup of Aut An.

If n = 1 and the characteristic of K is 0, then Aut A1 coincides with this subgroup. In

fact, let ϕ : A1 → A1 be an automorphism: it is represented by a polynomial F (x) such that

there exists G(x) satisfying the condition G(F (t)) = t for all t ∈ A1, i.e. G(F (x)) = x in the

polynomial ring K[x]. Then, taking derivatives, we get G′(F (x))F ′(x) = 1, which implies

F ′(t) 6= 0 for all t ∈ K, so F ′(x) is a non–zero constant. Hence, F is linear and G is linear

too.

If n ≥ 2, then Aut An is not completely described yet. There exist non–linear automor-

phisms of degree d, for all d. For example, for n = 2: let ϕ : A2 → A2 be given by (x, y)→
(x, y + P (x)), where P is any polynomial of K[x]. Then ϕ−1 : (x′, y′) → (x′, y′ − P (x′)). A

very important and difficult open problem in Algebraic Geometry is the Jacobian conjecture,

stating that, in characteristic zero, a regular map ϕ : An → An is an automorphism if and

only if the Jacobian determinant | J(ϕ) | is a non-zero constant.
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Example 10.4.3. Projective transformations.

Let A be a (n + 1) × (n + 1)–matrix with entries in K. Let P [x0, . . . , xn] ∈ Pn: then

[a00x0 + · · ·+ a0nxn, . . . , an0x0 + · · ·+ annxn] is a point of Pn if and only if it is different from

[0, . . . , 0]. So A defines a regular map τ : Pn → Pn if and only if rkA = n+ 1. If rkA = r <

n+1, then A defines a regular map whose domain is the quasi–projective variety Pn\P(kerA).

If rkA = n+ 1, then τ is an isomorphism, called a projective transformation or projectivity.

Note that the matrices λA, λ ∈ K∗, all define the same projective transformation. So

PGL(n+ 1, K) := GL(n+ 1, K)/K∗ acts on Pn as the group of projective transformations.

If X, Y ⊂ Pn, they are called projectively equivalent if there exists a projective

transformation τ : Pn → Pn such that τ(X) = Y .

Theorem 10.4.4. Fundamental theorem on projective transformations.

Let two (n + 2)–tuples of points of Pn in general position be fixed: P0, . . . , Pn+1 and

Q0, . . . , Qn+1. Then there exists one, and only one, isomorphic projective transformation τ

of Pn in itself, such that τ(Pi) = Qi for all index i.

Proof. Put Pi = [vi], Qi = [wi], i = 0, . . . , n + 1. So {v0, . . . , vn} and {w0, . . . , wn} are two

bases of Kn+1, hence there exist scalars λ0, . . . , λn, µ0, . . . , µn such that

vn+1 = λ0v0 + · · ·+ λnvn, wn+1 = µ0w0 + · · ·+ µnwn,

where the coefficients are all different from 0, because of the general position assumption.

We replace vi with λivi and wi with µiwi and get two new bases, so there exists a unique

automorphism of Kn+1 transforming the first basis in the second one and, by consequence,

also vn+1 in wn+1. This automorphism induces the required projective transformation on Pn.

�

An immediate consequence of the above theorem is that projective subspaces of the same

dimension are projectively equivalent. Also two subsets of Pn formed both by k points in

general position are projectively equivalent if k ≤ n+ 2. If k > n+ 2, this is no longer true,

already in the case of four points on a projective line. The problem of describing the classes

of projective equivalence of k–tuples of points of Pn, for k > n+ 2, is one the first problems

of classical Invariant Theory. The solution in the case k = 4, n = 1 is given by the notion of

cross–ratio.

Example 10.4.5. Affine and non-affine quasi–projective varieties.

Let X ⊂ An be an affine variety with I(X) = 〈G1, . . . , Gr〉, then XF := X \ V (F ) is

isomorphic to a closed subset of An+1, i.e. to Y = V (xn+1F − 1, G1, . . . , Gr). Indeed, the

following regular maps are inverse each other:
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- ϕ : XF → Y such that (x1, . . . , xn)→ (x1, . . . , xn, 1/F (x1, . . . , xn)),

- ψ : Y → XF such that (x1, . . . , xn, xn+1)→ (x1, . . . , xn).

Hence, XF is a quasi–projective variety contained in An, not closed in An, but isomorphic

to a closed subset of another affine space.

Definition 10.4.6. From now on, the term affine variety will denote a locally closed subset

of a projective space isomorphic to some affine closed set.

If X is an affine variety and precisely X ' Y , with Y ⊂ An closed, then O(X) ' O(Y ) =

K[t1, . . . , tn] is a finitely generated K–algebra. In particular, if K is algebraically closed and

α is an ideal strictly contained in O(X), then V (α) ⊂ X is non–empty, by the relative form

of the Nullstellensatz (Proposition 9.1.5). From this observation, we can deduce that the

quasi–projective variety of next example is not affine.

Example 10.4.7. A2 \ {(0, 0)} is not affine.

Set X = A2 \ {(0, 0)}: first of all we will prove that O(X) ' K[x, y] = O(A2), i.e. any

regular function on X can be extended to a regular function on the whole plane.

Indeed: let f ∈ O(X): if P 6= Q are points of X, then there exist polynomials F,G, F ′, G′

such that f = F/G on a neighbourhood UP of P and f = F ′/G′ on a neighbourhood UQ

of Q. So F ′G = FG′ on UP ∩ UQ 6= ∅, which is open also in A2, hence dense. Therefore

F ′G = FG′ in K[x, y]. We can clearly assume that F and G are coprime and similarly for

F ′ and G′. So by the unique factorization property, it follows that F ′ = F and G′ = G. In

particular f admits a unique representation as F/G on X therefore G(P ) 6= 0 for all P ∈ X.

Hence G has no zeros on A2, so G = c ∈ K∗ and f ∈ O(X).

Now, the ideal 〈x, y〉 has no zeros in X and is proper: this proves that X is not affine.

We have exploited the fact that a polynomial in more than one variables has infinitely

many zeros, a fact that allows to generalise the previous observation.

10.5 Open covering with affine varieties

Affine varieties are ubiquitous in view of the following Proposition.

Proposition 10.5.1. Let X ⊂ Pn be quasi–projective. Then X admits an open covering by

affine varieties.
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Proof. Let X = X0 ∪ · · · ∪ Xn be the open covering of X where Xi = Ui ∩ X = {P ∈
X | P [a0, . . . , an], ai 6= 0}. So, fixed P , there exists an index i such that P ∈ Xi. We can

assume that P ∈ X0: X0 is open in some affine variety Y of An (identified with U0); set

X0 = Y \ Y ′, where Y , Y ′ are both closed in An. Since P 6∈ Y ′, there exists F such that

F (P ) 6= 0 and V (F ) ⊃ Y ′. So P ∈ Y \ V (F ) ⊂ Y \ Y ′ and Y \ V (F ) is an affine open

neighbourhood of P in Y \ Y ′ = X0, that is open in X. �

10.6 The Veronese maps

Let n, d be positive integers; put N(n, d) =
(
n+d
d

)
−1. Note that

(
n+d
d

)
is equal to the number

of (monic) monomials of degree d in the variables x0, . . . , xn, that is equal to the number of

(n + 1)–tuples (i0, . . . , in) such that i0 + · · · + in = d, ij ≥ 0. Then in PN(n,d) we can use

coordinates {vi0...in}, where i0, . . . , in ≥ 0 and i0 + · · ·+ in = d. For example: if n = 2, d = 2,

then N(2, 2) =
(

4
2

)
− 1 = 5. In P5 we can use coordinates v200, v110, v101, v020, v011, v002.

For all n, d we define the map vn,d : Pn → PN(n,d) such that

[x0, . . . , xn]→ [vd00...0, vd−1,10...0, . . . , v0...00d]

where vi0...in = xi00 x
i1
1 . . . x

in
n : vn,d is clearly a morphism, its image is denoted by Vn,d and is

called the Veronese variety of type (n, d). It is in fact the projective variety of equations:

{vi0...invj0...jn − vh0...hnvk0...kn ,∀i0 + j0 = h0 + k0, i1 + j1 = h1 + k1, . . . (10.2)

We prove this statement in the particular case n = d = 2; the general case is similar.

First of all, it is clear that the points of vn,d(Pn) satisfy the system (10.2). Conversely,

assume that P [v200, v110, . . .] ∈ P5 satisfies equations (10.2), which become:

v200v020 = v2
110

v200v002 = v2
101

v002v020 = v2
011

v200v011 = v110v101

v020v101 = v110v011

v110v002 = v011v101

Then, at least one of the coordinates v200, v020, v002 is different from 0.

Therefore, if v200 6= 0, then P = v2,2([v200, v110, v101]); if v020 6= 0, then P = v2,2([v110, v020, v011]);

if v002 6= 0, then P = v2,2([v101, v011, v002]). Note that, if two of these three coordinates are
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different from 0, then the points of P2 found in this way have proportional coordinates, so

they coincide.

We have also proved in this way that v2,2 is an isomorphism between P2 and V2,2, called

the Veronese surface of P5. The same happens in the general case.

If n = 1, v1,d : P1 → Pd maps [x0, x1] to [xd0, x
d−1
0 x1, . . . , x

d
1]: the image is called the

rational normal curve of degree d, it is isomorphic to P1. If d = 3, we find the skew cubic

(Chapter 5).

Let now X ⊂ Pn be a hypersurface of degree d: X = VP (F ), with

F =
∑

i0+···+in=d

ai0...inx
i0
0 . . . x

in
n .

Then vn,d(X) ' X: it is the set of points

{vi0...in ∈ PN(n,d)|
∑

i0+···+in=d

ai0...invi0...in = 0 and [vi0...in ] ∈ Vn,d}.

It coincides with Vn,d ∩ H, where H is a hyperplane of PN(n,d): a hyperplane section of

the Veronese variety. This is called the linearisation process, allowing to “ transform” a

hypersurface in a hyperplane, modulo the Veronese isomorphism.

The Veronese surface V = V2,2 of P5 enjoys a lot of interesting properties. Most of them

follow from its property of being covered by a 2-dimensional family of conics, which are

precisely the images via v2,2 of the lines of the plane.

To see this, we will change notation and will use as coordinates in P5 w00, w01, w02, w11, w12, w22,

so that v2,2 maps [x0, x1, x2] to the point of coordinates wij = xixj. With this choice of coor-

dinates, the equations of V are obtained by annihilating the 2× 2 minors of the symmetric

matrix:

M =

 w00 w01 w02

w01 w11 w12

w02 w12 w22

 .

Let ` be a line of P2 of equation b0x0 + b1x1 + b2x2 = 0. Its image is the set of points

of P5 with coordinates wij = xixj, such that there exists a non-zero triple [x0, x1, x2] with

b0x0 + b1x1 + b2x2 = 0. But this last equation is equivalent to the system:
b0x

2
0 + b1x0x1 + b2x0x2 = 0

b0x0x1 + b1x
2
1 + b2x1x2 = 0

b0x0x2 + b1x1x2 + b2x
2
2 = 0
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It represents the intersection of V with the plane
b0w00 + b1w01 + b2w02 = 0

b0w01 + b1w11 + b2w12 = 0

b0w02 + b1w12 + b2w22 = 0

(10.3)

so v2,2(`) is a plane curve. Its degree is the number of points in its intersection with a general

hyperplane in P5: this corresponds to the intersection in P2 of ` with a conic (a hypersurface

of degree 2). Therefore v2,2(`) is a conic.

So the isomorphism v2,2 transforms the geometry of the lines in the plane in the geometry

of the conics in the Veronese surface. In particular, given two distinct points on V , there is

exactly one conic contained in V and passing through them.

From this observation it is easy to deduce that the secant lines of V , i.e. the lines meeting

V at two points, are precisely the lines of the planes generated by the conics contained in V ,

so that the (closure of the) union of these secant lines coincides with the union of the planes

of the conics of V . This union results to be the cubic hypersurface defined by the equation

detM = det

 w00 w01 w02

w01 w11 w12

w02 w12 w22

 = 0.

Indeed a point in P5, of coordinates [wij] belongs to the plane of a conic contained in V

if and only if there exists a non-zero triple [b0, b1, b2] which is solution of the homogeneous

system (10.3).

Exercises 10.6.1. 1. Let X, Y be closed subsets of An. Consider X×Y ⊂ A2n and the linear

subspace, called the diagonal, ∆ ⊂ A2n defined by the equations xi − yi = 0, i = 1, . . . , n.

Prove that (X × Y ) ∩∆ is isomorphic to X ∩ Y , constructing an explicit regular map with

regular inverse.

2. Let f : A2 → A2 be the map defined by f(x, y) = (x, xy). Check that f is regular and

find the image f(A2): is it open in A2? Dense? Closed? Locally closed? Irreducible?

3. Let v1,d : P1 → Pd be the d-tuple Veronese map, such that v1,d([x0, x1]) = [xd0, x
d−1
0 x1, . . . , x

d
1]).

a) Check that the image of v1,d is Cd, the projective algebraic set defined by the 2 × 2

minors of the matrix

A =

(
x0 x1 . . . xd−1

x1 x2 . . . xd

)
.

Cd is called the rational normal curve of degree d.
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b) Prove that v1,d : P1 → Cd is an isomorphism, by explicitly constructing its inverse

morphism.

c) Prove that any d+1 points on Cd are linearly independent in Pd (Hint: Vandermonde).

Solution of Exercise 3. This exercise generalises the example of the skew cubic.

a) Let z0, . . . , zd be coordinates in Pd, so that the image of the Veronese map v1,d is given

in parametric form by z0 = xd0, . . . , zi = xd−i0 xi1, . . . , zd = xd1. Let I be the ideal generated by

the 2× 2 minors of A. It is clear that the two rows of the matrix(
xd0 xd−1

0 x1 . . . x0x
d−1
1

xd−1
0 x1 xd−2

0 x2
1 . . . xd1

)

are proportional for any x0, x1, so v1,d(P1) ⊂ VP (I) = Cd.

Conversely, let [z̄0, . . . , z̄d] ∈ VP (I). We observe that either z̄0 6= 0 or z̄d 6= 0. If z̄0 6= 0,

then we can multiply all coordinates by z̄0
d−1 and we get:

[z̄0, . . . , z̄d] = [z̄0
d, z̄0

d−1z̄1, . . . , z̄0
d−1z̄i, . . . , z̄0

d−1z̄d].

If we can prove that z̄0
d−1z̄i = z̄0

d−iz̄1
i, then we conclude that our point is equal to

v1,d([z̄0, z̄1]). Note that z̄0z̄k = z̄1z̄k−1, for any k = 1, . . . , d. So z̄0
d−1z̄i = z̄0

d−2(z̄1z̄i−1) =

z̄0
d−3z̄1(z̄1z̄i−2) = · · · = z̄0

d−iz̄1
i, as wanted.

If instead z̄d 6= 0, proceeding in a similar way we prove that [z̄0, . . . , z̄d] = v1,d([z̄d−1, z̄d]).

b) The inverse map ϕ : Cd → P1 operates in this way: ϕ([z0, . . . , zd]) = [z0, z1] = [z1, z2] =

· · · = [zd−1, zd]. It is well defined because the columns of A are proportional, and it is regular

because it is a projection.

c) Let [z
(k)
0 , . . . , z

(k)
d ] = v1,d([x

(k)
0 , x

(k)
1 ]), k = 0, . . . d, be d + 1 points on Cd. Let M =

(z
(j)
i )i,j=0,...d be the matrix of their coordinates. If x

(k)
0 6= 0 for any k, we can assume x

(k)
0 = 1

and

M =


1 1 . . . 1

x
(0)
1 x

(1)
1 . . . x

(d)
1

. . . . . . . . . . . .

. . . . . . . . . . . .

x
(0)
1

d
x

(1)
1

d
. . . x

(d)
1

d

 .

This is a Vandermonde matrix whose determinant is different from zero because the points

are distinct.

If one of the points has the first coordinate equal to zero, then it is [0, 0, . . . , 0, 1], so we
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can assume that it is the first point, and that all the other d points have x
(k)
0 = 1. Therefore

M =


0 1 . . . 1

0 x
(1)
1 . . . x

(d)
1

. . . . . . . . . . . .

. . . . . . . . . . . .

1 x
(1)
1

d
. . . x

(d)
1

d

 .

Developing the determinant according to the first column, we find again a Vandermonde

determinant, which is different from 0.

84



Chapter 11

The language of categories

11.1 Categories

Category theory was introduced by Samuel Eilenberg and Saunders Mac Lane in 1942-45

in their study of algebraic topology. They introduced the concepts of categories, func-

tors, and natural transformations, with the goal of understanding the processes that pre-

serve mathematical structures. In Algebraic Geometry it was much developed by Alexander

Grothendieck, in his language of schemes.

Category theory has proven to be a powerful language for expressing some general facts

and constructions that are encountered mainly in branches of algebra and geometry. Here we

give an elementary introduction limiting ourselves to the simplest definitions and examples.

Definition 11.1.1. A category C consists of the following data:

(1) A class ob(C) whose elements are called objects of the category;

(2) For each pair A,B ∈ ob(C) of objects, a set indicated with HomC(A,B), or C(A,B),

called set of morphisms or arrows from A to B. Instead of writing f ∈ HomC(A,B) it is

common to use f : A→ B.

(3) For each triple of objects A,B,C a map of sets called composition:

HomC(A,B)×HomC(B,C)→ HomC(A,C),

such that

(f, g)→ g ◦ f.

(4) For each object A a special element 1A ∈ HomC(A,A) called identity of A.

It is also assumed that the following axioms hold:

a) Composition is associative;
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b) Identity acts as a neutral element for the composition (when it is defined).

The categories that are best known (but we will also meet others) are those in which we

can interpret morphisms as particular functions between sets, their composition is the usual

composition of functions, and the identity is the usual identity.

In particular we have:

(1) The category of sets, indicated with the symbol Set, in which Hom(A,B) = Set(A,B)

is the set of arbitrary maps from A to B.

(2) The category Grp of groups and homomorphisms between groups, Ab of abelian

groups and group homomorphisms, Rng of rings and homomorphisms of rings, or ModR of

modules on a ring R with homomorphisms of R-modules, etc.

(4) Top with objects the topological spaces and morphisms the continuous functions.

(5) The coverings of a given topological space and the covering maps.

(6) The notion of subcategory is rather natural: C ′ is a subcategory of C if the class ob(C ′)
is contained in ob(C) and, for any pair of objects A,B in C ′, HomC′(A,B) ⊂ HomC(A,B).

The subcategory is called full if equality holds: HomC′(A,B) = HomC(A,B).

(7) A first example of a category where morphisms cannot be thought of as simple

functions is that of a poset. i.e. a partially ordered set P . The objects are the elements of

P and

HomP (a, b) =

{∗} if a ≤ b;

∅ otherwise.

Here {∗} denotes a set with only one element denoted by ∗, also called the singleton. A

particular case of a poset category is Op(X), the category of the open subsets of a topological

space X.

11.2 Functors

The second notion we are going to introduce formalizes the idea of transformation of cate-

gories.

Definition 11.2.1. A (covariant) functor F : A → B from the category A to the category B
is a law that associates to every object X of A an object F (X) of B and to every morphism

f : X → Y in A a morphism F (f) : F (X)→ F (Y ) in B, in such a way that

a) F (f ◦ g) = F (f) ◦ F (g) (when the composition is defined),

b) F (1X) = 1F (X).

86



The composition of functors can be done as in the case of functions.

Contravariant functors are defined by imposing that to every morphism f : X → Y is

associated a morphism F (f) : F (Y ) → F (X) so that we have F (f ◦ g) = F (g) ◦ F (f). In

other words, contravariant functors invert the arrows.

Given a category C, we can define the opposite category C0, or Cop, whose objects are the

same as those of C while HomC0(A,B) = HomC(B,A). It is easily seen that a contravariant

functor from A to B is also a covariant functor from A to B0 (or from A0 to B).

Example 11.2.2. Examples of functors.

1. Forgetful functors. The law U : Grp → Set which maps a group to its underlying

set and a group homomorphism to its underlying function of sets is a functor. Functors like

this, which “ forget” some structure, are termed forgetful functors. Another example is the

functor Rng → Ab which maps a ring to its underlying additive abelian group. Morphisms

in Rng (ring homomorphisms) become morphisms in Ab (abelian group homomorphisms).

2. Free functors. Going in the opposite direction of forgetful functors are free functors.

The free functor F : Set→ Ab sends every set X to the free abelian group generated by X.

Functions are mapped to group homomorphisms between free abelian groups.

3. Representable functors. Let C be a category. Each object A ∈ ob(C) allows to define

the following functor hA : C → Set. For each object X ∈ ob(C), hA(X) := HomC(A,X) ∈
ob(Set). For each morphism f : X → Y in C, we define hA(f) : HomC(A,X)→ HomC(A, Y )

through the composition: hA(g) := f ◦ g. The functor hA is usually denoted by hA :=

HomC(A,−) and is a covariant functor which is said to be represented by the object A of C.
In a completely analogous way we can define the contravariant functor hA := HomC(−, A).

Among the categorical ideas there is that of isomorphism, which generalizes that of

bijection between sets, of isomorphism of groups, of homeomorphism between topological

spaces etc.

An isomorphism f between two objects A,B of a category C is a morphism f : A → B

such that there exists a morphism g : B → A such that g ◦ f = 1A and f ◦ g = 1B.

The following property follows easily from the axioms of category.

Proposition 11.2.3. (1) If f : A → B is an isomorphism, the morphism g : B → A such

that g ◦ f = 1A, f ◦ g = 1B is unique (and denoted f−1).

(2) If f : A → B is an isomorphism in C and F : C → D is a functor, then also

F (f) : F (A)→ F (B) is an isomorphism (in D).
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11.3 Natural transformations

To complete the categorical approach it is convenient to introduce the last formal definition,

the one that allows to treat the functors between two given categories A→ B like the objects

of a new category. To do this, we must define the morphisms between two such functors,

which we will call natural transformations. We give the definition for covariant functors, the

contravariant case is similar.

Definition 11.3.1. Given two functors F,G : A → B between two categories, a natural

transformation ϕ : F → G between the two functors consists in giving, for each object

A ∈ ob(A) a morphism ϕA : F (A) → G(A) (in B) such that, for each pair of objects

A,B ∈ ob(C) and for each morphism f : A→ B the following diagram is commutative:

F (A)
ϕA−→ G(A)

F(f) ↓ ↓ G(f)

F (B)
ϕB−→ G(B)

The class of natural transformations between two functors F,G : A → B is denoted by

Nat(F,G). Often it is a set, which can therefore be taken as the set of morphisms to define

the category of functors from category A to category B. We will indicate with F (A,B) this

category of functors. The properties of identity and composition are easy to verify.

From the general ideas, it follows the definition of natural isomorphism between two

functors: it is a natural transformation that admits an inverse, and also that of equivalence

of categories. An equivalence between the categories A,B is a functor F : A → B satisying

the following two conditions:

1. for any Y ∈ ob(B) there exists X ∈ ob(A) such that Y ' F (X);

2. for any pair of objectsA,B inA, F gives a bijectionHom(A,B)
F−→ Hom(F (A), F (B)).

We introduce a category C whose objects are the affine algebraic sets over a fixed alge-

braically closed field K and the morphisms are the regular maps. We consider also a second

category C ′ with objects the K-algebras and morphisms the K-homomorphisms. Then there

is a contravariant functor that operates on the objects mapping X to O(X) = K[X], and

on the morphisms mapping ϕ to the associated comorphism ϕ∗. Note that this functor can

be interpreted as the representable functor hA1 , when A1 is identified with K.

If we restrict the class of objects of C ′ taking only the finitely generated reduced K-

algebras (a full subcategory of the previous one), then this functor becomes an equiv-

alence of categories. Indeed the construction of the comorphism establishes a bijection

between the Hom sets HomC(X, Y ) and HomC′(O(Y ),O(X)). Moreover, for any finitely
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generated and reduced K-algebra A, there exists an affine algebraic set X such that A is

K-isomorphic to O(X). To see this, we choose a finite set of generators of A, such that

A = K[ξ1, . . . , ξn]. Then we can consider the surjective K-homomorphism Ψ from the poly-

nomial ring K[x1, . . . , xn] to A sending xi to ξi for any i. In view of the fundamental theorem

of homomorphism, it follows that A ' K[x1, . . . , xn]/ ker Ψ. The assumption that A is re-

duced then implies that X := V (ker Ψ) ⊂ An is an affine algebraic set with I(X) = ker Ψ

and A ' O(X).

We note that changing system of generators for A changes the homomorphism Ψ, and

by consequence also the algebraic set X, up to isomorphism. For instance let A = K[t] be a

polynomial ring in one variable t: if we choose only t as system of generators, we get X = A1,

but we can choose t, t2, t3, because A = K[t, t2, t3]; in this case we get the affine skew cubic

in A3.

As a consequence of the previous discussion we have the following:

Corollary 11.3.2. Let X, Y be affine varieties. Then X ' Y if and only if O(X) ' O(Y ).

We conclude this chapter defining an important functor. Let X be a quasi-projective

algebraic variety over a field K. We consider the category Op(X) of the open subsets

of X, interpreted as topological space with the Zariski topology. The second category is

K − alg, the category of K-algebras and K-homomorphisms. We define a contravariant

functor OX : Op(X)→ K − alg such that, for any open subset U ⊂ X, OX(U) = O(U), the

ring of regular functions on U interpreted as quasi-projective variety. Given a morphism in

Op(X), this is an inclusion U ↪→ V ; this is sent by the functor OX to the natural restriction

map O(V )→ O(U).

OX is called the sheaf of regular functions on the variety X.
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Chapter 12

Rational maps

12.1 Rational maps

Let X, Y be quasi–projective varieties over an algebraically closed field K. The idea to define

rational maps is that they are to regular maps as rational functions are to regular functions.

Definition 12.1.1. The rational maps from X to Y are the germs of regular maps from open

subsets of X to Y , i.e. they are equivalence classes of pairs (U,ϕ), where U 6= ∅ is open in

X and ϕ : U → Y is regular. The equivalence relation is of course defined by (U,ϕ) ∼ (V, ψ)

if and only if ϕ|U∩V = ψ|U∩V .

We need to prove that this is indeed an equivalence relation. The following Lemma

guarantees that this is the case.

Lemma 12.1.2. Let ϕ, ψ : X → Y ⊂ Pn be regular maps between quasi-projective varieties.

If ϕ|U = ψ|U for U ⊂ X open and non–empty, then ϕ = ψ.

Proof. Let P ∈ X and consider ϕ(P ), ψ(P ) ∈ Y . There exists a hyperplane H such that

ϕ(P ) 6∈ H and ψ(P ) 6∈ H (otherwise the dual projective space P̌n would be the union of its

two hyperplanes Hϕ(P ), Hψ(P ), defined by the conditions of containing respectively ϕ(P ) and

ψ(P )).

Up to a projective transformation, we can assume that H = VP (x0), so ϕ(P ), ψ(P ) ∈ U0.

Set V = ϕ−1(U0)∩ψ−1(U0): an open neighbourhood of P . Consider the restrictions of ϕ and

ψ from V to Y ∩U0: they are regular maps whose codomain is contained in U0 ' An. Since

they coincide on V ∩ U , their components ϕi, ψi, i = 1, . . . , n, coincide on V ∩ U , hence on

V (Corollary 9.1.4). So ϕi|V = ψi|V . In particular ϕ(P ) = ψ(P ). �
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A rational map from X to Y will be denoted by ϕ : X 99K Y . As for rational functions,

the domain of definition of ϕ, dom ϕ, is the maximum open subset of X such that ϕ is

regular at the points of dom ϕ.

The following proposition follows from the characterization of rational functions on affine

varieties.

Proposition 12.1.3. Let X, Y be affine algebraic sets, with Y closed in An. Then ϕ : X 99K

Y is a rational map if and only if ϕ = (ϕ1, . . . , ϕn), where ϕ1, . . . , ϕn ∈ K(X).

IfX ⊂ Pn, Y ⊂ Pm, then a rational mapX 99K Y is assigned by givingm+1 homogeneous

polynomials of K[x0, x1, . . . , xn] of the same degree, F0, . . . , Fm, such that at least one of them

is not identically zero on X.

A rational map ϕ : X 99K Y is called dominant if the image of X via ϕ is dense in Y ,

i.e. if ϕ(U) = Y , where U = dom ϕ.

Dominant rational maps can be composed: if ϕ : X 99K Y is dominant and ψ : Y 99K Z

is any rational map, then dom ψ∩ Imϕ 6= ∅, so we can define ψ ◦ϕ : X 99K Z: it is the germ

of the map ψ ◦ ϕ, regular on ϕ−1(dom ψ ∩ Imϕ). We note that also the composed rational

map ψ ◦ ϕ is dominant.

12.2 Birational maps

Definition 12.2.1. A birational map from X to Y is a rational map ϕ : X 99K Y such that

ϕ is dominant and there exists ψ : Y 99K X, a dominant rational map, such that ψ ◦ϕ = 1X

and ϕ ◦ ψ = 1Y as rational maps. In this case, X and Y are called birationally equivalent

or simply birational.

If ϕ : X 99K Y is a dominant rational map, then we can define the comorphism ϕ∗ :

K(Y )→ K(X) in the usual way: it is an injective K–homomorphism.

Proposition 12.2.2. Let X, Y be quasi–projective varieties, and let u : K(Y )→ K(X) be

a K–homomorphism. Then there exists a rational map ϕ : X 99K Y such that ϕ∗ = u.

Proof. Y is covered by open affine varieties Yα, α ∈ I (Section 10.5); note that for any

index α, K(Y ) ' K(Yα) (Proposition 9.2.4) and K(Yα) ' K(t1, . . . , tn), where t1, . . . , tn

can be interpreted as coordinate functions on Yα. Choose such an open subset Yα. Then

u(t1), . . . , u(tn) ∈ K(X) and there exists U ⊂ X, non–empty open subset such that u(t1), . . . , u(tn)

are all regular on U . So u(K[t1, . . . , tn]) ⊂ O(U) and we can consider the regular map
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u] : U → Yα ↪→ Y . The germ of u] gives a rational map X 99K Y . It is possible to check

that this rational map does not depend on the choice of Yα and U . �

Theorem 12.2.3. Let X, Y be quasi–projective varieties. The following are equivalent:

(i) X is birational to Y ;

(ii) K(X) ' K(Y );

(iii) there exist non–empty open subsets U ⊂ X and V ⊂ Y such that U ' V .

Proof. (i) ⇔ (ii) via the construction of the comorphism ϕ∗ associated to ϕ and of u],

associated to u : K(Y )→ K(X). One checks that both constructions are functorial.

(i) ⇒ (iii) Let ϕ : X 99K Y , ψ : Y 99K X be rational maps inverse each other. Put

U ′ = dom ϕ and V ′ = dom ψ. By assumption, ψ ◦ ϕ is defined on ϕ−1(V ′) and coincides

with 1X there. Similarly, ϕ◦ψ is defined on ψ−1(U ′) and equal to 1Y . Then ϕ and ψ establish

an isomorphism between the corresponding sets U := ϕ−1(ψ−1(U ′)) and V := ψ−1(ϕ−1(V ′)).

(iii) ⇒ (ii) U ' V implies K(U) ' K(V ); but K(U) ' K(X) and K(V ) ' K(Y ) (Prop.

1.9, Lesson 10), so K(X) ' K(Y ) by transitivity. �

Corollary 12.2.4. If X is birational to Y , then dimX = dimY .

Corollary 12.2.5. The projective space Pn and the affine space An are birationally equiva-

lent.

Theorem 12.2.3 can be given an interpretation in the language of categories. We can

define a category C whose objects are the irreducible algebraic varieties over a fixed alge-

braically closed field K, and the morphisms are the dominant rational maps. The isomor-

phisms in C are birational maps, so two objects are isomorphic in C if they are birationally

equivalent. We can consider also the category C ′ with objects the fields, finitely generated

extensions of K, and morphisms the K-homomorphisms. Then there is a contravariant func-

tor C → C ′ associating to a variety X its field of rational functions K(X) and to a rational

map ϕ : X 99K Y its comorphism ϕ∗. Proposition 12.2.2 and Theorem 12.2.3 say that this

functor is an equivalence of categories.

There are two classification problems for algebraic varieties, up to isomorphism and up

to birational equivalence. Both are central problems of Algebraic Geometry.

12.3 Examples

Example 12.3.1. a) The cuspidal cubic Y = V (x3 − y2) ⊂ A2.
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We have seen in Example 10.1.2 that Y is not isomorphic to A1, but Y and A1 are

birationally equivalent. Indeed, the regular map ϕ : A1 → Y , t→ (t2, t3), admits a rational

inverse ψ : Y 99K A1, (x, y)→ y
x
. ψ is regular on Y \{(0, 0)}, ψ is dominant and ψ ◦ϕ = 1A1 ,

ϕ ◦ ψ = 1Y as rational maps. In particular, ϕ∗ : K(Y ) → K(X) is a field isomorphism.

Recall that K[Y ] = K[t1, t2], with t21 = t32, so K(Y ) = K(t1, t2) = K(t2/t1), because

t1 = (t2/t1)2 = t22/t
2
1 = t31/t

2
1 and t2 = (t2/t1)3 = t32/t

3
1 = t32/t

2
2, so K(Y ) is generated by a

unique transcendental element. Notice that ϕ and ψ establish isomorphisms between A1\{0}
and Y \ {(0, 0)}.

b)Any rational map from P1 to Pn is regular.

Let ϕ : P1 99K Pn be a rational map: on some open U ⊂ P1,

ϕ([x0, x1]) = [F0(x0, x1), . . . , Fn(x0, x1)],

with F0, . . . , Fn homogeneous of the same degree, without non–trivial common factors. As-

sume that Fi(P ) = 0 for a certain index i, with P = [a0, a1]. Then Fi ∈ Ih(P ) = 〈a1x0−a0x1〉,
i.e. a1x0−a0x1 is a factor of Fi. This remark implies that ∀ Q ∈ P1 there exists i ∈ {0, . . . , n}
such that Fi(Q) 6= 0, because otherwise F0, . . . , Fn would have a common factor of degree 1.

Hence we conclude that ϕ is regular.

We have obtained that any rational map from P1 is in fact regular.

c) Projections.

Let ϕ : Pn 99K Pm be a rational map, that can be represented in matrix form by Y = AX,

where A is a (m+ 1)× (n+ 1)-matrix, with entries in K. Then ϕ is a rational map, regular

on Pn \P(KerA). Put Λ := P(KerA). If A = (aij), this means that Λ has cartesian equations
a00x0 + . . .+ a0nxn = 0

a10x0 + . . .+ a1nxn = 0

. . .

am0x0 + . . .+ amnxn = 0.

The map ϕ has a geometric interpretation: it can be seen as the projection of centre

Λ to a complementar linear space. To see how to give this interpretation, first of all we

can assume that rk A = m + 1, otherwise we replace Pm with P(Im A); hence dim Λ =

(n+ 1)− (m+ 1)− 1 = n−m− 1.

Consider first the special case in which Λ : x0 = · · · = xm = 0; we can identify Pm with the

subspace of Pn of equations xm+1 = · · · = xn = 0, so Λ and Pm are complementar subspaces,
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i.e. Λ ∩ Pm = ∅ and the linear span of Λ and Pm is Pn. Then, for Q[a0, . . . , an] ∈ Pn \ Λ,

ϕ(Q) = [a0, . . . , am, 0, . . . , 0]: it is the intersection of Pm with the linear span ΛQ of Λ and

Q. In fact, ΛQ has equations

{aixj − ajxi = 0, i, j = 0, . . . ,m (check!)

so ΛQ ∩ Pm has coordinates [a0, . . . , am, 0, . . . , 0].

In the general case, we perform a change of coordinates: if Λ = VP (L0, . . . , Lm), with

L0, . . . , Lm linearly independent linear forms, we can identify Pm with VP (Lm+1, . . . , Ln),

where Lm+1, . . . , Ln are linearly independent linear forms chosen so that L0, . . . , Lm, Lm+1, . . . , Ln

is a basis of (Kn+1)∗. Then L0, . . . , Lm can be interpreted as coordinate functions on Pm.

If m = n− 1, then Λ is a point P and ϕ, often denoted by πP , is the projection from P

to a hyperplane not containing P . Also for the projection with centre Λ often the notation

πΛ is used.

d)Rational and unirational varieties.

A quasi–projective variety X is called rational if it is birational to a projective space Pn,

or equivalently to An.

By Theorem 12.2.3, X is rational if and only if K(X) ' K(Pn) = K(x1, . . . , xn) for some

n, i.e. K(X) is an extension of K generated by a transcendence basis; this kind of extension

is called a purely transcendental extension of K. In an equivalent way, X is rational if there

exists a rational map ϕ : Pn 99K X which is dominant and is an isomorphism if restricted to a

suitable open subset U ⊂ Pn. Hence X admits a birational parameterization by polynomials

in n parameters.

A weaker notion is that of unirational variety: X is unirational if there exists a dominant

rational map Pn 99K X i.e. if K(X) is contained in the quotient field of a polynomial ring.

Hence X can be parameterized by polynomials, but not necessarily generically one–to–one.

It is clear that, if X is rational, then it is unirational. The converse implication has been

an important open problem, up to 1971, when it has been solved in the negative, for vari-

eties of dimension ≥ 3 (Clemens–Griffiths, Iskovskih–Manin, Artin-Mumford). Nevertheless

rationality and unirationality are equivalent for curves (Theorem of Lüroth, 1880, over any

field) and for surfaces if charK = 0 (Theorem of Castelnuovo, 1894).

e)Rational parameterization of a smooth quadric surface.

As an example of rational variety with an explicit rational parameterization constructed

geometrically, let us consider the Segre quadric in P3, of maximal rank: X = VP (x0x3−x1x2),

it is an irreducible hypersurface of degree 2. Let πP : P3 99K P2 be the projection of centre
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P [1, 0, 0, 0], such that πP ([y0, y1, y2, y3]) = [y1, y2, y3]. The restriction of πP to X is a rational

map π̃P : X 99K P2, regular on X \ {P}. π̃P has a rational inverse: indeed consider the

rational map ψ : P2 99K X, [y1, y2, y3]→ [y1y2, y1y3, y2y3, y
2
3]. The equation of X is satisfied

by the points of ψ(P2): (y1y2)y2
3 = (y1y3)(y2y3). ψ is regular on P2 \ VP (y1y2, y3). Let us

compose ψ and π̃P :

[y0, . . . , y3] ∈ X πP→ [y1, y2, y3]
ψ→ [y1y2, y1y3, y2y3, y

2
3];

y1y2 = y0y3 implies ψ ◦ πP = 1X . In the opposite order:

[y1, y2, y3]
ψ→ [y1y2, y1y3, y2y3, y

2
3]

πP→ [y1y3, y2y3, y
2
3] = [y1, y2, y3].

So X is birational to P2 hence it is a rational surface.

Note that if we consider another projection πP ′ whose centre P ′ is not on the quadric,

we get a regular 2 : 1 map to the plane, that is certainly not birational.

f) A birational non–regular map from P2 to P2.

The following rational map is called the standard quadratic transformation:

Q : P2 99K P2, [x0, x1, x2]→ [x1x2, x0x2, x0x1].

Q is regular on U := P2 \{A,B,C}, where A[1, 0, 0], B[0, 1, 0], C[0, 0, 1] are the fundamental

points (see Figure 1).

Let a be the line through B and C: a = VP (x0), and similarly b = VP (x1), c = VP (x2).

Then Q(a) = A, Q(b) = B, Q(c) = C. Outside these three lines Q is an isomorphism.

Precisely, put U ′ = P2 \ {a ∪ b ∪ c}; then Q : U ′ → P2 is regular, the image is U ′ and

Q−1 : U ′ → U ′ coincides with Q. Indeed,

[x0, x1, x2]
Q→ [x1x2, x0x2, x0x1]

Q→ [x2
0x1x2, x0, x

2
1x2, x0x1x

2
2].

So Q ◦Q = 1P2 as rational map, hence Q is birational and Q = Q−1.

Note that another way to express Q is the following: [x0, x1, x2]→ [ 1
x0
, 1
x1
, 1
x2

].

The set of the birational maps P2 99K P2 is a group, called the Cremona group. At the end

of XIX century, Max Noether proved that the Cremona group is generated by PGL(3, K)

and by the single standard quadratic transformation Q defined above. The analogous groups

for Pn, n ≥ 3, are much more complicated and a complete description is still unknown.

We conclude this chapter with a theorem illustrating an application of the linearisation

procedure. We shall use the following notation: given a homogeneous polynomial F ∈
K[x0, x1, . . . , xn], D(F ) := Pn \ VP (F ).
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Theorem 12.3.2. Let W ⊂ Pn be a closed projective variety. Let F be a homogeneous

polynomial of degree d in K[x0, x1, . . . , xn] such that W * VP (F ). Then W ∩ D(F ) is an

affine variety.

Proof. The assumption W * VP (F ) is equivalent to W ∩ D(F ) 6= ∅. Let us consider the

d-tuple Veronese embedding vn,d : Pn → PN(n,d), with N(n, d) =
(
n+d
d

)
− 1, that gives

the isomorphism Pn ' Vn,d. In this isomorphism the hypersurface VP (F ) corresponds to

a hyperplane section Vn,d ∩ H, for a suitable hyperplane H in PN(n,d). Therefore we have

W ∩ D(F ) ' vn,d(W ∩ D(F )) = vn,d(W ) \ H = vn,d(W ) ∩ (PN(n,d) \ H). There exists

a projective isomorphism τ : PN(n,d) → PN(n,d) such that τ(H) = H0, the fundamental

hyperplane of equation x0 = 0. Therefore, denoting X := vn,d(W ), we get X∩(PN(n,d)\H) '
τ(X) ∩ (PN(n,d) \H0) = τ(X) ∩ U0, which proves the theorem. �

As a consequence of Theorem 12.3.2, we get that the open subsets of the form W ∩D(F )

form a topology basis for W formed by affine varieties.

Exercises 12.3.3. 1. Let ϕ : A1 → An be the map defined by t→ (t, t2, . . . , tn).

a) Prove that ϕ : A1 → ϕ(A1) is an isomorphism and describe ϕ(A1);

b) give a description of ϕ∗ and ϕ−1∗.

2. Prove that the Veronese variety Vn,d is not contained in any hyperplane of PN(n,d).

3. Let GLn(K) be the set of invertible n × n matrices with entries in K. Prove that

GLn(K) can be given the structure of an affine variety.

4. Let ϕ : X → Y be a regular map and ϕ∗ its comorphism. Prove that the kernel of ϕ∗

is the ideal of ϕ(X) in O(Y ). In the affine case, deduce that ϕ is dominant if and only if ϕ∗

is injective.

5. Prove that O(XF ) is isomorphic to O(X)f , where X is an affine algebraic variety, F

a polynomial and f the regular function on X defined by F .
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A[1,0,0]	 B[0,1,0]	

C[0,0,1]	

a	
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b	

Figure 12.1:

97



Chapter 13

Product of quasi–projective varieties

and tensors

13.1 Products

In Chapter 2, Section 2.5, we have seen how the product P1 × P1 can be interpreted as a

projective variety, and precisely a quadric of maximal rank, by means of the Segre map.

Now we want to give a structure of algebraic variety to all products of algebraic varieties.

We will seen that this can be done by generalizing the definition of the Segre map to any

product of projective spaces Pn × Pm.

Let Pn, Pm be projective spaces over the same field K. The cartesian product Pn × Pm

is simply a set: we want to define an injective map from Pn × Pm to a suitable projective

space, so that the image is a projective variety, which will be identified with our product.

Let N = (n + 1)(m + 1) − 1 and define σ : Pn × Pm → PN in the following way:

σ([x0, . . . , xn], [y0, . . . , ym]) = [x0y0, x0y1, . . . , xiyj, . . . , xnym]. Using coordinates wij, i =

0, . . . , n, j = 0, . . . ,m, in PN , σ is defined by

{wij = xiyj, i = 0, . . . , n, j = 0, . . . ,m.

It is easy to observe that σ is a well–defined map.

Let Σn,m (or simply Σ) denote the image σ(Pn × Pm).

Proposition 13.1.1. σ is injective and Σn,m is a closed subset of PN .

Proof. If σ([x], [y]) = σ([x′], [y′]), then there exists λ 6= 0 such that x′iy
′
j = λxiyj for all i, j.

In particular, if xh 6= 0, yk 6= 0, then also x′h 6= 0, y′k 6= 0, and for all i x′i = λyk
y′k
xi, so
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[x0, . . . , xn] = [x′0, . . . , x
′
n]. Similarly for the second point.

To prove the second assertion, I claim: Σn,m is the closed set of equations:

{wijwhk = wikwhj, i, h = 0, . . . , n; j, k = 0 . . . ,m. (13.1)

It is clear that if [wij] ∈ Σ, then it satisfies (13.1).

Conversely, assume that [wij] satisfies (13.1) and that wαβ 6= 0. Then

[w00, . . . , wij, . . . , wnm] = [w00wαβ, . . . , wijwαβ, . . . , wnmwαβ] =

= [w0βwα0, . . . , wiβwαj, . . . , wnβwαm] =

= σ([w0β, . . . , wnβ], [wα0, . . . , wαm]).

�

σ is called the Segre map and Σn,m the Segre variety or biprojective space. Note that Σ

is covered by the affine open subsets Σij = Σ ∩Wij, where Wij = PN \ VP (wij). Moreover

Σij = σ(Ui × Vj), where Ui × Vj is naturally identified with An+m.

Proposition 13.1.2. σ|Ui×Vj : Ui × Vj = An+m → Σij is an isomorphism of varieties.

Proof. Assume by simplicity i = j = 0. Choose non–homogeneous coordinates on U0:

ui = xi/x0 and on V0: vj = yj/y0. So u1, . . . un, v1, . . . , vm are coordinates on U0 × V0. Take

non–homogeneous coordinates also on W00: zij = wij/w00.

Using these coordinates we have:

σ|Ui×Vj :(u1, . . . un, v1, . . . , vm)→ (v1, . . . , vm, u1, u1v1, . . . , u1vm, . . . , unvm)

||
([1, u1, . . . , un], [1, v1, . . . , vm])

i.e. σ(u1, . . . , vm) = (z01, . . . , znm), where
zi0 = ui, if i = 1, . . . , n;

z0j = vj, if j = 1, . . . ,m;

zij = uivj = zi0z0j otherwise.

Hence σ|U0×V0 is regular. Its inverse maps (z01, . . . , znm) to (z10, . . . , zn0, z01, . . . , z0m), so it

is also regular. �

Corollary 13.1.3. Pn × Pm is irreducible and birational to Pn+m.

99



Proof. The first assertion follows from Exercise 5, Chapter 6, considering the covering of Σ

by the open subsets Σij. Indeed, Σij∩Σhk = σ((Ui×Vj)∩(Uh×Vk)) = σ((Ui∩Uh)×(Vj∩Vk)),
and Ui ∩ Uh 6= ∅ 6= Vj ∩ Vk.

For the second assertion, by Theorem 12.2.3, it is enough to note that Σn,m and Pn+m

contain isomorphic open subsets, i.e. Σij and An+m. �

From now on, we shall identify Pn × Pm with Σn,m. If X ⊂ Pn, Y ⊂ Pm are any

quasi–projective varieties, then X × Y will be automatically identified with σ(X × Y ) ⊂ Σ.

Proposition 13.1.4. If X and Y are projective varieties (resp. quasi–projective varieties),

then X × Y is projective (resp. quasi–projective).

Proof.

σ(X × Y ) =
⋃
i,j

(σ(X × Y ) ∩ Σij) =

=
⋃
i,j

(σ(X × Y ) ∩ (Ui × Vj)) =

=
⋃
i,j

(σ((X ∩ Ui)× (Y ∩ Vj))).

If X and Y are projective varieties, then X ∩Ui is closed in Ui and Y ∩Vj is closed in Vj,

so their product is closed in Ui× Vj; since σ|Ui×Vj is an isomorphism, also σ(X × Y )∩Σij is

closed in Σij, so σ(X × Y ) is closed in Σ, by Lemma 9.1.3.

If X, Y are quasi–projective, the proof is similar: X ∩Ui is locally closed in Ui and Y ∩Vj
is locally closed in Vj, so X ∩ Ui = Z \ Z ′, Y ∩ Vj = W \ W ′, with Z,Z ′,W,W ′ closed.

Therefore (Z \ Z ′)× (W \W ′) = Z ×W \ ((Z ′ ×W ) ∪ (Z ×W ′)), which is locally closed.

As for the irreducibility, see Exercise 1. �

Example 13.1.5. P1 × P1

The example of P1 × P1, the Segre quadric, has already been studied in Section 2.5.

We recall that σ : P1×P1 → P3 is given by the parametric equations {wij = xiyj, i = 0, 1,

j = 0, 1. Σ has only one non–trivial equation: w00w11 − w01w10, hence Σ is a quadric. The

equation of Σ can be written as ∣∣∣∣∣ w00 w01

w10 w11

∣∣∣∣∣ = 0. (13.2)

Σ contains two families of special closed subsets parametrised by P1, i.e.

{σ({P} × P1)}P∈P1 and {σ(P1 × {Q})}Q∈P1 .
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If P = [a0, a1], then σ({P} × P1) is given by the equations:
w00 = a0y0

w01 = a0y1

w10 = a1y0

w11 = a1y1

hence it is a line. Cartesian equations of σ({P} × P1) are:a1w00 − a0w10 = 0

a1w01 − a0w11 = 0;

they express the proportionality of the rows of the matrix (13.2) with coefficients [a1,−a0].

Similarly, σ(P1 × {Q}) is the line of equationsa1w00 − a0w01 = 0

a1w10 − a0w11 = 0.

Hence Σ contains two families of lines, called the rulings of Σ: two lines of the same ruling

are clearly disjoint, while two lines of different rulings intersect at one point (σ(P,Q)).

Conversely, through any point of Σ there pass two lines, one for each ruling.

Note that Σ is exactly the quadric surface of Section 12.3 e) and that the projection πP

of centre P [1, 0, 0, 0] realizes an explicit birational map between P1 × P1 and P2. The two

lines contained in Σ passing through P have equations w10 = w11 = 0 and w01 = w11 =

0 respectively; they are contracted to the points E0[1, 0, 0], E1[0, 1, 0] of P2 respectively.

Conversely, the line x2 = 0 in P2 passing through E0, E1 is contracted to P by π−1
p .

13.2 Tensors

The product of projective spaces has a coordinate-free description in terms of tensors. Pre-

cisely, let Pn = P(V ) and Pm = P(W ). The tensor product V ⊗W of the vector spaces V,W

is constructed as follows: let K(V ×W ) be the K-vector space with basis V ×W obtained

as the set of formal finite linear combinations of type Σiai(vi, wi) with ai ∈ K. Let U be the

vector subspace generated by all elements of the form:

(v, w) + (v′, w)− (v + v′, w),

(v, w) + (v, w′)− (v, w + w′),
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(λv, w)− λ(v, w),

(v, λw)− λ(v, w),

with v, v′ ∈ V , w,w′ ∈ W , λ ∈ K. The tensor product is by definition the quotient

V ⊗ W := K(V × W )/U . The class of a pair (v, w) is denoted by v ⊗ w, and called a

decomposable tensor. So V ⊗W is generated by the decomposable tensors; more precisely, a

general element ω ∈ V ⊗W is of the form Σk
i=1vi⊗wi, with vi ∈ V , wi ∈ W . The minimum

k such that an expression of this type exists is called the tensor rank of ω.

There is a natural bilinear map ⊗ : V × W → V ⊗ W , such that (v, w) → v ⊗ w.

It enjoys the following universal property: for any K-vector space Z with a bilinear map

f : V ×W → Z, there exists a unique linear map f̄ : V ⊗W → Z such that f factorizes in

the form f = f̄ ◦ ⊗.

If dimV = n+1, dimW = m+1, and bases B = (e0, . . . , en),B′ = (e′0, . . . , e
′
m) are given,

then (e0⊗e′0, . . . , ei⊗e′j, . . . en⊗e′m) is a basis of V ⊗W : therefore dimV ⊗W = (n+1)(m+1).

If v = x0e0 + · · ·+xnen, w = y0e
′
0 + · · ·+yme

′
m, then v⊗w =

∑
i,j xiyjei⊗ e′j. So, passing

to the projective spaces, the map ⊗ defines precisely the Segre map

σ : P(V )× P(W )→ P(V ⊗W ), ([v], [w])→ [v ⊗ w].

Indeed in coordinates we have ([x0, . . . , xn], [y0, . . . , ym]) → [w00, . . . , wnm], with wij = xiyj.

The image of ⊗ is the set of decomposable tensors, or rank one tensors.

The tensor product V ⊗W has the same dimension, and is therefore isomorphic to the

vector space of (n + 1) × (m + 1) matrices. The coordinates wij can be interpreted as the

entries of such a (n+ 1)× (m+ 1) matrix. The equations of the Segre variety Σn,m are the

2× 2 minors of the matrix, therefore Σn,m can be interpreted as the set of matrices of rank

one.

The construction of the tensor product can be iterated, to construct V1 ⊗ V2 ⊗ · · · ⊗ Vr.
The following properties can easily be proved:

1. V1 ⊗ (V2 ⊗ V3) ' (V1 ⊗ V2)⊗ V3;

2. V ⊗W ' W ⊗ V ;

3. V ∗ ⊗W ' Hom(V,W ), where f ⊗ w → (V → W : v → f(v)w).

Also the Veronese morphism has a coordinate free description, in terms of symmetric

tensors. Given a vector space V , for any d ≥ 0 the d-th symmetric power of V , SdV

or SymdV , is constructed as follows. We consider the tensor product of d copies of V :

V ⊗ · · · ⊗ V = V ⊗d, and we consider its subvector space U generated by all tensors of

the form v1 ⊗ . . . vd − vσ(1) ⊗ . . . ⊗ vσ(d), where v1, . . . , vd vary in V and σ varies in the
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symmetric group on d elements Sd. Then by definition SdV := V ⊗d/U . The equivalence

class [v1⊗· · ·⊗vd] is denoted as a product v1 . . . vd. The elements of SdV are called symmetric

tensors.

There is a natural multilinear and symmetric map V × · · · × V = V d → SdV , such

that (v1, . . . , vd) → v1 . . . vd, which enjoys the universal property. SdV is generated by the

products v1 . . . vd.

In characteristic 0, SdV can also be interpreted as a subspace of V ⊗d, by considering the

following map, that is an isomorphism to the image:

SdV → V ⊗d, v1 . . . vd → Σσ∈Sd
1

d!
vσ(1) ⊗ · · · ⊗ vσ(d).

For instance, in S2V the product v1v2 can be identified with 1
2
(v1 ⊗ v2 + v2 ⊗ v1).

If B = (e0, . . . , en) is a basis of V , then it is easy to check that a basis of SdV is formed

by the monomials of degree d in e0, . . . , en; therefore dimSdV =
(
n+d
d

)
.

The symmetric algebra of V is SV := ⊕d≥0S
dV = K ⊕ V ⊕ S2V ⊕ . . . . An inner

product can be naturally defined to give it the structure of a K-algebra, which results to be

isomorphic to the polynomial ring in n+ 1 variables, where n+ 1 = dimV .

If charK = 0 the Veronese morphism can be interpreted in the following way (up to

projectivity):

vn,d : P(V )→ P(SdV ), [v] = [x0e0 + . . . xnen]→ [vd] = [(x0e0 + · · ·+ xnen)d].

Moreover S2V can be interpreted as the space of symmetric (n + 1)× (n + 1) matrices,

and the Veronese variety Vn,2 as the subset of the symmetric matrices of rank one, because

its equations express precisely the vanishing of the minors of order 2 (see Section 10.6).

Exercises 13.2.1. 1. Using Exercise 5 of Chapter 6, prove that, if X ⊂ Pn, Y ⊂ Pm are

irreducible projective varieties, then X × Y is irreducible.

2. Let L,M,N be the following lines in P3:

L : x0 = x1 = 0,M : x2 = x3 = 0, N : x0 − x2 = x1 − x3 = 0.

Let X be the union of lines meeting L,M and N : write equations for X and describe it: is

it a projective variety? If yes, of what dimension and degree?

3. Let X, Y be quasi–projective varieties, identify X × Y with its image via the Segre

map. Check that the two projection maps X × Y p1→ X, X × Y p2→ Y are regular. (Hint: use

the open covering of the Segre variety by the Σij’s.)
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Chapter 14

The dimension of an intersection

Our aim in this chapter is to investigate the dimension of the intersection of two algebraic

varieties.

14.1 The theorem of the intersection

Theorem 14.1.1. Let K be an algebraically closed field. Let X, Y ⊂ Pn be quasi–projective

varieties. Assume that X ∩ Y 6= ∅. Then if Z is any irreducible component of X ∩ Y , then

dimZ ≥ dimX + dimY − n.

To prove Theorem 14.1.1, the main ingredient will be the following theorem, known as

“ Krull’s principal ideal theorem”.

Theorem 14.1.2. Let R be a noetherian ring, let a ∈ R be a non-invertible element. Then,

for any prime ideal P ⊂ R, minimal over the ideal (a) generated by a, the height of P is at

most 1, i.e. htP ≤ 1. If moreover a is a non-zero divisor, then htP = 1.

We postpone the proof of Theorem 14.1.2 to the end of this chapter and proceed to the

proof of Theorem 14.1.1. It will be divided in three steps. Note first that, possibly passing

to the closure, we can assume that X, Y are projective varieties. Then we can assume that

X ∩ Y intersects U0 ' An, so, possibly after restricting X and Y to An, we may work with

irreducible closed subsets of the affine space. Put r = dimX, s = dimY .

Step 1. Assume that X = V (F ) is an irreducible hypersurface, with F irreducible

polynomial of K[x1, . . . , xn]. The irreducible components of X ∩ Y correspond, by the Null-

stellensatz, to the minimal prime ideals containing I(X ∩ Y ) in K[x1, . . . , xn]. We recall

(Corollary 3.2.9) that I(X ∩ Y )=
√
I(X) + I(Y )=

√
〈I(Y ), F 〉. So those prime ideals are
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the minimal prime ideals over 〈I(Y ), F 〉. They correspond bijectively to the minimal prime

ideals containing 〈f〉 in O(Y ), where f is the regular function on Y defined by F . We

distinguish two cases:

(i) if Y ⊂ X = V (F ), then f = 0 and Y ∩ X = Y ; since s = dimY > r + s − n =

(n− 1) + s− n, the theorem is easily true in this case;

(ii) if Y 6⊂ X, then f 6= 0, moreover f is not invertible, otherwise X ∩ Y = ∅: hence the

minimal prime ideals over 〈f〉 in O(Y ), which is an integral domain, have all height one by

Theorem 14.1.2. So for all Z, irreducible component of X∩Y , dimZ = dimY −1 = r+s−n
(Theorem 7.2.4).

Step 2. Assume that I(X) is generated by n− r polynomials (where n− r is the codi-

mension of X): I(X) = 〈F1, . . . , Fn−r〉. Then we can argue by induction on n − r: we first

intersect Y with V (F1), whose irreducible components are all hypersurfaces, and apply Step

1: all irreducible components of Y ∩ V (F1) have dimension either s or s − 1. Then we in-

tersect each of these components with V (F2), and so on. We conclude that every irreducible

component Z has dimZ ≥ dimY − (n− r) = r + s− n.

Step 3. We use the isomorphism ψ : X∩Y ' (X×Y )∩∆An (see Exercise 1, Chapter 10).

Note that X×Y is irreducible by Proposition 6.4.2. ψ preserves the irreducible components

and their dimensions, so we consider instead of X and Y , the algebraic sets X×Y and ∆An ,

contained in A2n. We have dimX×Y = r+s (Proposition 7.2.7). ∆An is a linear subspace of

A2n, so it satisfies the assumption of Step 2; indeed it has dimension n in A2n and is defined

by n linear equations. Hence, for all Z we have: dimZ ≥ (r + s) + n− 2n = r + s− n. �

The above theorem can be seen as a generalization of the Grassmann relation for linear

subspaces. However, it is not an existence theorem, because it says nothing about X ∩ Y
being non–empty. But for projective varieties, the following more precise version of the

theorem holds:

Theorem 14.1.3. Let X, Y ⊂ Pn be projective varieties of dimensions r, s. If r+ s−n ≥ 0,

then X ∩ Y 6= ∅.

Proof. Let C(X), C(Y ) be the affine cones associated to X and Y . Then C(X) ∩ C(Y ) is

certainly non–empty, because it contains the origin O(0, 0, . . . , 0). Assume we know that

C(X) has dimension r + 1 and C(Y ) has dimension s + 1: then by Theorem 14.1.1 all the

irreducible components Z of C(X) ∩ C(Y ) have dimension ≥ (r + 1) + (s + 1)− (n + 1) =

r+ s− n+ 1 ≥ 1, hence Z contains points different from O. These points give rise to points

of Pn belonging to X ∩ Y . The conclusion of the proof will follow from next proposition. �
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Proposition 14.1.4. Let Y ⊂ Pn be a projective variety.

Then dimY = dimC(Y ) − 1. If S(Y ) denotes the homogeneous coordinate ring, hence

also dimY = dimS(Y )− 1.

Proof. Let p : An+1 \ {O} → Pn be the canonical morphism. Let us recall that C(Y ) =

p−1(Y ) ∪ {O}. Assume that Y0 := Y ∩ U0 6= ∅ and consider also C(Y0) = p−1(Y0) ∪ {O}.
Then we have:

C(Y0) = {(λ, λa1, . . . , λan) | λ ∈ K, (a1, . . . , an) ∈ Y0}.

So we can define a birational map between C(Y0) and Y0 × A1 as follows:

(y0, y1, . . . , yn) ∈ C(Y0)→ ((y1/y0, . . . , yn/y0), y0) ∈ Y0 × A1,

((a1, . . . , an), λ) ∈ Y0 × A1 → (λ, λa1, . . . , λan) ∈ C(Y0).

Therefore dimC(Y0) = dim(Y0×A1) = dimY0 + 1. To conclude, it is enough to remark that

dimY = dimY0 and dimC(Y ) = dimC(Y0) = dimS(Y ). �

We observe that also C(Y ) and Y × P1 are birationally equivalent.

Corollary 14.1.5. 1. If X, Y ⊂ P2 are projective curves over an algebraically closed field,

then X ∩ Y 6= ∅.
2. P1 × P1 is not isomorphic to P2.

Proof. 1. is a straightforward application of Theorem 14.1.3.

To prove 2., assume by contradiction that ϕ : P1 × P1 → P2 is an isomorphism. Let

L,L′ be two skew lines in P1 × P1; since ϕ is an isomorphism, then ϕ(L), ϕ(L′) are rational

disjoint curves in P2, but this contradicts 1. �

If X, Y ⊂ Pn are varieties of dimensions r, s, then r+s−n is called the expected dimension

of X ∩ Y . If all irreducible components Z of X ∩ Y have the expected dimension, then we

say that the intersection X ∩ Y is proper or that X and Y intersect properly.

For example, two plane projective curves X, Y intersect properly if they don’t have any

common irreducible component. In this case, it is possible to predict the number of points

of intersections. Precisely, it is possible to associate to every point P ∈ X ∩ Y a number

i(P ;X, Y ), called the multiplicity of intersection of X and Y at P , in such a way that∑
P∈X∩Y

i(P ;X, Y ) = dd′,

where d is the degree of X and d′ is the degree of Y . This result is the Theorem of Bézout,

and is the first result of the branch of algebraic geometry called Intersection Theory. For a

proof of the Theorem of Bézout, see for instance the classical [W], or [F].
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14.2 Complete intersections

Let X be a closed subvariety of Pn (resp. of An) of codimension r. X is called a complete

intersection if Ih(X) (resp. I(X)) is generated by r polynomials, the minimum possible

number.

Hence, if X is a complete intersection of codimension r, then X is certainly the intersec-

tion of r hypersurfaces. Conversely, if X is intersection of r hypersurfaces, then, by Theorem

14.1.1, using induction, we deduce that dimX ≥ n − r; even assuming equality, we cannot

conclude that X is a complete intersection, but simply that I(X) is the radical of an ideal

generated by r polynomials.

Example 14.2.1. The skew cubic (again).

Let X ⊂ P3 be the skew cubic. The homogeneous ideal of X is generated by the three

polynomials F1, F2, F3, the 2× 2–minors of the matrix

M =

(
x0 x1 x2

x1 x2 x3

)
,

which are linearly independent polynomials of degree 2. Note that Ih(X) does not contain any

linear polynomial, because X is not contained in any hyperplane, and that the homogeneous

component of minimal degree 2 of Ih(X) is a vector space of dimension 3. Hence Ih(X)

cannot be generated by two polynomials, i.e. X is not a complete intersection.

Nevertheless, X is the intersection of the surfaces VP (F ), VP (G), where

F = F1 =

∣∣∣∣∣ x0 x1

x1 x2

∣∣∣∣∣ and G =

∣∣∣∣∣∣∣
x0 x1 x2

x1 x2 x3

x2 x3 x0

∣∣∣∣∣∣∣ .
Indeed, clearly F,G ∈ Ih(X) so X ⊂ VP (F ) ∩ VP (G). Conversely, observe that

G = x0F − x3(x0x3 − x1x2) + x2(x1x3 − x2
2) = x0F1 − x3F2 + x2F3.

If P [x0, . . . , x3] ∈ VP (F ) ∩ VP (G), then P is a zero also of G− x0F = x0x
2
3 − 2x1x2x3 + x3

2,

and therefore also of

x2(x0x
2
3 − 2x1x2x3 + x3

2) = x2
1x

2
3 − 2x1x

2
2x3 + x4

2 = (x1x3 − x2
2)2 = F 2

3 ,

because x0x2 = x2
1. Hence P is a zero also of F3 = x1x3 − x2

2. So P annihilates G− x0F −
x2F3 = x3(x0x3 − x1x2) = x3F2. If P satisfies the equation x3 = 0, then it satisfies also

x2 = 0 and x1 = 0, therefore P = [1, 0, 0, 0] ∈ X. If x3 6= 0, then P ∈ VP (F1, F2, F3) = X.
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The geometric description of this phenomenon is that the skew cubicX is the set-theoretic

intersection of a quadric and a cubic, which are tangent along X, so their intersection is X

“ counted with multiplicity 2”.

This example motivates the following definition: X is a set–theoretic complete intersection

if codimX = r and the ideal of X is the radical of an ideal generated by r polynomials. It is

an open problem if all irreducible curves of P3 are set–theoretic complete intersections. For

more details, see [K].

14.3 Krull’s principal ideal theorem

We conclude this chapter with the proof of Krull’s principal ideal Theorem 14.1.2.

Proof. Let P be a prime ideal, minimal among those containing (a), let RP be the localiza-

tion. Then htP = dimRP , because of the bijection between prime ideals of RP and prime

ideals of R contained in P . Moreover PRP is a minimal prime ideal over aRP , the ideal

generated by a in RP . So, we can replace the ring R with its localization RP , or, in other

words, we can assume that R is a local ring and that its maximal ideal M is minimal over

(a).

It is enough to prove that, for any prime ideal Q of R, with Q 6=M, we have htQ = 0.

Indeed this will imply htM ≤ 1. Let j : R → RQ be the natural homomorphism. For any

integer i, i ≥ 1, we consider Qi, and its saturation with Q: Q(i) := j−1(QiRQ), called the

i-th symbolic power of Q. It is Q-primary. We have Qi ⊂ Q(i) and

Q = Q(1) ⊇ Q(2) ⊇ · · · ⊇ Q(i) ⊇ . . . .

We also have

(a) +Q ⊇ (a) +Q(2) ⊇ · · · ⊇ (a) +Q(i) ⊇ . . . . (14.1)

We observe that in R/(a) there is only one prime ideal, M/(a), because R is local and

M is minimal over (a), therefore R/(a) has dimension 0; since it is noetherian of dimension

0, R/(a) is artinian, and we can conclude that the chain of ideals (14.1) is stationary, so

there exists an integer n such that (a) +Q(n) = (a) +Q(n+1).

Let q ∈ Q(n): so q ∈ (a) +Q(n+1), and it can be written in the form q = ra + q′, where

r ∈ R, q′ ∈ Q(n+1) ⊂ Q(n). Therefore ra = q − q′ ∈ Q(n); but a /∈ Q (because M is minimal

over (a)), and Q(n) is Q-primary, so r ∈ Q(n). We conclude that Q(n) = aQ(n) +Q(n+1).

We can apply now Nakayama’s lemma (Theorem 14.3.1 below), and get Q(n) = Q(n+1).

Therefore QnRQ = Qn+1RQ. We apply Nakayama’s lemma again, and we conclude that
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QnRQ = (0). So every element of the maximal ideal QRQ of RQ is nilpotent, which implies

that htQRQ = 0.

We recall here the statement of Nakayama’s lemma.

Theorem 14.3.1. Let I ⊂ R be an ideal contained in the Jacobson radical of R (the in-

tersection of the maximal ideals). Let M be a finitely generated R-module, let N ⊂ M be a

submodule.

If M = N + IM , then M = N .

We have applied Nakayama’s lemma the first time in the situation where R is a local

ring and I = (a) ⊂ M, which is the Jacobson radical of R. The R-module M is Q(n) and

its submodule N is Q(n+1). The second time, we are instead in the situation where the ring

is RQ, I = QRQ, the module M is QnRQ and N is (0).

To conclude the proof of the theorem, we observe that the second assertion follows from

the first one, because if P is a prime ideal of height zero, all its elements are zero-divisors.

Indeed, let r ∈ P , r 6= 0; we can find an element t 6∈ P belonging to the intersection ∩iPi
of the prime ideals of height zero different from P (there is a finite number of such ideals

because R is noetherian). Otherwise P ⊂ ∩iPi, but this would imply P ⊂ Pi for some i.

Now observe that rt belongs to the intersection of all minimal prime ideals of R, so rt is

nilpotent: there exists α ≥ 0 such that (rt)α = 0. Since t 6∈ P , it is not nilpotent, so tα 6= 0.

Hence there is a minimum β ≥ 0 such that rβtα 6= 0 but rβ+1tα = r(rβtα) = 0. This proves

that r is a zero-divisor. �

Exercises 14.3.2. 1. Let X ⊂ P2 be the union of three points not lying on a line. Prove

that the homogeneous ideal of X cannot be generated by two polynomials.
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Chapter 15

Complete varieties

We work over an algebraically closed field K.

In this chapter, we will prove that the algebra of regular functions O(X) of an irreducible

projective variety X is the base field K, i.e. that the only regular functions on X are the

constants. We will obtain this theorem as a consequence of the theorem of completeness of

projective varieties. The property of a variety to be complete can be seen as an analogue of

compactness in the context of algebraic geometry.

15.1 Complete varieties

Definition 15.1.1. Let X be a quasi–projective variety. X is complete if, for any quasi–

projective variety Y , the natural projection on the second factor p2 : X ×Y → Y is a closed

map.

Note that both projections p1, p2 are morphisms: see Exercise 3, Chapter 14.

We recall that a topological space X is compact if and only if the above projection map is

closed with respect to the product topology. Here the product variety X ×Y does not carry

the product topology but the Zariski topology, that is in general strictly finer (Proposition

2.4.1).

Example 15.1.2. The affine line A1 is not complete: let X = Y = A1, p2 : A1 × A1 =

A2 → A1 is the map such that (x1, x2) → x2. Then Z := V (x1x2 − 1) is closed in A2 but

p2(Z) = A1 \ {O} is not closed.

Proposition 15.1.3. (i) If f : X → Y is a regular map and X is complete, then f(X) is a

closed complete subvariety of Y .
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(ii) If X is complete, then all closed subvarieties of X are complete.

Proof. (i) Let Γf ⊂ X × Y be the graph of f : Γf = {(x, f(x)) | x ∈ X}. It is clear that

f(X) = p2(Γf ), so to prove that f(X) is closed it is enough to check that Γf is closed in

X × Y . Let us consider the diagonal of Y : ∆Y = {(y, y) | y ∈ Y } ⊂ Y × Y . If Y ⊂ Pn,

then ∆Y = ∆Pn ∩ (Y × Y ), so it is closed in Y × Y , because ∆Pn is the closed subset

defined in Σn,n by the equations wij − wji = 0, i, j = 0, . . . , n. There is a natural map

f × 1Y : X × Y → Y × Y , (x, y)→ (f(x), y), such that (f × 1Y )−1(∆Y ) = Γf . It is easy to

see that f × 1Y is regular, so Γf is closed, so also f(X) is closed.

Let now Z be any variety and consider p2 : f(X)×Z → Z and the regular map f × 1Z :

X × Z → f(X)× Z. There is a commutative diagram:

X × Z
p′2−→ Z

↓ f×1Z ↗ p2

f(X)× Z

If T ⊂ f(X) × Z, then (f × 1Z)−1(T ) is closed and p2(T ) = p′2((f × 1Z)−1(T )) is closed

because X is complete. We conclude that f(X) is complete.

(ii) Let T ⊂ X be a closed subvariety and Y be any variety. We have to prove that

p2 : T × Y → Y is closed. If Z ⊂ T × Y is closed, then Z is closed also in X × Y , hence

p2(Z) is closed because X is complete. �

Corollary 15.1.4. 1. If X is a complete variety, then O(X) ' K.

2. If X is an affine complete irreducible variety, then X is a point.

Proof. 1. If f ∈ O(X), f can be interpreted as a regular map f : X → A1. By Proposition

15.1.3, (i), f(X) is a closed complete subvariety of A1, which is not complete. Hence f(X)

has dimension < 1 and is irreducible, hence it is a point, so f ∈ K.

2. By part 1., O(X) ' K. But O(X) ' K[x1, . . . , xn]/I(X), hence I(X) is maximal. By

the Nullstellensatz, X is a point. �

15.2 Completeness of projective varieties

Before stating Theorem 15.2.2 of completeness of projective varieties, we give a character-

ization of the closed subsets of a biprojective space Pn × Pm, that will be needed in its

proof. It is expressed in terms of equations in two series of variables, corresponding to the

homogeneous coordinates [x0, . . . , xn] on Pn and [y0, . . . , ym] on Pm.
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Let σ : Pn × Pm → PN be the Segre map. A closed subvariety X in PN is defined by

finitely many equations Fk(w00, . . . , wnm), where the Fk are homogeneous polynomials in the

wij. On the subvariety X ∩ Σ, where Σ is the Segre variety, we have wij = xiyj, so we

can make this substitution in Fk and get equations Gk(x0, . . . , xn; y0, . . . , ym) = 0, where

Gk = Fk(x0y0, . . . , xnym): they are equations characterizing the subset σ−1(X). Note that

each Gk is homogeneous in each set of variables xi and yj, and of the same degree in both.

Conversely, it is easy to see that a polynomial with this property of bihomogeneity can

always be written as a polynomial in the products xiyj, and the possible ambiguity depending

on the choice disappears in view of the equations of the Segre variety. So it describes a subset

of Pn×Pm whose image in σ is closed. However, equations that are bihomogeneous in xi and

yj always define an algebraic closed subvariety of Pn×Pm even if the degrees of homogeneity

in the two sets of variables are different. Indeed if G(x0, . . . , xn; y0, . . . , ym) has degree r in

xi and s in yj, and for instance r > s, then the equation G = 0 is equivalent to the system

of equations yr−si G = 0, i = 0, . . . ,m, and these define an algebraic variety.

We will need the answer to the analogous question also for the product Pn × Am. Let

us assume that Am = U0 ⊂ Pm, defined by y0 6= 0. If we have a closed subset of Pn × Pm

defined by equations Gk(x0, . . . , xn; y0, . . . , ym) = 0, with Gk homogeneous of degree rk in yj,

dividing by yrk0 and setting vj = yj/y0, we get equations gk(x0, . . . , xn; v1, . . . , vm) = 0 that

are homogeneous in the xi and in general non-homogeneous in the vj.

These observations can be collected in the following result.

Theorem 15.2.1. A subset X ⊂ Pn × Pm is a closed algebraic subvariety if and only if it

is defined by a system of equations Gk(x0, . . . , xn; y0 . . . , ym) = 0, homogeneous separately in

each set of variables. Every closed algebraic subvariety of Pn ×Am is defined by a system of

equations gk(x0, . . . , xn; v1, . . . , vm) = 0 that are homogeneous in x0, . . . , xn.

Theorem 15.2.2. Let X ⊂ Pn be a projective irreducible variety over an algebraically closed

field K. Then X is complete.

Proof. (see [S], Theorem 3, Ch.1, §5)

1. It is enough to prove that p2 : Pn × Am → Am is closed, for any positive n,m. This

can be observed by using the local character of closedness and the existence of an affine open

covering of any quasi–projective varieties.

Indeed, let us assume first that p2 : Pn× Y → Y is a closed map for any quasi-projective

variety Y . We observe that X × Y is closed in Pn × Y , because X is closed in Pn. So, if

Z ⊂ X × Y is closed, it is also closed in Pn× Y , which implies that p2(Z) is closed in Y . So

we can replace X with Pn.
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Secondly, since being closed is a local property, it is enough to cover Y by affine open

subsets Ui, and prove the theorem for each of them. Hence we can assume that Y is an affine

variety. Finally, if Y ⊂ Am is closed, then Pn × Y is closed in Pn × Am, so it is enough to

prove the theorem in the particular case X = Pn and Y = Am.

2. If x0, . . . , xn are homogeneous coordinates on Pn and y1, . . . , ym are non-homogeneous

coordinates on Am, then any closed subvariety of Pn×Am can be characterised as the set of

common zeros of a set of polynomials in the variables x0, . . . , xn, y1, . . . , ym, homogeneous in

the first group of variables x0, . . . , xn (Theorem 15.2.1).

3. Let Z ⊂ Pn × Am be closed. Then Z is the set of solutions of a system of equations

{Gi(x0, . . . , xn; y1, . . . , ym) = 0, i = 1, . . . , t,

where Gi is homogeneous in the x’s. A point P (y1, . . . , ym) is in p2(Z) if and only if the

system

{Gi(x0, . . . , xn; y1, . . . , ym) = 0, i = 1, . . . , t,

has a solution in Pn, i.e. if the ideal of K[x0, . . . , xn] generated by G1(x; y),. . . , Gt(x; y) has

at least one zero in Pn. Hence

p2(Z) = {(y1, . . . , ym) ∈ Am| ∀ d ≥ 1 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d}
=
⋂
d≥1{(y1, . . . , ym)| 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d} = ∩d≥1Td, (15.1)

where Td = {(y1, . . . , ym)| 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d}. To conclude the proof

of the theorem it is enough to prove that Td is closed in Am for any d ≥ 1.

Let {Mα}α=1,...,(n+d
d ) be the set of the monomials of degree d in K[x0, . . . , xn]; let di =

deg Gi(x; y), let {Nβ
i }β be the set of the monomials of degree d− di.

Note that P (y1, . . . , ym) 6∈ Td if and only if Mα =
∑

iGi(x; y)Fi,α(x0, . . . , xn), for all α

and for suitable polynomials Fi,α homogeneous of degree d− di. So P 6∈ Td if and only if, for

all index α, Mα is a linear combination of the polynomials {Gi(x; y)Nβ
i }, i.e. the matrix A of

the coordinates of the polynomials Gi(x; y)Nβ
i with respect to the basis {Mα} has maximal

rank
(
n+d
d

)
. So Td is the set of zeros of the minors of a fixed order of the matrix A, hence it

is closed. �

Corollary 15.2.3. Let X be a projective variety. Then O(X) ' K.

Corollary 15.2.4. Let X be a projective variety, let ϕ : X → Y ⊂ Pn be any regular map.

Then ϕ(X) is a projective variety. In particular, if X ' Y , then Y is projective.
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Corollary 15.2.4 says that the notion of projective variety, differently from that of affine

variety, is invariant by isomorphism, i.e. quasi-projective varieties that are isomorphic to

projective varieties are already projective.

In algebraic terms, Theorem 15.2.2 can be seen as a result in Elimination Theory. Indeed

it can be reformulated by saying that, given a system of algebraic equations in two sets

of variables, x0, . . . , xn and y1, . . . , ym, homogeneous in the first ones, it is possible to find

another system of algebraic equations only in y1, . . . , ym, such that ȳ1, . . . , ȳm is a solution of

the second system if and only if there exist x̄0, . . . , x̄n, that, together with ȳ1, . . . , ȳm, are a

solution of the first system. In other words, it is possible to eliminate a set of homogeneous

variables from any system of algebraic equations.

Example 15.2.5. Let S = K[x0, . . . , xn]. Let d ≥ 1 be an integer number and consider Sd,

the vector space of homogeneous polynomials of degree d. As an application of Theorem

15.2.2, we shall prove that the set of (proportionality classes of) reducible polynomials is a

projective algebraic set in P(Sd).

We denote by X ⊂ P(Sd) the set of reducible polynomials. For any integer k, 0 < k < d,

let Xk ⊆ X be the set of polynomials of the form F1F2 with degF1 = k, degF2 = d − k.

Then X =
⋃d−1
k=1Xk. Let fk : P(Sk)×P(Sd−k)→ P(Sd) be the multiplication of polynomials,

i.e. fk([F1], [F2]) = [F1F2] . fk is clearly a regular map, and its image is Xk = Xd−k. Since

the domain is a projective variety, and precisely a Segre variety, it follows from Theorem

15.2.2 that also Xk is projective.

In the special case d = 2, the quadratic polynomials, the equations of X = X1 are the

minors of order 3 of the matrix associated to the quadric.
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Chapter 16

The tangent space and the notion of

smoothness

We will always assume K algebraically closed. In this chapter we follow the approach of

Šafarevič [S]. We define the tangent space TX,P at a point P of an affine variety X ⊂ An as

the union of the lines passing through P and “ touching” X at P . It results to be an affine

subspace of An. Then we will find a “local” characterization of TX,P , this time interpreted

as a vector space, the direction of TX,P , only depending on the local ring OX,P : this will

allow to define the tangent space at a point of any quasi–projective variety.

16.1 Tangent space to an affine variety

Assume first that X ⊂ An is closed and P = O = (0, . . . , 0). Let L be a line through P : if

A(a1, . . . , an) is another point of L, then a general point of L has coordinates (ta1, . . . , tan),

t ∈ K. If I(X) = (F1, . . . , Fm), then the intersection X ∩ L is determined by the following

system of equations in the indeterminate t:

F1(ta1, . . . , tan) = · · · = Fm(ta1, . . . , tan) = 0.

The solutions of this system of equations are the roots of the greatest common divisor G(t) of

the polynomials F1(ta1, . . . , tan), . . . , Fm(ta1, . . . , tan) in K[t], i.e. the generator of the ideal

they generate. We may factorize G(t) as G(t) = cte(t − α1)e1 . . . (t − αs)es , where c ∈ K,

α1, . . . , αs 6= 0, e, e1, . . . , es are non-negative, and e > 0 if and only if P ∈ X ∩ L. The

number e is by definition the intersection multiplicity at P of X and L. If G(t) is

identically zero, then L ⊂ X and the intersection multiplicity is, by definition, +∞.
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Note that the polynomial G(t) doesn’t depend on the choice of the generators F1, . . . , Fm

of I(X), but only on the ideal I(X) and on L.

Definition 16.1.1. The line L is tangent to the variety X at P if the intersection

multiplicity of L and X at P is at least 2 (in particular, if L ⊂ X). The tangent space to

X at P is the union of the lines that are tangent to X at P ; it is denoted TP,X .

We will see now that TP,X is an affine subspace of An. Assume that P ∈ X: then the

polynomials Fi may be written in the form Fi = Li +Gi, where Li is a homogeneous linear

polynomial (possibly zero) and Gi contains only terms of degree ≥ 2. Then

Fi(ta1, . . . , tan) = tLi(a1, . . . , an) +Gi(ta1, . . . , tan),

where the last term is divisible by t2. Let L be the line OA, with A = (a1, . . . , an). We note

that the intersection multiplicity of X and L at P is the maximal power of t dividing the

greatest common divisor, so L is tangent to X at P if and only if Li(a1, . . . , an) = 0 for all

i = 1, . . . ,m.

Therefore the point A belongs to TP,X if and only if

L1(a1, . . . , an) = · · · = Lm(a1, . . . , an) = 0.

This shows that TP,X is a linear subspace of An, whose equations are the linear components

of the equations defining X.

Example 16.1.2. (i) TO,An = An, because I(An) = (0).

(ii) If X is a hypersurface, with I(X) = (F ), we write as above F = L + G; then

TO,X = V (L): so TO,X is either a hyperplane if L 6= 0, or the whole space An if L = 0. For

instance, if X is the affine plane cuspidal cubic V (x3 − y2) ⊂ A2, TO,X = A2.

Assume now that P ∈ X has coordinates (y1, . . . , yn). With an affine transformation

we may translate P to the origin (0, . . . , 0), taking as new coordinates functions on An

x1 − y1, . . . , xn − yn. This corresponds to considering the K-isomorphism K[x1, . . . , xn] −→
K[x1 − y1, . . . , xn − yn], which takes a polynomial F (x1, . . . , xn) to its Taylor expansion

G(x1 − y1, . . . , xn − yn) = F (y1, . . . , yn) + dPF + d
(2)
P F + . . . ,

where d
(i)
P F denotes the ith differential of F at P : it is a homogeneous polynomial of degree

i in the variables x1 − y1, . . . , xn − yn. In particular the linear term is

dPF =
∂F

∂x1

(P )(x1 − y1) + · · ·+ ∂F

∂xn
(P )(xn − yn).
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We get that, if I(X) = (F1, . . . , Fm), then TP,X is the affine subspace of An defined by the

equations

dPF1 = · · · = dPFm = 0.

The affine space An, which may identified with Kn, can be given a natural structure of

K-vector space with origin P , so in a natural way TP,X is a vector subspace (with origin

P ). The functions x1 − y1, . . . , xn − yn form a basis of the dual space (Kn)∗ and their

restrictions generate T ∗P,X . Note moreover that dimTP,X = dimT ∗P,X = k if and only if

n − k is the maximal number of polynomials linearly independent among dPF1, . . . , dPFm.

If dPF1, . . . , dPFn−k are these polynomials, then they form a basis of the orthogonal T⊥P,X of

the vector space TP,X in (Kn)∗, because they vanish on TP,X .

16.2 Zariski tangent space

Let us define now the differential of a regular function. Let f ∈ O(X) be a regular function

on X. We want to define the differential of f at P . Since X is closed in An, f is induced

by a polynomial F ∈ K[x1, . . . , xn] as well as by all polynomials of the form F + G with

G ∈ I(X). Fix P ∈ X: then dP (F +G) = dPF +dPG so the differentials of two polynomials

inducing the same function f on X differ by the term dPG with G ∈ I(X). By definition,

dPG is zero along TP,X , so we may define dpf as a regular function on TP,X , the differential

of f at P : it is the function on TP,X induced by dPF . Since dPF is a linear combination of

x1 − y1, . . . , xn − yn, dpf can also be seen as an element of T ∗P,X , the dual vector space.

There is a natural map dp : O(X) → T ∗P,X , which sends f to dpf . Because of the rules

of derivation, it is clear that dP (f + g) = dPf + dPg and dP (fg) = f(P )dPg + g(P )dPf . In

particular, if c ∈ K, dp(cf) = cdPf . So dp is a linear map of K-vector spaces. We denote

again by dP the restriction of dP to IX(P ), the maximal ideal of the regular functions on X

which are zero at P . Since clearly f = f(P ) + (f − f(P )) then dPf = dP (f − f(P )), so this

restriction doesn’t modify the image of the map.

Proposition 16.2.1. The map dP : IX(P ) → T ∗P,X is surjective and its kernel is IX(P )2.

Therefore T ∗P,X ' IX(P )/IX(P )2 as K-vector spaces.

Proof. Let ϕ ∈ T ∗P,X be a linear form on TP,X . ϕ is the restriction of a linear form on Kn:

λ1(x1 − y1) + . . . + λn(xn − yn), with λ1, . . . , λn ∈ K. Let G be the polynomial of degree 1

λ1(x1− y1) + . . .+λn(xn− yn): the function g induced by G on X is zero at P and coincides

with its own differential, so ϕ = dPg and dP is surjective.
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Let now g ∈ IX(P ) such that dpg = 0, g induced by a polynomial G. Note that dPG may

be interpreted as a linear form on Kn which vanishes on TP,X , hence as an element of T⊥P,X .

So dPG = c1dpF1 + . . . + cmdpFm (c1, . . . , cm suitable elements of K). Let us consider the

polynomial G−c1F1− . . .−cmFm: since its differential at P is zero, it doesn’t have any term

of degree 0 or 1 in x1 − y1, . . . , xn − yn, so it belongs to I(P )2. Since G− c1F1 − . . .− cmFm
defines the function g on X, we conclude that g ∈ IX(P )2. �

Corollary 16.2.2. The tangent space TP,X is isomorphic to (IX(P )/IX(P )2)∗ as an abstract

K-vector space.

Corollary 16.2.3. Let ϕ : X → Y be an isomorphism of affine varieties and P ∈ X,

Q = ϕ(P ). Then the tangent spaces TP,X and TQ,Y are isomorphic.

Proof. ϕ induces the comorphism ϕ∗ : O(Y ) → O(X), which results to be an isomorphism

such that ϕ∗IY (Q) = IX(P ) and ϕ∗IY (Q)2 = IX(P )2. So there is an induced homomorphism

IY (Q)/IY (Q)2 → IX(P )/IX(P )2.

which is an isomorphism of K-vector spaces. By dualizing we get the claim. �

The above map from TP,X to TQ,Y is called the differential of ϕ at P and is denoted by

dPϕ.

Now we would like to find a “more local” characterization of TP,X . To this end we consider

the local ring of P in X: OP,X . We recall the natural map O(X)→ OP,X = O(X)IX(P ), the

last one being the localization. It is natural to extend the map dP : O(X) → T ∗P,X to OP,X
setting

dP

(f
g

)
=
g(P )dPf − f(P )dPg

g(P )2
.

As in the proof of Proposition 16.2.1 one proves that the map dP : OP,X → T ∗P,X induces

an isomorphism MP,X/M2
P,X → T ∗P,X , where MP,X is the maximal ideal of OP,X . So by

duality we have: TP,X ' (MP,X/M2
P,X)∗. This proves that the tangent space TP,X is a local

invariant of P in X.

Definition 16.2.4. Let X be any quasi-projective variety, P ∈ X. The Zariski tangent

space of X at P is the vector space (MP,X/M2
P,X)∗.

It is an abstract vector space, but if X ⊂ An is closed, taking the dual of the comorphism

associated to the inclusion morphism X ↪→ An, we have an embedding of TP,X into TP,An =

An. If X ⊂ Pn and P ∈ Ui = An, then TP,X ⊂ Ui: its projective closure TP,X is called the

embedded tangent space to X at P .
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16.3 Smoothness

As we have seen the tangent space TP,X is invariant by isomorphism. In particular its

dimension is invariant. If X ⊂ An is closed, I(X) = (F1, . . . , Fm), then dimTP,X = n − r,
where r is the dimension of the K-vector space generated by {dPF1, . . . , dpFm}.

Since dPFi = ∂Fi

∂x1
(P )(x1−y1)+ . . .+ ∂Fi

∂xn
(P )(xn−yn), r is the rank of the following m×n

matrix, the Jacobian matrix of X at P :

J(P ) =


∂F1

∂x1
(P ) . . . ∂F1

∂xn
(P )

. . . . . . . . .
∂Fm

∂x1
(P ) . . . ∂Fm

∂xn
(P )

 .

The generic Jacobian matrix of X is instead the following matrix with entries in O(X)

(the entries are the functions on X induced by the partial derivatives of the polynomials Fi):

J =


∂f1
∂x1

. . . ∂f1
∂xn

. . . . . . . . .
∂fm
∂x1

. . . ∂fm
∂xn

 .

The rank of J is ρ when all minors of order ρ + 1 are functions identically zero on X,

while at least one minor of order ρ is different from zero at some point. Hence, for all P ∈ X
rk J(P ) ≤ ρ, and rk J(P ) < ρ if and only if all minors of order ρ of J vanish at P . It

is then clear that there is a non-empty open subset of X where dimTP,X is minimal, equal

to n − ρ, and a proper (possibly empty) closed subset formed by the points P such that

dimTP,X > n− ρ.

Definition 16.3.1. The points of an irreducible variety X for which dimTP,X = n− ρ (the

minimal) are called smooth or non-singular (or simple) points of X. The remaining points

are called singular (or multiple). X is a smooth variety if all its points are smooth.

If X is quasi-projective, the same argument may be repeated for any affine open subset.

Example 16.3.2. Let X ⊂ An be the irreducible hypersurface V (F ), with F irreducible

generator of I(X). Then J = ( ∂F
∂x1

. . . ∂F
∂xn

) is a row matrix. So rk J = 0 or 1. If rk

J = 0, then ∂F
∂xi

= 0 in O(X) for all i. So ∂F
∂xi
∈ I(X) = (F ). Since the degree of ∂F

∂xi
is

≤ degF − 1, it follows that ∂F
∂xi

= 0 in the polynomial ring. If the characteristic of K is

zero this means that F is constant: a contradiction. If char K = p, then F ∈ K[xp1, . . . , x
p
n];

since K is algebraically closed, then all coefficients of F are p-th powers, so F = Gp for a

suitable polynomial G; but again this is impossible because F is irreducible. So always rk
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J = 1 = ρ. Hence for P general in X, i.e. for P varying in a suitable non-empty open subset

of X, dimTP,X = n − 1. For some particular points, the singular points of X, we can have

dimTP,X = n, i.e. TP,X = An.

So in the case of a hypersurface dimTP,X ≥ dimX for every point P in X, and equality

holds in the points of the smooth locus of X. The general case can be reduced to the case

of hypersurfaces in view of the following theorem.

Theorem 16.3.3. Every quasi-projective irreducible variety X is birational to a hypersurface

in some affine space.

Proof. We observe that we can reduce the proof to the case in which X is affine, closed in An.

Let m = dimX. We have to prove that the field of rational functions K(X) is isomorphic

to a field of the form K(t1, . . . , tm+1), where t1, . . . , tm+1 satisfy only one non-trivial relation

F (t1, . . . , tm+1) = 0, where F is an irreducible polynomial with coefficients in K. This will

follow from the “Abel’s primitive element Theorem” 16.3.5 concerning extensions of fields.

To state it, we need some preliminaries.

Let K ⊂ L be an extension of fields. Let a ∈ L be algebraic over K, and let fa ∈ K[x]

be its minimal polynomial: it is irreducible and monic. Let E be the splitting field of fa.

Definition 16.3.4. An element a, algebraic over K, is separable if fa does not have any

multiple root in E, i.e. if fa and its derivative f ′a don’t have any common factor of positive

degree. Otherwise a is inseparable. If K ⊂ L is an algebraic extension of fields, it is called

separable if any element of L is separable.

In view of the fact that fa is irreducible in K[x], and that the GCD of two polynomials is

independent of the field where one considers the coefficients, if a is inseparable, then f ′a is the

zero polynomial. If char K = 0, this implies that fa is constant, which is a contradiction. So

in characteristic 0, any algebraic extension is separable. If char K = p > 0, then fa ∈ K[xp],

and fa is called an inseparable polynomial. In particular algebraic inseparable elements can

exist only in positive characteristic.

Theorem 16.3.5 (Abel’s primitive element Theorem.). Let K ⊆ L = K(y1, . . . , ym) be an

algebraic finite extension. If L is a separable extension, then there exists α ∈ L, called a

primitive element of L, such that L = K(α) is a simple extension.

For a proof, see for instance [L], or any textbook on Galois theory.

To prove Theorem 16.3.3 we need also a second ingredient, that I state here without

proof.
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Theorem 16.3.6 (Existence of separating transcendence bases). Let K be an algebraically

closed field and E ⊃ K a finitely generated field extension of K with tr.d.E/K = m. Then

any set of generators of E over K contains a transcendence basis {x1, . . . , xm} such that E

is a separable algebraic extension of K(x1, . . . , xm).

Proof. See for instance [ZS]. �

Proof of Theorem 16.3.3. The field of rational functions ofX is of the formK(X) = Q(K[X]) =

K(t1, . . . , tn), where t1, . . . , tn are the coordinate functions on X and tr.d.K(X)/K = m. By

Theorem 16.3.6, possibly after renumbering them, we can assume that the first m coordinate

functions t1, . . . , tm are algebraically independent over K, and K(X) is a separable algebraic

extension of L := K(t1, . . . , tm). So in our situation we can apply Theorem 16.3.5: there

exists a primitive element α such that K(X) = L(α) = K(t1 . . . , tm, α). Therefore there

exists an irreducible polynomial f ∈ L[x] such that K(X) = L[x]/(f). Multiplying f by a

suitable element of K[t1, . . . , tm], invertible in L, we can eliminate the denominator of f and

replace f by a polynomial g ∈ K[t1, . . . , tm, x] ⊂ L[x]. Now K[t1, . . . , tm, x]/(g) is contained

in L[x]/(g) = K(X), and its quotient field is again K(X). But K[t1, . . . , tm, x]/(g) is the

coordinate ring of the hypersurface Y ⊂ Am+1 of equation g = 0. It is clear that X and

Y are birationally equivalent, because they have the same field of rational functions. This

concludes the proof. �

One can show that the coordinate functions on Y , t1, . . . , tm+1, can be chosen to be linear

combinations of the original coordinate functions on X: this means that Y is obtained as a

suitable birational projection of X.

Theorem 16.3.7. The dimension of the tangent space at a non-singular point of an irre-

ducible variety X is equal to dimX.

Proof. It is enough to prove the claim under the assumption that X is affine. Let Y be an

affine hypersurface birational to X (which exists by the previous theorem) and ϕ : X 99K Y

be a birational map. There exist open non-empty subsets U ⊂ X and V ⊂ Y such that

ϕ : U → V is an isomorphism. The set of smooth points of Y is an open subset W of Y

such that W ∩ V is non-empty and dimTP,Y = dimY = dimX for all P ∈ W ∩ V . But

ϕ−1(W ∩ V ) ⊂ U is open non-empty and dimTQ,X = dimX for all Q ∈ ϕ−1(W ∩ V ). This

proves the theorem. �

We will denote by Xsing the closed set, possibly empty, of singular points of X, and by

Xsm the smooth locus of X, i.e. the open non empty subset of its smooth points.
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Corollary 16.3.8. The singular points of an affine variety X closed in An with dimX = m,

are the points P of X where the Jacobian matrix J(P ) has rank strictly less than n−m.

To find the singular points of a projective variety, it is useful to remember the following

Euler relation for homogeneous polynomials.

Proposition 16.3.9 (Euler’s formula). Let F (x0, . . . , xn) be a homogeneous polynomial of

degree d. Then dF = x0Fx0 + · · · + xnFxn, where, for every i = 0, . . . , n, Fxi denotes the

(formal) partial derivative of F with respect to xi.

Proof. Since d = degF , we have F (tx0, . . . , txn) = tdF (x0, . . . , xn). To get the desired

formula it is enough to derive with respect to t and then put t = 1. �

Let now X ⊂ Pn be a hypersurface with Ih(X) = 〈F (x0, . . . , xn)〉, degF = d.

Proposition 16.3.10. Let K be a field of characteristic p; assume that p = 0 or d does not

divide p. Then the singular points of X are the common zeros of the partial derivatives of

F , i.e. Xsing = VP (Fx0 , . . . , Fxn).

Proof. We denote by f(x1, . . . , xn) the dehomogenized aF = F (1, x1, . . . , xn) of F with

respect to x0. We observe that, for i = 1, . . . , n, a(Fxi) = fxi , and that aFx0 = df − x1fx1 −
· · · − xnfxn , in view of Proposition 16.3.9. So, if P ∈ U0, f(P ) = fx1(P ) = · · · = fxn(P ) = 0

if and only if Fx0(P ) = · · · = Fxn(P ) = 0. �

Therefore, to look for the singular points of an affine hypersurface X, one has to consider

the system of equations defined by the equation of X and its partial derivatives, whereas

in the projective case it is enough to consider the system of the partial derivatives, be-

cause Euler’s relation garantees that by consequence also the equation of the hypersurface

is satisfied.

For an affine variety X of higher codimension n − m, one has to impose the vanishing

of the equations of X and of the minors of order n − m of the Jacobian matrix. In the

projective case, using again Euler’s relation, one can check that the singular points are

those that annihilate the homogeneous polynomials F1, . . . , Fr generating Ih(X) and also

the minors of order n−m of the homogeneous r × (n+ 1) Jacobian matrix (∂Fi/∂xj)ij.

Euler formula is useful also to write the equations of the embedded tangent space TP,X
to a projective variety X at a point P . Assume first that X ⊂ Pn is a hypersurface VP (F ),

F ∈ K[x0, . . . , xn]. Assume that P ∈ U0, and use non-homogeneous coordinates ui = xi/x0

on U0, so that X ∩ U0 is the zero locus of aF = F (1, u1, . . . , un) =: f(u1, . . . , un). If P
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has non-homogeneous coordinates a1, . . . , an, the affine tangent space TP,X∩U0 has equation∑n
i=1

∂f
∂ui

(P )(ui − ai) = 0. By definition TP,X is its projective closure, so it is

TP,X = {[x0 . . . , xn] |
n∑
i=1

∂F

∂xi
(1, a1, . . . , an)(xi − aix0) = 0}.

From Euler formula, using that F (1, a1, . . . , an) = 0, we get that

n∑
i=1

∂F

∂xi
(1, a1, . . . , an)(−aix0) =

∂F

∂x0

(1, a1, . . . , an)x0.

We conclude that TP,X is defined by the equation
∑n

i=0
∂F
∂xi

(P )xi = 0.

If X is the projective variety with ideal Ih(X) = (F1, . . . , Fr), then, repeating the previous

argument, we get that its tangent space is defined by the linear polynomials
∑n

i=0
∂Fk

∂xi
(P )xi,

for k = 1, . . . , r.

We note that the affine tangent space, when X is affine, or the embedded tangent space,

when X is projective, to X at P is the intersection of the tangent spaces to the hypersurfaces

containing X.

Now we would like to study a variety X in a neighbourhood of a smooth point. We

have seen that P is smooth for X if and only if dimTP,X = dimX. Assume X affine: in

this case the local ring of P in X is OP,X ' O(X)IX(P ). But by Theorem 7.2.4, we have:

dimOP,X = htMP,X = htIX(P ) = dimO(X) = dimX and dimTP,X = dimKMP,X/M2
P,X .

Therefore P is smooth if and only if

dimKMP,X/M2
P,X = dimOP,X

(the first one is a dimension as K-vector space, the second one is a Krull dimension). By

Nakayama’s Lemma (Theorem 14.3.1) a basis of MP,X/M2
P,X corresponds bijectively to a

minimal system of generators of the ideal MP,X . Indeed, since the residue field of OP,X is

isomorphic to K, we can interpret any scalar in K as an element [a]MP,X
∈ OP,X/MP,X ' K,

and the product giving the structure of K-vector space toMP,X/M2
P,X operates as follows:

[a]MP,X
[m]M2

P,X
= [am]M2

P,X
(the definition is well posed). Now, given elements f1, . . . , fr ∈

MP,X , we call α = 〈f1, . . . , fr〉 the ideal they generate. We apply Nakayama’s Lemma

with notations as in Theorem 14.3.1, where the module M is the maximal ideal MP,X , its

submodule N is the ideal α, and the ideal I is again MP,X . We get MP,X = α.

Therefore P is smooth for X if and only if MP,X is minimally generated by r elements,

where r = dimOP,X , in other words if and only if OP,X is a regular local ring.
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For example, if X is a curve, P is smooth if and only if TP,X has dimension 1, i.e. MP,X

is principal: MP,X = (t).

Observe that the set of common zeros of the functions inMP,X is precisely the point P .

The fact that MP,X is principal generated by t means that P is defined in X by the only

equation t = 0 in a suitable neighborhood of P . This is called a local equation of P . If P is

a singular point, then the minimal number of generators of MP,X is bigger than one, equal

to the dimension of the tangent space TP,X . So to define P we need more than one local

equation.

Let P be a smooth point of X and dimX = n. Functions u1, . . . , un ∈ OP,X are called

local parameters at P if u1, . . . , un ∈ MP,X and their residues ū1, . . . , ūn in MP,X/M2
P,X

(= T ∗P,X) form a basis, or equivalently if u1, . . . , un is a minimal set of generators of MP,X .

Recalling the isomorphism

dP :MP,X/M2
P,X → T ∗P,X

we deduce that u1, . . . , un are local parameters if and only if dP ū1, . . . , dP ūn are linearly

independent linear forms on TP,X (which is a vector space of dimension n), if and only if the

system of linear equations on TP,X

dP ū1 = . . . = dP ūn = 0

has only the trivial solution P (which is the origin of the vector space TP,X).

Let u1, . . . , un be local parameters at P . There exists an open affine neighborhood of P

on which u1, . . . , un are all regular. We replace X by this neighborhood, so we assume that

X is affine and that u1, . . . , un are polynomial functions on X. Let Xi be the closed subset

V (ui) of X: it has codimension 1 in X, because ui is not identically zero on X (u1, . . . , un

is a minimal set of generators of MP,X).

Proposition 16.3.11. In this notation, P is a smooth point of Xi, for all i = 1, . . . , n, and⋂
i TP,Xi

= {P}.

Proof. Assume that Ui is a polynomial inducing ui, then Xi = V (Ui)∩X = V (I(X) + (Ui)).

So I(Xi) ⊃ I(X) + (Ui). By considering the linear parts of the polynomials of the previous

ideal, we get: TP,Xi
⊂ TP,X ∩ V (dPUi). By the assumption on the ui, it follows that TP,X ∩

V (dPU1)∩ · · · ∩V (dPUn) = {P}. Since dimTP,X = n, we can deduce that TP,X ∩V (dPUi) is

strictly contained in TP,X , and dimTP,X ∩ V (dPUi) = n− 1. So dimTP,Xi
≤ n− 1 = dimXi,

hence P is a smooth point on Xi, equality holds and TP,Xi
= TP,X ∩ V (dPUi). Moreover⋂

TP,Xi
= {P}. �
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Note that
⋂
iXi has no positive-dimensional component Y passing through P : otherwise

the tangent space to Y at P would be contained in TP,Xi
for all i, against the fact that⋂

TP,Xi
= {P}.

Definition 16.3.12. Let X be a smooth variety. Subvarieties Y1, . . . , Yr of X are called

transversal at P , with P ∈
⋂
Yi, if the intersection of the tangent spaces TP,Yi has dimension

as small as possible, i.e. if codimTP,X
(
⋂
TP,Yi) =

∑
codimXYi.

Taking TP,X as ambient variety, one gets the relation:

dim
⋂

TP,Yi ≥
∑

dimTP,Yi − (r − 1) dimTP,X ;

hence

codimTP,X
(
⋂

TP,Yi) = dimTP,X − dim
⋂

TP,Yi ≤
∑

(dimTP,X − dimTP,Yi) =

=
∑

codimTP,X
(TP,Yi) ≤

∑
codimXYi.

If equality holds, P is a smooth point for Yi for all i, moreover we get that P is a smooth

point for the set
⋂
Yi.

For example, if X is a surface and P ∈ X is smooth, there is a neighbourhood U of

P such that P is the transversal intersection of two curves in U , corresponding to local

parameters u1, u2. If P is singular we need three functions u1, u2, u3 to generate the maximal

ideal MP,X .

16.4 Tangent cone

To conclude this chapter I want to mention the tangent cone to a variety X at a point P.

To introduce it we consider first the case where X is a closed affine variety X ⊂ An and

P = O(0, . . . , 0). The tangent cone to X at O, TCO,X , is the union of the lines through

O which are “limit positions” of secant lines to X. To formalize this idea, we consider in

An+1 = An × A1 the closed set X̃ of pairs (a, t), with a = (a1, . . . , an) ∈ An and t ∈ A1,

such that at ∈ X. Let ϕ : X̃ → A1, ψ : X̃ → An be the projections. If X 6= An, X̃ results

to be reducible: X̃ = X̃1 ∪ X̃2, where X̃2 = {(a, 0) | a ∈ An} ' An, X̃1 = ϕ−1(A1 \ 0). We

consider the restrictions ϕ1, ψ1 of the projections to X̃1. ψ1(X̃1) results to be the closure

of the union of the secant lines of X through O. The tangent cone TCO,X is by definition

ψ1(ϕ−1
1 (0)).

Let us write the equations of TCO,X . We note first that the equations of X̃ are of the

form F (a1t, . . . , ant) = 0 where F ∈ I(X). Write F as sum of its homogeneous components
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F = Fk + · · · + Fd, where Fk is the non-zero component of minimal degree, and k ≥ 1

because O ∈ X. Then F (at) = tkFk(a) + · · ·+ tdFd(a). The equation of the component X̃2

inside X̃ is t = 0. The equations of the tangent cone are Fk = 0 for all F ∈ I(X), they

are given by the initial forms of the polynomials of I(X), i.e. the non-zero homogeneous

components of minimal degree. Since all equations are homogeneous, it is clear that we get

a cone. Moreover TCO,X ⊆ TO,X , and equality holds if and only if O is a smooth point of X.

As in the case of the tangent space, we can extend the definition to any point, by transla-

tion, and then find a characterization that allows to prove that the tangent cone is invariant

by isomorphism.

In the particular case n = 2, with X a curve defined by the equation F (x, y) = 0, the

tangent cone at O is defined by the vanishing of the initial form Fk(x, y). Being a homo-

geneous polynomial in two variables, it factorizes as a product of k linear forms (counting

multiplicities), defining k lines: the tangent lines to X at O.

For instance, in the case of the cuspidal cubic V (x3 − y2) the tangent cone at the origin

has equation y2 = 0: it is the line y = 0 “counted with multiplicity 2. If X is the cubic of

equation x2 − y2 + x3 = 0, the tangent cone consists in the two distinct lines x− y = 0 and

x+ y = 0: the cubic is nodal.

The tangent cone allows to define the multiplicity of a point on X and to start an analysis

of the singularities.

Exercises 16.4.1. 1. Assume char K 6= 2. Find the singular points of the following surfaces

in A3:

1. xy2 = z3;

2. x2 + y2 = z2;

3. xy + x3 + y3 = 0.

2. Suppose that char K 6= 3. Determine the singular locus of the projective variety in

P5 given by the equations:
5∑
i=0

xi = 0,
5∑
i=0

x3
i = 0.
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Chapter 17

Finite morphisms and blow–ups

In this section we will see the notion of finite morphism, and a fundamental example of a

morphism which is not finite: the blow-up of a variety at a point, or, more in general, along

a subvariety. The blow-up is the main ingredient in the resolution of singularities of an

algebraic variety. As usual we will assume that K is algebraically closed.

17.1 Finite morphisms

First of all we will give an interpretation in geometric terms of the notions of integral elements

and integral extensions introduced and studied in Chapters 4 and 8.

Let f : X → Y be a dominant morphism of affine varieties, i.e. we assume that f(X) is

dense in Y . Then the comorphism f ∗ : K[Y ] → K[X] is injective (by Exercise 4, Chapter

12): we will often identify K[Y ] with its image f ∗K[Y ] ⊂ K[X].

Definition 17.1.1. f is a finite morphism if K[X] is an integral extension of K[Y ].

This means that, for any regular function ϕ on X, there is a relation of integral depen-

dence

ϕr + f ∗(g1)ϕr−1 + · · ·+ f ∗(gr) = 0 (17.1)

with g1, . . . , gr ∈ K[Y ]. Finite morphisms enjoy the following properties.

Proposition 17.1.2. 1. The composition of finite morphisms is a finite morphism.

2. Let f : X → Y be a finite morphism of affine varieties. Then, for any y ∈ Y , f−1(y)

is a finite set.

3. Finite morphisms are surjective, i.e. f−1(y) is non-empty for any y ∈ Y .
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4. Finite morphisms are closed maps.

Proof. 1. It follows from the transitivity of integral dependence, Corollary 4.0.3.

2. Let X be a closed subset of An, so K[X] is generated by the coordinate functions

t1, . . . , tn. Let y ∈ Y . We want to prove that any coordinate function ti takes only

a finite number of values on the set f−1(y). For the function ti there is a relation of

integral dependence of type (17.1): tri + f ∗(g1)tr−1
i + · · · + f ∗(gr) = 0 ∈ K[X] with

g1, . . . , gr ∈ K[Y ]. We apply this relation to x ∈ f−1(y) and we get tri (x)+g1(y)tr−1
i (x)+

· · · + gr(y) = 0. This means that the i-th coordinate of any point in f−1(y) has to

satisfy a (monic) equation of degree r, so there are only finitely many possibilities for

this coordinate. This proves what we want.

3. This is a consequence of the property of Lying over - LO (Section 8.1). Let y =

(y1, . . . , ym) ∈ Y ⊂ Am, let u1, . . . , um be the coordinate functions on Y . A point x ∈ X
belongs to f−1(y) if and only if ui(f(x)) = f ∗(ui)(x) = yi for any i, or equivalently if

and only if the function f ∗(ui) − yi vanishes on x, i.e. it belongs to the ideal IX(x).

In view of the relative version of the Nullstellensatz (Proposition 9.1.5), the condition

f−1(y) = ∅ is therefore equivalent to the fact that the ideal generated by f ∗(u1) −
y1, . . . , f

∗(um) − ym in K[X] is the entire ring K[X], in particular it is not contained

in any maximal ideal. Consider now the maximal ideal IY (y) of regular functions on

Y vanishing in y, it is generated by u1 − y1, . . . , um − ym. But, from the Lying over

applied to the integral extension f ∗K[Y ] ⊂ K[X], it follows that there is a prime ideal

P of K[X] over f ∗(IY (y)), which is generated by f ∗(u1) − y1, . . . , f
∗(um) − ym. This

implies that f−1(y) 6= ∅.

4. Let f : X → Y be a finite morphism and Z ⊂ X an irreducible closed subset. We

consider the restriction of f to Z, i.e. f̄ : Z → f(Z). We observe that, via the

comorphism f̄ ∗ : K[f(Z)] → K[Z], K[Z] ' K[X]/IX(Z) is an integral extension of

K[f(Z)], because it is enough to reduce modulo IX(Z) the integral equations of the

elements of K[X]. So, applying (3) to the finite morphism f̄ , we conclude that f̄ is

surjective, i.e. f(Z) = f(Z).

�

An example of non-finite morphism is the projection V (xy − 1) → A1. Instead the

projection p2 : V (y − x2)→ A1 is finite.
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Theorem 17.1.3 (Geometric interpretation of the Normalization Lemma). Let X ⊂ An be

an affine irreducible variety of dimension d. Then there exists a finite morphism X → Ad.

Moreover the morphism can be taken to be a projection.

Proof. The coordinate ring of X is an integral K-algebra, finitely generated by the coordi-

nate functions, whose quotient field has transcendence degree d over K. The Normalization

Lemma (Theorem 4.0.4) then asserts that there exist elements z1, . . . , zd algebraically inde-

pendent over K, such that K[X] is an integral extension of the K-algebra B = K[z1, . . . , zd].

But B is the coordinate ring of Ad and the inclusion B ↪→ K[X] can be seen as the comor-

phism of a finite morphism f : X → Ad. The proof of Normalization Lemma shows that

z1, . . . , zd can be chosen linear combinations of the generators of K[X]. In this case, f results

to be a projection. �

One can prove that being a finite morphism is a local property, in the following sense: let

f : X → Y be a morphism of affine varieties. Then f is finite if and only if any y ∈ Y has an

affine open neighbourhood V , such that U := f−1(V ) is affine, and the restriction f |: U → V

is a finite morphism. This property allows to give the definition of finite morphism between

arbitrary varieties, as a morphism which is finite when restricted to the open subsets of an

affine open covering. See [S] for more details and consequences.

For instance one can obtain the following non-trivial facts, that I quote here only for

information.

Example 17.1.4. 1. Let X ⊂ Pn be a closed algebraic set, let Λ ⊂ Pn be a linear subspace

of dimension d such that X ∩Λ = ∅. Then the restriction of the projection πΛ : X → Pn−d−1

defines a finite morphism from X to πΛ(X).

2. Let X ⊂ Pn be a closed algebraic set and F0, . . . , Fr be homogeneous polynomials of the

same degree d without any common zero on X. Then ϕ : X → Pr defined by the polynomials

F0, . . . , Fr is a finite morphism to the image.

For a proof of the first property, see [S]. To prove the second one, we observe that ϕ is

the composition of the Veronese morphism vn,d with a projection. The conclusion follows

from part 1., remembering that vn,d is an isomorphism (Section 10.6). The upshot is that,

if ϕ is defined by the same homogeneous polynomials on the whole X, then it is a finite

morphism; in particular all the fibres are finite.
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17.2 Blow-up

We will define now the blow-up (or blowing-up) of an affine space at the origin O(0, . . . , 0).

It is a variety X with a morphism σ : X → An which results to be birational and not finite.

The idea is that X is obtained from An by replacing the point O with a Pn−1, which can be

interpreted as P(TO,An), the set of the tangent directions to An at O.

To construct X we first consider the product An×Pn−1, which is a quasi-projective variety

via the Segre map. Let x1, . . . , xn be the coordinates of An, and y1, . . . , yn the homogeneous

coordinates of Pn−1. We recall that the closed subsets of An×Pn−1 are zeros of polynomials

in the two series of variables, which are homogeneous in y1, . . . , yn.

Definition 17.2.1. Let X be the closed subset of An × Pn−1 defined by the system of

equations {
xiyj = xjyi, i, j = 1, . . . , n. (17.2)

The blow-up of An at O is the variety X together with the map σ : X → An defined by

restricting the first projection of An × Pn−1. O is also called the centre of the blow-up.

The equations (17.2) express that y1, . . . , yn are proportional to x1, . . . , xn. Let us see

what this means. Let P ∈ An be a point, we consider σ−1(P ). We distinguish two cases:

1) If P 6= O, then σ−1(P ) consists of a single point and precisely, if P = (a1, . . . , an),

σ−1(P ) is the pair ((a1, . . . , an), [a1, . . . , an]).

2) If P = O, then σ−1(O) = {O} × Pn−1 ' Pn−1, because if x1 = · · · = xn = 0 there are

no restrictions on y1 . . . , yn. It is a standard notation to denote σ−1(O) by E. It is called

the exceptional divisor of the blow-up.

It is easy to check that σ gives an isomorphism between X \σ−1(O) and An\{O}. Indeed

both σ and σ−1 so restricted are regular.

The points of σ−1(O) are in bijection with the set of lines through O in An. Indeed if L is

a line through O, it can be parametrized by {xi = ait, t ∈ K, with (a1, . . . , an) 6= (0, . . . , 0).

Then σ−1(L \O) is parametrized byxi = ait

yi = ait, t 6= 0,
(17.3)

or, which is the same, by xi = ait

yi = ai, t 6= 0.
(17.4)
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If we add also t = 0, we find the closure L′ = σ−1(L \O), it is a line meeting σ−1(O) at the

point O × [a1, . . . , an]: L′ can be interpreted as the line L “lifted at the level [a1, . . . , an]”.

So we have a bijection associating to the line L passing through O the point σ−1(L \O) ∩
σ−1(O) = L′ ∩ E.

Figure 17.1: Blow-up of the plane

Finally we note that X is irreducible: indeed X = (X \ E) ∪ E; X \ E is isomorphic to

An \ O, so it is irreducible; moreover every point of E belongs to a line L′, the closure of

σ−1(L \O) ⊂ X \ E. Hence X \ E is dense in X, which implies that X is irreducible.

Therefore X is birational to An: they are both irreducible and contain the isomorphic

open subsets X \ σ−1(O) and An \O. In particular dimX = n, and σ−1(O) = E ' Pn−1 has

codimension 1 in X. The tangent space TO,An coincides with An = Kn, and the set of the

lines through O can be interpreted as the projective space P(TO,An). So there is a bijection

between the exceptional divisor E and P(TO,An).

Figure 17.2, taken from the book [S], illustrates the case of the plane.

If we consider the second projection p2 : X → Pn−1, for any [a] = [a1, . . . , an] ∈ Pn−1,

p−1
2 [a] is the line L′ of (17.4). X with the map p2 is an example of non-trivial line bundle,

called the universal bundle over Pn−1.

If Y is a closed subvariety of An passing through O, it is clear that σ−1(Y ) contains the
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exceptional divisor E = σ−1(O). It is called the total trasform of Y in the blow-up. We define

the strict or proper transform of Y in the blow-up of An as the closure Ỹ := σ−1(Y \O).

It is interesting to consider the intersection Ỹ ∩ E, it depends on the behaviour of Y in a

neighborhood of O, and allows to analyse its singularities at O.

Example 17.2.2.

1. Let Y ⊂ A2 be the plane cubic curve of equation y2−x2 = x3. The origin is a singular

point of Y , with multiplicity 2, and the tangent cone TCO,Y is the union of the two lines of

equations x − y = 0, x + y = 0, respectively. We consider the blow-up X ⊂ A2 × P1 of A2

with centre O. Using coordinates t0, t1 in P1, X is defined by the unique equation xt1 = t0y.

Then σ−1(Y ) is defined by the systemy2 − x2 = x3

xt1 = t0y

As usual P1 is covered by the two open subsets U0 : t0 6= 0 and U1 : t1 6= 0, so A2 × P1 =

(A2 × U0) ∪ (A2 × U1), the union of two copies of A3, and we can study X considering its

intersection X0, X1 with each of them. If t0 6= 0, we use t = t1/t0 as affine coordinate;

if t1 6= 0 we use u = t0/t1. X0 has equation y = tx and X1 has equation x = uy. For

σ−1(Y )∩X0 we get the equations y2−x2−x3 = 0 and y = tx in A3 with coordinates x, y, t.

Substituting we get t2x2 − x2 − x3 = x2(t2 − 1− x) = 0. So there are two components: one

is defined by x = y = 0, which is E ∩ X0; the other is defined by

x = t2 − 1

y = t(t2 − 1)
, it is

Ỹ ∩X0. Note that it meets E at the two points P (0, 0, 1), Q(0, 0,−1). They correspond on

E to the two tangent lines to Y at O: y − x = 0 and x+ y = 0.

If we work on the other open set A2 × U1, σ−1(Y ) is defined by x = uy and y2 − u2y2 −

u3y3 = y2(1 − u2 − u3y) = 0. So Ỹ ∩ X1 is defined by

x = uy

1− u2 − u3y = 0
. We find the

same two points of intersection with E: (0, 0, 1), (0, 0,−1).

The restriction of the projection σ : Ỹ → Y is an isomorphism outside the points P,Q on

Ỹ and O on Y . The result is that the two branches of the singularity O have been separated,

and the singularity has been resolved.

2. Let Y ⊂ A2 be the cuspidal cubic curve of equation y2 − x3 = 0. The total transform

132



is defined by y2 − x3 = 0

xt1 = t0y.

On the first open subset it becomes y2 − x3 = 0 together with y = tx; replacing and

simplifying t, which corresponds to E, we get the equations for Ỹ :x = t2

y = t3
.

This is the affine skew cubic, that meets E at the unique point (0, 0, 0), corresponding to

the tangent line to Y at O: y = 0. By the way, we can check that E is the tangent line to

Ỹ at (0, 0, 0). On the second open subset, we have the equations y2 − x3 = 0 together with

x = uy; the strict transform is defined by 1 − u3y = 0 and x = uy. There is no point of

intersection with E in this affine chart. The map σ : Ỹ → Y is therefore regular, birational,

bijective, but not biregular; Y and Ỹ cannot be isomorphic, because one is smooth and the

other is not smooth.

3. Let Y = V (x2 − x4 − y4) ⊂ A2. O is a singular point of multiplicity 2 with tangent

cone the line x = 0 counted twice. Let Ỹ be the strict transform of Y in the blow-up of

the plane in the origin. Proceeding as in the previous example we find that Ỹ meets the

exceptional divisor E = O × P1 at the point O′ = ((0, 0), [0, 1]), which belongs only to the

second open subset A2 × U1. In coordinates x, y, u = t0/t1, Ỹ is defined by the equationsx = uy

u2 − u4y2 − y2 = 0
,

and O′ = (0, 0, 0). We compute the equation of the tangent space TO′,Ỹ , it is x = 0: it is a

2-plane in A3, so Ỹ is singular at O′. The tangent cone TCO′,Ỹ is x = 0, u2 − y2 = 0, the

union of two lines in the tangent plane.

Let us consider a second blow-up σ′, of A3 in O′. It is contained in A3 × P2; using

coordinates z0, z1, z2 in P2, it is defined by

rk

(
x y u

z0 z1 z2

)
< 2.

We first work on the open subset A3 × U0 ' A5; we put z0 = 1 and we work with affine

coordinates x, y, u, z1, z2; the exceptional divisor E ′ is defined by x = y = u = 0, and the
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total transform σ′−1(Ỹ ) of Ỹ by
x = uy

y = z1x

u = z2x

x2(z2
2 − z2

1 − u4z2
1) = 0

.

Replacing x = uy in the second and third equation we get the equivalent system
x = uy

y(1− z1u) = 0

u(1− z2y) = 0

x2(z2
2 − z2

1 − u4z2
1) = 0

.

Combining the factors of the four equations in all possible ways, we find that, on A3 × U0,

σ′−1(Ỹ ) is union of E ′ and of the strict transform Ỹ ′ defined by
x = uy

1− z1u = 0

1− z2y = 0

z2
2 − z2

1 − u4z2
1 = 0

.

The intersection Ỹ ′ ∩ E ′ ∩ (A3 × U0) results to be empty.

We then work on the open subset A3 × U1 ' A5; we put z1 = 1 and we work with affine

coordinates x, y, u, z0, z2. Proceeding as in the first case, we find the equations of the total

transform 
x = uy

y(z0 − u) = 0

u = z2y

y2(z2
2 − 1− z4

2y
4) = 0

.

The strict transform results to be defined by
x = uy

z0 − u = 0

u = z2y

z2
2 − 1− z4

2y
4 = 0

,
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and its intersection with the exceptional divisor x = y = u = 0 is the union of the two

points P,Q of coordinates ((0, 0, 0), [0, 1,±1]) ∈ A3 × P2. Considering the third open subset

A3 × U2 ' A5 one finds the same two points.

In conclusion, we consider the composition of the two blow-ups Ỹ ′
σ′→ Ỹ

σ→ Y , which is

birational. In the first blow-up σ, we pass from Y , with a singularity at the blown-up point

O with one tangent line, to Ỹ with a node in O′, its point of intersection with E. In the

second blow-up σ′, O′ is replaced by two points on the second exceptional divisor E ′. To

verify if Ỹ ′ is smooth, it is enough to check if P,Q are smooth, and this can be checked easily

(taking the differentials at P and Q of the equations of Ỹ ′).

The singularity of Y is called a tacnode. We have just checked that to resolve it two

blow-ups are needed. What allows to distinguish the singularity of the curve of Example 2

from the present example, is the multiplicity of intersection at the point O of the tangent

line at the singular point O with the curve: it is 3 in Example 2 and 4 in Example 3.

The general problem of the resolution of singularities is, given a variety Y , to find a

birational morphism f : Y ′ → Y with Y ′ non-singular. It is possible to prove that, if Y is

a curve, the problem can be solved with a finite sequence of blow-ups. If dimY > 1, the

problem is much more difficult, and is presently completely solved only in characteristic 0

(see for instance [rH], Ch. V, 3).

To conclude this chapter, we will see a different way to introduce the blow-up of An at

O. Let p : An \ O → Pn−1 be the natural projection (a1, . . . , an) → [a1, . . . , an]. Let Γ be

the graph of p, Γ ⊂ (An \O)× Pn−1 ⊂ An × Pn−1. We immediately have that the closure of

Γ in An × Pn−1 is precisely the blow-up X of An at O. This interpretation suggests how to

extend Definition 17.2.1 and define the blow up of a variety X along a subvariety Y .

Suppose that X is an affine variety and I = IX(Y ) ⊂ K[X] is the ideal of a subvariety

Y of X. Suppose that I = (f0, . . . , fr). Let λ be the rational map X 99K Pr defined by

λ = [f0, . . . , fr]. The blow-up of X along Y is the closure of the graph of λ, together with the

projection map to X. Similarly one can define the blow-up of a projective variety along a

subvariety, provided that its ideal is generated by homogeneous polynomials all of the same

degree. For details, see for instance [C].

Exercises 17.2.3. Let Y ⊂ P2 be a smooth plane projective curve of degree d > 1, defined

by the equation f(x, y, z) = 0. Let C(Y ) ⊂ A3 be the affine variety defined by the same

polynomial f : C(Y ) is the affine cone of Y . Let O(0, 0, 0) ∈ A3 be the origin, vertex of

C(Y ). Let σ : X → A3 be the blow-up in O.
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1. Show that C(Y ) has only one singular point, the vertex O;

2. show that C̃(Y ), the strict transform of C(Y ), is nonsingular (cover it with open affine

subsets);

3. let E be the exceptional divisor; show that C̃(Y ) ∩ E is isomorphic to Y .
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Chapter 18

Grassmannians

In this chapter we will see how the antisymmetric tensors play an important role in alge-

braic geometry, providing an ambient space in which naturally embeds the Grassmannian of

subspaces of fixed dimension of a vector space, or, equivalently, of a projective space.

18.1 Exterior powers of a vector space

To define the exterior powers of the vector space V , one proceeds in a way which is similar to

the one used to define its symmetric powers. We define the d-th exterior power ∧dV as the

quotient V ⊗d/Λ, where Λ is generated by the tensors of the form v1⊗· · ·⊗vi⊗· · ·⊗vj⊗· · ·⊗vd,
with vi = vj for some i 6= j. The following notation is used: [v1 ⊗ · · · ⊗ vd] = v1 ∧ · · · ∧ vd.

There is a natural multilinear alternating map V × · · · × V = V d → ∧dV , that enjoys

the universal property. Given a basis B = (e1, . . . , en) of V , a basis of ∧dV is formed by the

tensors ei1 ∧ . . . ∧ eid , with 1 ≤ i1 < . . . < id ≤ n. Therefore dim∧dV =
(
n
d

)
. The exterior

algebra of V is the following direct sum: ∧V = ⊕d≥0 ∧d V = K ⊕ V ⊕ ∧2V ⊕ . . .. To define

an inner product that gives it the structure of algebra we can proceed as follows.

Step 1. Fixed v1, . . . , vp ∈ V , for any d we define f : V d → ∧d+pV posing f(x1, . . . , xd) =

x1∧ . . .∧xd∧v1∧ . . .∧vp. Since f results to be multilinear and alternating, by the universal

property we get a factorization of f through ∧dV , which gives a linear map f̄ : ∧dV → ∧d+pV ,

extending f . For any ω ∈ ∧dV , we denote f̄(ω) by ω ∧ v1 ∧ . . . ∧ vp.
Step 2. Fixed ω ∈ ∧dV , consider the map g : V p → ∧d+pV such that g(y1, . . . , yp) =

ω ∧ y1 ∧ . . . ∧ yp: it is multilinear and alternating, therefore it factorizes through ∧pV and

we get a linear map ḡ : ∧pV → ∧d+pV , extending g. We denote ḡ(σ) := ω ∧ σ.

Step 3. For any d, p ≥ 0 we have got a map ∧ : ∧dV × ∧pV → ∧d+pV , that results to
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be bilinear, and extends to an inner product ∧ : (∧V ) × (∧V ) → ∧V , which gives ∧V the

required structure of algebra. It is a graded algebra, the non-zero homogeneous components

are those of degree from 0 to n = dimV .

Proposition 18.1.1. Let V be a vector space of dimension n.

(i) Vectors v1, . . . , vp ∈ V are linearly dependent if and only if v1 ∧ . . . ∧ vp = 0.

(ii) Let v ∈ V be a non-zero vector, and ω ∈ ∧pV . Then ω ∧ v = 0 if and only if there

exists Φ ∈ ∧p−1V such that ω = Φ ∧ v. In this case we say that v divides ω.

Proof. The proof of (i) is standard. If ω = Φ∧ v, then ω ∧ v = (Φ∧ v)∧ v = Φ∧ (v ∧ v) = 0.

Conversely, if ω ∧ v = 0, v 6= 0, we choose a basis of V , B = (e1, . . . , en) with e1 = v. Write

ω = Σi1<···<ipai1...ipei1 ∧ . . . ∧ eip . Then 0 = ω ∧ e1 = Σi1<···<ip(±)ai1...ipe1 ∧ ei1 ∧ . . . ∧ eip .
If i1 = 1, the corresponding summand does not appear in this sum, so it remains a linear

combination of linearly independent tensors, which implies ai1...ip = 0 every time i1 > 1.

Therefore ω = e1 ∧ Φ for a suitable Φ. �

Proposition 18.1.2. Let ω 6= 0 be an element of ∧pV . Then ω is totally decomposable if

and only if the subspace of V : W = {v ∈ V | v divides ω} has dimension p.

Proof. If ω = x1 ∧ · · · ∧ xp 6= 0, then x1, . . . , xp are linearly independent and belong to

W . So we can extend them to a basis of V adding vectors xp+1, . . . , xn. If v ∈ W , v =

α1x1+· · ·+αnxn, and v divides ω, then ω∧v = 0, i.e. x1∧· · ·∧xp∧(α1x1+· · ·+αnxn) = 0. This

implies αp+1x1∧· · ·∧xp∧xp+1 + · · ·+αnx1∧· · ·∧xp∧xn = 0, therefore αp+1 = · · · = αn = 0,

so v ∈ 〈x1, . . . , xp〉.
Conversely, if (x1, . . . , xp) is a basis of W , we can complete it to a basis of V and write

ω = Σai1...ipxi1 ∧ · · · ∧ xip . But x1 divides ω, so ω ∧ x1 = 0. Replacing ω with its explicit

expression, we obtain that ai1...ip = 0 if 1 /∈ {i1, . . . , ip}. Repeating this argument for

x2, . . . , xp, it remains ω = a1...px1 ∧ · · · ∧ xp. �

With explicit computations, one can prove the following proposition.

Proposition 18.1.3. Let V be a vector space with dimV = n. Let B = (e1, . . . , en) be a

basis of V and v1, . . . , vn be any vectors. Then v1 ∧ · · · ∧ vn = det(A)e1 ∧ · · · ∧ en, where A

is the matrix of the coordinates of the vectors v1, . . . , vn with respect to B.

Corollary 18.1.4. Let v1, . . . , vp ∈ V , with vi = Σaijej, i = 1, . . . , p. Then v1 ∧ · · · ∧ vp =

Σi1<···<ipai1...ipei1 ∧· · ·∧ eip, with ai1...ip = det(Ai1...ip), the determinant of the p×p submatrix

of A containing the columns of indices i1, . . . , ip.
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18.2 The Plücker embedding

We are now ready to introduce the Grassmannian and to give it an interpretation as pro-

jective variety via the Plücker map. Let V be a vector space of dimension n, and r be a

positive integer, 1 ≤ r ≤ n. The Grassmannian G(r, V ) is the set whose elements are the

subspaces of V of dimension r. It is usual also to denote it by G(r, n).

There is a natural bijection between G(r, V ) and the set of the projective subspaces of

P(V ) of dimension r − 1, denoted by G(r − 1,P(V )) or G(r − 1, n − 1). Let W ∈ G(r, V );

if (w1, . . . , wr) and (x1, . . . , xr) are two bases of W , then w1 ∧ · · · ∧ wr = λx1 ∧ · · · ∧ xr,
where λ ∈ K is the determinant of the matrix of the change of basis. Therefore W uniquely

determines an element of ∧rV up to proportionality. This allows to define a map, called the

Plücker map, ψ : G(r, V )→ P(∧rV ), such that ψ(W ) = [w1 ∧ · · · ∧ wr].

Proposition 18.2.1. The Plücker map is injective.

Proof. Assume ψ(W ) = ψ(W ′), where W,W ′ are subspaces of V of dimension r with bases

(x1, . . . , xr) and (y1, . . . , yr). So there exists λ 6= 0 in K such that x1∧· · ·∧xr = λy1∧· · ·∧yr.
This implies x1 ∧ · · · ∧ xr ∧ yi = 0 for any i, so yi is linearly dependent from x1, . . . , xr, so

yi ∈ W . Therefore W ′ ⊂ W . The reverse inclusion is similar. �

In coordinates with respect to the basis of ∧rV {ei1 ∧ . . . ∧ eir , 1 ≤ i1 < . . . < ir ≤ n},
ψ(W ) is given by the minors of maximal order r of the matrix of the coordinates of the

vectors of a basis of W , with respect to e1, . . . , en.

Example 18.2.2.

(i) r = n−1: ∧n−1V has dimension n. It results to be isomorphic to the dual vector space

V ∗, and an explicit isomorphism is obtained associating to e1∧· · ·∧êk∧· · ·∧en the linear form

e∗k of the dual basis. In this case the Plücker map is surjective, so ψ(G(n− 1, n)) ' P(V ∗).

(ii) n = 4, r = 2: G(2, 4) or G(1, 3), the Grassmannian of lines in P3. In this case

ψ : G(1, 3)→ P(∧2V ) ' P5. Let (e0, e1, e2, e3) be a basis of V . Let ` = P(L) be the line of P3

obtained by projectivisation of the vector subspace L ⊂ V of dimension 2, let L = 〈x, y〉; then

ψ(`) = [x ∧ y]. Its Plücker coordinates are traditionally denoted by p01, p02, p03, p12, p13, p23,

with pij = xiyj − xjyi, the 2× 2 minors of the matrix(
x0 x1 x2 x3

y0 y1 y2 y3

)
.

This time ψ is not surjective; its image is the subset of ∧2V of the totally decomposable

tensors. Assume char(K) 6= 2. They satisfy the equation of degree 2: p01p23 − p02p13 +
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p03p12 = 0, which represents a quadric of maximal rank in P5, called the Klein quadric. The

fact that this equation is satisfied can be seen by considering the 4× 4 matrix
x0 x1 x2 x3

y0 y1 y2 y3

x0 x1 x2 x3

y0 y1 y2 y3

 :

its determinant is precisely the above equation (consider the development of the determinant

according to the first two rows).

For instance the line of equations x2 = x3 = 0, obtained projectivising the subspace

〈e0, e1〉, has Plücker coordinates [1, 0, 0, 0, 0, 0].

In general we can prove the following theorem.

Theorem 18.2.3. The image of the Plücker map is a closed subset in P(∧rV ).

Proof. The image of the Plücker map is the set of the proportionality classes of totally

decomposable tensors. By Proposition 18.1.2, a tensor ω ∈ ∧rV is totally decomposable if

and only if the subspace W = {v ∈ V | v divides ω} has dimension r. We consider the linear

map Φ : V → ∧r+1V , such that Φ(v) = ω∧ v. The kernel of Φ is equal to W . So ω is totally

decomposable if and only if the rank of Φ is n− r. Fixed a basis B = (e1, . . . , en) of V , we

write ω = Σi1<···<irai1...irei1 ∧ . . . ∧ eir . We then consider the basis of ∧r+1V associated to B
and we construct the matrix A of Φ with respect to these bases: its minors of order n− r+1

are equations of the image of ψ, and they are polynomials in the coordinates ai1...ir of ω. �

From now on we shall identify the Grassmannian with the projective algebraic set that

is its image in the Plücker map. The equations obtained in Theorem 18.2.3 are nevertheless

not generators for the ideal of the Grassmannian. For instance, in the case n = 4, r = 2, let

ω = p01e0 ∧ e1 + p02e0 ∧ e2 + . . .. Then:

Φ(e0) = ω ∧ e0 = p12e0 ∧ e1 ∧ e2 + p13e0 ∧ e1 ∧ e3 + p23e0 ∧ e2 ∧ e3;

Φ(e1) = ω ∧ e1 = −p02e0 ∧ e1 ∧ e2 − p03e0 ∧ e1 ∧ e3 + p23e1 ∧ e2 ∧ e3;

Φ(e2) = ω ∧ e2 = p01e0 ∧ e1 ∧ e2 − p03e0 ∧ e2 ∧ e3 + p13e1 ∧ e2 ∧ e3;

Φ(e3) = ω ∧ e3 = p01e0 ∧ e1 ∧ e3 + p02e0 ∧ e2 ∧ e3 + p12e1 ∧ e2 ∧ e3.

So the matrix is 
p12 −p02 p01 0

p13 −p03 0 p01

p23 0 −p03 p02

0 p23 p13 p12

 .
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Its 3× 3 minors are equations defining G(1, 3), but the radical of the ideal generated by

these minors is in fact (p01p23 − p02p13 + p03p12).

To find equations for the Grassmannian and to prove that it is irreducible, it is convenient

to give an explicit open covering with affine open subsets. In P(∧rV ), let Ui1...ir be the affine

open subset where the Plücker coordinate pi1...ir 6= 0. To simplify notation we assume

i1 = 1, i2 = 2, . . . , ir = r, and we put U = U1...r. If W ∈ G(r, n) ∩ U , and w1, . . . , wr

is a basis of W , then the first minor of the matrix M of the coordinates of w1, . . . , wr is

non-degenerate. So we can choose a new basis of W such that M is of the form

M =


1 0 . . . 0 α1,r+1 . . . α1,n

0 1 . . . 0 α2,r+1 . . . α2,n

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 1 αr,r+1 . . . αr,n

 .

Conversely, any matrix of this form defines a subspace W ∈ G(r, n) ∩ U . So there is a

bijection between G(r, n) ∩ U and Kr(n−r), i.e. the affine space of dimension r(n− r). The

coordinates of W result to be equal to 1 and all minors of all orders of the submatrix of

the last n − r columns of M . Therefore they are expressed as polynomials in the r(n − r)
elements of the last n− r columns of M . This shows that G(r, n)∩U is an affine subvariety

of U isomorphic to Ar(n−r). By homogenising the equations obtained in this way, one gets

equations for G(r, n).

For instance, in the case n = 4, r = 2, the matrix M becomes

M =

(
1 0 α13 α14

0 1 α23 α24

)
.

One gets 1 = p01, α23 = p02, α24 = p03,−α13 = p12,−α14 = p13, α13α24 − α23α14 = p23. If we

make the substitutions and homogenise the last equation with respect to p01, we find the

equation of the Klein quadric p01p23 − p02p13 + p03p12 = 0.

Theorem 18.2.4. G(r, n) is an irreducible projective variety of dimension r(n− r), and it

is rational.

Proof. We remark that G(r, n)∩Ui1...ir is the set of the subspaces W which are complementar

to the subspace of equations xi1 = . . . = xir = 0. It is clear that they have two by two non-

empty intersection. Therefore, the projective algebraic set G(r, n) has an affine open covering

with irreducible varieties isomorphic to Ar(n−r). Using Exercise 5 of Chapter 6, we conclude

that G(r, n) is irreducible. Its dimension is equal to the dimension of any open subset of the
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open covering, r(n− r). Since it is irreducible and contains open subsets isomorphic to the

affine space, it is rational. �

Assume char(K) 6= 2. In the special case r = 2 with n ≥ 4, using the Plücker coordinates

[. . . , pij, . . .], the equations of the Grassmannian G(2, n) are of the form pijphk − pihpjk +

pikpjh = 0, for any i < j < h < k.

Also in the case of G(2, n), as for Pn×Pm and Vn,2, there is an interpretation in terms of

matrices, that I expose here without entering in all the details. Given a tensor in ∧2V with

coordinates [pij], we can consider the skew-symmetric n× n matrix whose term of position

i, j is pij, with the conditions pii = 0 and pji = −pij. In this way we can construct an

isomorphism between ∧2V and the vector space of skew-symmetric matrices of order n.

From tA = −A, it follows det(A) = (−1)n det(A). If n is odd, this implies det(A) = 0. If

n is even, one can prove that det(A) is a square. For instance if n = 2, and A =

(
0 a

−a 0

)
,

then det(A) = a2.

If n = 4, and P =


0 p12 p13 p14

−p12 0 p23 p24

−p13 −p23 0 p34

−p14 −p24 −p34 0

 , then det(P ) = (p12p34−p13p24+p14p23)2.

In general, for a skew-symmetric matrix A of even order 2n, one defines the pfaffian of

A, pf(A), in one of the following equivalent ways:

(i) by recursion: if n = 1, pf

(
0 a

−a 0

)
= a; if n > 1, one defines

pf(A) = Σ2n
i=2(−1)ia1iPf(A1i),

where A1i is the matrix obtained from A by removing the rows and the columns of indices

1 and i. Then one verifies that pf(A)2 = det(A);

(ii) (in characteristic 0) given the matrix A, one considers the tensor ω = Σ2n
i,j=1aijei∧ej ∈

∧2K2n. Then one defines the pfaffian of A as the unique constant such that pf(A)e1 ∧ · · · ∧
e2n = 1

n!
ω ∧ · · · ∧ ω.

For a skew-symmetric matrix of odd order, one defines the pfaffian to be 0.

Proposition 18.2.5. A 2-tensor ω ∈ ∧2V is totally decomposable if and only if ω ∧ ω = 0.

142



Proof. If ω is decomposable, the conclusion easily follows. Conversely, if ω = Σ2n
i,j=1aijei ∧

ej and ω ∧ ω = 0, then the pfaffians of the principal minors of order 4 of the matrix A

corresponding to ω are all 0, therefore from definition (ii) it follows that the pfaffians of the

principal minors of all orders are 0, and also det(A) = 0. In conclusion A has rank 2. Then

one checks that ω is the ∧ product of two vectors corresponding to two linearly independent

rows of A. For instance, if a12 6= 0, then ω = (a12e2+. . .+a1nen)∧(−a12e1+a23e3+. . .+a2nen).

�

The equations of G(2, n) are the pfaffians of the principal minors of order 4 of the matrix

P . They are all zero if and only if the rank of P is 2. Therefore the points of the Grassman-

nian G(2, n), for any n, can be interpreted as (proportionality classes of) skew-symmetric

matrices of order n and rank 2.

The subvarieties of the Grassmannian G(r, n) correspond to subvarieties of Pn covered

by linear spaces of dimension r. Conversely, any subvariety of Pn covered by linear spaces of

dimension r gives rise to a subvariety of the Grassmannian.

Example 18.2.6.

1. Pencils of lines. A pencil of lines in Pn is the set of lines passing through a fixed point

O and contained in a 2-plane π such that O ∈ π. Assume that O has coordinates [y0, . . . , yn],

and fix two points A,B ∈ π, different from O. Let A = [a0, . . . , an], B[b0, . . . , bn]. Then a

general line of the pencil is generated by O and by a point of coordinates [. . . , λai +µbi, . . .].

Therefore the Plücker coordinates of a general line of the pencil are pij = yi(λaj + µbj) −
yj(λai +µbi) = λqij +µq′ij, where qij, q

′
ij are the Plücker coordinates of the lines OA and OB

respectively. So the lines of the pencil are represented in the Grassmannian by the points of a

line. Conversely one can check that any line contained in a Grassmannian of lines represents

the lines of a pencil.

2. Lines in a smooth quadric surface. Let Σ : x0x3−x1x2 = det

(
x0 x1

x2 x3

)
= 0 be

the Segre quadric in P3. A line of the first ruling of Σ is characterised by a constant ratio of the

rows of the matrix

(
x0 x1

x2 x3

)
. Therefore it can be generated by two points with coordinates

[x0, x1, 0, 0], [0, 0, x0, x1]. The Plücker coordinates of such a line are [x2
0, 0, x0x2,−x0x2, 0, x

2
2].

This parametrizes a conic contained in G(1, 3). Similarly, the lines of the second ruling

describe the points of another conic, indeed the coordinates are [0, x2
0, x0x1, x0x1, x

2
1, 0]. These

two conics are disjoint and contained in disjoint planes.
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3. Planes in G(1, 3). One can prove that G(1, 3) contains two families of planes, and

no linear space of dimension > 2. The planes of one family correspond to stars of lines in

P3 (lines in P3 through a fixed point), while the planes of the second family correspond to

the lines contained in the planes of P3. The geometry of the lines in P3 translates to give

a decription of the geometry of the planes contained in G(1, 3). Since on an algebraically

closed field of characteristic 6= 2 two quadric hypersurfaces are projectively equivalent if and

only if they have the same rank, one obtains a description of the geometry of all quadrics of

maximal rank in P5.

Exercises 18.2.7. 1. Let `, `′ two distinct lines in P3. Let [pij] be the Plücker coordinates

of ` and [qij] those of `′, 0 ≤ i < j ≤ 3. Prove that ` ∩ `′ 6= ∅ if and only if

p01q23 − p02q13 + p03q12 + p12q03 − p13q02 + p23q01 = 0.

(Hint: fix points on the two lines to get the Plücker coordinates.)

144



Chapter 19

Fibres of a morphism and lines on

hypersurfaces

In this last chapter we will state the Theorem on the dimension of the fibres of a morphism,

and we will see an application, involving Grassmannians, about the existence of lines on a

hypersurface of given degree in a projective space.

19.1 Fibres of a morphism

Let us recall that the fibres of a morphism are the inverse images of the points of the

codomain. More precisely, if f : X → Y is a morphism, for any y ∈ Y , the fibre of f over y

is f−1(y). Since in the Zariski topology every point is closed, the fibre f−1(y) is closed in X,

and we want to study the dimensions of its irreducible components. We have seen in Chapter

17 that finite morphisms have the property that all the fibres are finite and non-empty, so

all irreducible components have dimension 0.

The following theorem gives informations about the behaviour of the fibres of general

morphisms.

Theorem 19.1.1 (Theorem on the dimension of the fibres.). Let f : X → Y be a dominant

morphism of algebraic sets. Then:

1. dim(X) ≥ dim(Y );

2. for any y ∈ Y , and for any irreducible component F of f−1(y), dimF ≥ dim(X) −
dim(Y );

3. there exists a non-empty open subset U ⊂ Y , such that dim f−1(y) = dim(X)−dim(Y )

for any y ∈ U ;
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4. the sets Yk = {y ∈ Y | dim f−1(y) ≥ k} are closed in Y (upper semicontinuity of the

dimension of the fibres).

Before giving a sketch of the proof, let us see an example.

Example 19.1.2. Let V be an affine variety and consider W ⊂ V × Ar defined by s linear

equations with coefficients in K[V ]:{∑r
j=1 aijxj = 0, aij ∈ K[V ], i = 1, . . . , s,

where x1, . . . , xr are coordinates on Ar. Let ϕ : W → V be the projection. For P ∈ V ,

ϕ−1(P ) is the set of solutions of the system of linear equations with constant coefficients

r∑
j=1

aij(P )xj, aij(P ) ∈ K, i = 1, . . . , s,

so its dimension is r− rk(aij(P )). For any k ∈ N the set {P ∈ V | rk(aij(P )) ≤ k} is closed

in V , defined by the vanishing of the minors of order k + 1, and it is precisely Vr−k, the

subset of V where the dimension of the fibre is ≥ r − k.

The meaning of this example is that we have a family of subspaces of Ar defined by a

system of linear equations with coefficients parametrized by V . A “general” space of the

family has minimal dimension r − rkA, where A = (aij) is the matrix of the coefficients

of the system. General spaces correspond to the points of an open non-empty subset of V .

There are closed subsets in V corresponding to spaces of higher dimension, where the rank

of A decreases.

Proof of Theorem 19.1.1. 1. Since f is dominant, there is theK-homomorphism f ∗ : K(Y ) ↪→
K(X), and tr.d.K(Y )/K ≤ tr.d.K(X)/K, because algebraically independent elements of

K(Y ) remain algebraically independent in K(X). So dim(Y ) ≤ dim(X).

2. Fix y ∈ Y . We observe that we can replace Y with an affine open neighborhood U

of y and X with f−1(U). So we can assume that Y is closed in an affine space AN . Let

n = dim(X),m = dim(Y ). We observe that we can find a polynomial G in N variables

which does not vanish identically on any irreducible component of Y . For instance, we

can fix a point on any irreducible component and choose a hyperplane not passing through

any of these points. Then all irreducible components of Y (1) := Y ∩ V (G) have dimension

m − 1. Repeating this argument, we can find a chain of subvarieties of Y of the form

Y ⊃ Y (1) ⊃ · · · ⊃ Y (m) ⊃ Y (m+1), where all irreducible components of Y (i) have dimension

m− i. In particular the irreducible components of Y (m) are points, among which there is y,

and Y (m) is defined by m equations of the form g1 = · · · = gm = 0, with g1, . . . , gm ∈ K[Y ].
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Possibly restricting the open set U , we can assume that Y (m) ∩ U = {y}. Hence, the fibre

f−1(y) is defined by the system of m equations f ∗(g1) = · · · = f ∗(gm) = 0. The conclusion

follows from the Theorem of the intersection 14.1.1.

3. See [S].

4. By induction on the dimension of Y . It is obviously true if dimY = 0. We know from

3. that there is an open subset U of Y such that dim f−1(y) = n−m if and only if y ∈ U .

Let Z be the complement of U in Y ; thus Z = Yn−m+1. Let Z1, . . . , Zr be the irreducible

components of Z. We can now apply the induction to the restrictions of f , f−1(Zj) → Zj

for each j , and we obtain the result. �

As a consequence of Theorem 19.1.1, we are able to prove the following very useful

proposition.

Proposition 19.1.3. Let f : X → Y be a surjective morphism of projective algebraic sets.

Assume that Y is irreducible and that all fibres of f are irreducible and of the same dimension

r, then X is irreducible of dimension dim(Y ) + r.

Proof. Note first of all that r = dim(X)− dim(Y ). Let Z be an irreducible closed subset of

X, and consider the restriction f |Z : Z → Y ; its fibres are f |−1
Z (y) = f−1(y)∩Z. There are

three possibilities:

(a) f(Z) 6= Y . Then f(Z) is a proper closed subset of Y ;

(b) f(Z) = Y and dim(Z) < r+ dim(Y ). Then 2. of Theorem 19.1.1 shows that there is

a nonempty open subset U of Y such that for y ∈ U , dim(f−1(y)∩Z) = dim(Z)−dim(Y ) <

r = dim(X)− dim(Y ). Thus, for y ∈ U , the fibre is not contained in Z.

(c) f(Z) = Y and dim(Z) ≥ r + dim(Y ). Then again 2. of Theorem 19.1.1 shows that

dim(f−1(y)∩Z) ≥ dim(Z)−dim(Y ) ≥ r for all y; thus f−1(y) ⊂ Z for all y ∈ Y , so Z = X.

Now let Z1, . . . , Zr be the irreducible components of X . We claim that (c) holds for at

least one of the Zi. Otherwise, there will be an open subset U in Y , such that for y ∈ U ,

f−1(y) is contained in none of the Zi; but f−1(y) is irreducible and f−1(y) =
⋃
i(f
−1(y)∩Zi)

so this is impossible. We conclude that X is irreducible. �

19.2 Lines on hypersurfaces

As an important application, we will study the existence of lines on hypersurfaces of fixed

degree. Let S = K[x0, . . . , xn], let d ≥ 1 be an integer number, then P(Sd) is a projective

space of dimension N =
(
n+d
d

)
−1, parametrizing the hypersurfaces of degree d in Pn. Among

them there are reducible and even non-reduced hypersurfaces (i.e. those corresponding to non
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square-free polynomials). Let us introduce the incidence correspondence line-hypersurface

as follows. Let G(1, n) be the Grassmannian parametrising the lines in Pn. We consider the

product variety G(1, n) × P(Sd), whose points are the pairs (`, [F ]), where ` is a line in Pn

and F ∈ Sd, that we can identify with the hypersurface VP (F ). By definition the incidence

variety (or correspondence) is Γd := {(`, [F ]) | ` ⊂ VP (F )} ⊂ G(1, n)× P(Sd).

Proposition 19.2.1. Γd is a projective algebraic set, i.e. it is the set of zeros of a set of

bihomogeneous polynomials in two series of variables: the Plücker coordinates pij on the

Grasmannian and the coefficients ai0...in of F .

Proof. Let P = (pij) be the skew-symmetric matrix, whose elements are the coordinates of

a line `: it has rank two and from Proposition 18.2.5, it follows that each non-zero row of

P contains the coordinates of a point of `. So the rows of P are a system of generators of a

vector subspace W of dimension 2, such that ` = P(W ). Hence the coordinates of any point

of ` are linear combinations of the rows of P , of the form (x0 = Σiλip0i, . . . , xn = Σiλipni).

A line ` is contained in VP (F ) if and only if the equation F (Σiλip0i, . . . ,Σiλipni) = 0 is an

identity in λ0, . . . , λn. Therefore, Γd is the set of common zeros of the coefficients of the

monomials of degree d in λ0, . . . , λn: they are homogeneous of degree 1 in the coefficients of

F and of degree d in the pij’s. �

Example 19.2.2.

Let n = d = 3, F = x3
0 − x1x2x3 ∈ S3. We put

x0 = λ1p01 + λ2p02 + λ3p03

x1 = −λ0p01 + λ2p12 + λ3p13

x2 = −λ0p02 − λ1p12 + λ3p23

x3 = −λ0p03 − λ1p13 − λ2p23

then we replace in F , and we get the identity (λ1p01 + λ2p02 + λ3p03)3 − (−λ0p01 + λ2p12 +

λ3p13)(−λ0p02−λ1p12+λ3p23)(−λ0p03−λ1p13−λ2p23) = 0. By equating to zero the coefficients

of the 20 monomials of degree 3 in λ0, . . . , λ3 we get the equations representing the lines

contained in VP (F ).

As a matter of fact, for this particular surface finding the lines contained in it is partic-

ularly simple. Indeed, we can distinguish the lines contained in the hyperplane “at infinity”

from the lines which are projective closure of a line in A3. The first ones are contained in

x0 = 0, and it is clear that there are only three of them: x0 = x1 = 0, x0 = x2 = 0, x0 = x3 =

0. To find the others we dehomogenize F and get the equation x1x2x3− 1 = 0, and consider
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the parametrization of a general line in A3: xi = ait + bi, i = 1, 2, 3. By substituting, we

immediately see that there are no solutions. We conclude that the surface contains only

three lines.

Figure 19.1: The cubic surface of Example 19.2.2

We consider now the restrictions to Γd of the two projections, and we get ϕ1 : Γd →
G(1, n), ϕ2 : Γd → P(Sd). We will see now that the fibres of ϕ1 are all irreducible and of the

same dimension; this will allow to compute the dimension of Γd and get informations on the

fibres of ϕ2.

1. ϕ1(Γd) = G(1, n), because any line ` is contained in some hypersurface of degree d.

Indeed, up to a change of coordinates, we can assume that ` : x0 = x1 = · · · = xn−2 = 0.

So ` ⊂ VP (F ) if and only if F (0, . . . , 0, xn−1, xn) ≡ 0, if and only if the coefficients of the

monomials containing only xn−1, xn vanish, i.e. F is of the form x0G0 + · · · + xn−2Gn−2.

So ϕ−1
1 (`) is a linear subspace of dimension N − (d + 1), because the d + 1 monomials

xdn−1, x
d−1
n−1xn, . . . , x

d
n don’t appear in F . In particular we have that the fibres of ϕ1 are all

irreducible and of the same dimension. By applying Proposition 19.1.3, we obtain that Γd

is irreducible of dimension dimG(1, n) + dimϕ−1
1 (`) = 2(n− 1) +N − (d+ 1).

2. Consider now ϕ2 : Γd → P(Sd) = PN . If dim Γd < N , then ϕ2 cannot be surjective.
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This happens if

dim(Γd) = 2(n− 1) +N − (d+ 1) < N if and only if d > 2n− 3.

We have proved the following theorem.

Theorem 19.2.3. If d > 2n − 3, there is an open non-empty subset U ⊂ P(Sd), such

that if [F ] ∈ U then the hypersurface VP (F ) does not contain any line; shortly, a “general”

hypersurface of degree d > 2n − 3 in Pn does not contain any line. The hypersurfaces

containing a line form a proper closed subset in P(Sd).

Example 19.2.4. Let n = 3, the case of surfaces in P3. Theorem 19.2.3 says that a general

surface of degree ≥ 4 does not contain any line. Let us analyse the cases d = 1, 2, 3.

• d = 1: the surface is a plane, the lines contained in a plane form a P2.

• d = 2: the surface is a quadric, any quadric contains lines, and precisely, if its rank is

4, it contains two families of dimension 1 parametrised by two conics in G(1, 3); if the rank

is 3, the quadric is a cone, and it contains a family of dimension 1 of lines, parametrised by

a conic in G(1, 3). In both cases of rank 3, 4 the fibres of ϕ2 have dimension 1. If the rank

is 2 or 1, the quadric is a pair of distinct planes or one plane with multiplicity 2, and the

fibres of ϕ2 have dimension 2.

• d = 3: in this case N = 19 = dim Γd. Two cases can occur: either ϕ2 is surjective,

and a general fibre has dimension 0, or it is not surjective. In the second case, ϕ2(Γ3), the

variety of the cubic surfaces containing at least one line, has dimension < 19, so the fibres of

Γ3 → ϕ2(Γ3) have all dimension > 0. Hence, if a cubic surface contains a line, it contains by

consequence infinitely many lines. But in Example 19.2.2 we have seen an explicit example of

a cubic surface containing finitely many lines; this shows that the first possibility occurs, i.e.

a “general” cubic surface contains finitely many lines. Theorem 19.1.1 explains the meaning

of the adjective “general”: it means that the property holds true in an open dense subset of

P19.

It is a classical fact that any smooth cubic surface contains exactly 27 lines, whose

configuration is completely described (see for instance [rH]). Figure 19.2 shows the Clebsch

cubic surface, the only one having 27 real lines. In particular, among these 27 lines there are

many pairs of skew lines.

It is a nice application of the theory we have developed so far to prove that such a cubic

surface is rational.
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Theorem 19.2.5. Let S ⊂ P3 be a cubic surface containing two skew lines. Then S is

rational.

Proof. Let `, `′ be two skew lines contained in S. For any point P ∈ P3, P /∈ ` ∪ `′, there is

exactly one line rP passing through P and meeting both ` and `′: rP is the intersection of

the two planes passing through P and containing ` and `′ respectively. So we can consider

the rational map f : P3 99K ` × `′ ' P1 × P1, such that f(P ) = (rP ∩ `, rp ∩ `′), the pair of

points of intersection of rP with ` and `′. We consider now the restriction f̄ of f to S, and

we get a birational map. Indeed, for any pair of points x ∈ ` and x′ ∈ `′, the line joining

x and x′, if not contained in S, meets S in a third point. Since not all lines meeting ` and

`′ can be contained in S, this defines the rational inverse of f̄ . Therefore S is birational to

P1 × P1, that is birational to P2. By transitivity we conclude that S is rational. �

Figure 19.2: The Clebsch cubic surface

Possible equations for the Clebsch cubic surface, for different choices of coordinates, are

x2y + y2z + z2w + w2x = 0

or

x0 + x1 + x2 + x3 + x4 = x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0.
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The following equation represents the Cayley cubic surface with 4 singular points of

multiplicity 2, containing 9 lines

xyz + yzw + zwx+ wxy = 0.

Figure 19.2 is the image of such a surface.

Figure 19.3: The Cayley cubic surface

A list of all possible types of singularities of cubic surfaces, with figures, can be found in

the following web page: https://singsurf.org/parade/Cubics.php
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