(Secondary) CMB anisotropies: Polarization Reionization Sunyaev Zeldovich Effect

arXiv: 1811.02310 arXiv: 1112.1862 arXiv:1212.1075 arXiv:1511.04335 arXiv:1312.2462 arXiv:1303.5081

CMB

TT Power Spectrum information is sample-variance

Atoms 4%

Polarization

Polarization

CMB polarization: scattering from sound waves

History of the Universe

Polarization

Density Wave

E-Mode Polarization Pattern

B-Mode Polarization Pattern

1	1	,		`	1	1	1	1	`		,	1	1	1	1	,		`	1	1	1	1	•		,	1	1	1	1	,	*	`	1	1	1	1	、 ·	,	11	^
1	1	,		~	1	1	1	1	•		,	1	1	1	1	,		`	1	1	1	1	•		,	1	1	1	1	,	•	•	1	1	1	1.	、.	,	11	1
1	1			~	1	1	1	1	>		,	1	1	1	1			1	1	1	1	1	1			1	1	1	1			•	1	1	1	1.	· ·		11	1
1	1	,		~	1	1	1	1	1		,	1	1	1	1	,	•	•	1	1	1	1	1			1	1	1	1		•	•	1	1	1		· ·		11	,
1	1		+		1	1	1	1	1		,	1	1	1	1	,		•	1	1	1	1	•		,	1	1	1	1		•	•	1	1	1	1.	、 .		11	,
1	1			~	1	1	1	1	~		,	1	1	1	1	,		`	1	1	1	1	1	-	,	1	1	1	1			•	1	1	1	1.	、.		11	1
1	1			~	1	1	1	1	1		,	1	1	1	1	,		•	1	1	1	1	1			1	1	1	1		•	•	1	1	1	1.	、 ·		11	1
1	1	,		~	1	1	1	1	1		,	1	1	1	1	,		•	1	1	1	1	1			1	1	1	1			•	1	1	1	1.	· ·		11	1
1	1	,		~	1	1	1	1	~			1	1	1	1			•	1	1	1	1	-	-		1	1	1	1			•	1	1	1	1.	• •		11	1
1	1		÷.	~	1	1	1	1	1	•		1	1	1	1			•	1	1	1	1	•			1	1	1	1			•	1	1	1	1	· ·		11	1
1	1		5	~	1	1	1	1	`			1	1	1	1			•	1	1	1	1	`			1	1	1	1		4	•	1	1	1	1	· ·		11	1
1	1	1		•	1	1	1	1	`		,	1	1	1	1			`	1	1	1	1	`			1	1	1	1		•	•	1	1	1	1.	· ·		11	1
1	1	1		1	1	1	1	1	1		,	1	1	1	1	,		1	1	1	1	1	1		,	1	1	1	1	,	•	1	1	1	1	1	• •		11	1
1	1	1		`	1	1	1	1	1	•	,	1	1	1	1	1	•	`	1	1	1	1	1		,	1	1	1	1	1	•	•	1	1	1	1.	· ·	,	11	1
/	1	1		`	1	1	1	1	1	•	,	1	1	/	1	1		`	1	1	1	1	`			1	1	1	1	1		•	1	1	1.	1.	· ·		11	1
/	1	1		`	1	1	1	1	`	•	,	/	1	/	/	1		`	1	1	1	1	`		,	1	/	1	1	1	•	•	1	1	1	1.	• •		11	1
/	1	1	1	•	1	1	1	1	`	•	,	/	1	/	/	,	•	`	1	1	1	1	`		,	1	/	/	/	1	•	•	1	1	1	1.	• •	,	11	1
/	/	1	24	`	1	1	1	1	1	٠	,	1	/	/	/	'	•	`	1	1	1	1	`	•	,	1	/	/	/	1	•	•	1	1	1	1.	· ·		11	1
/	1	1	.*	•	1	1	1	1	`	٠	,	1	/	/	/	1		`	1	1	1	1	`	•	•	1	/	/	/	1	*	`	1	1	1	1.	• •		11	1
/	/	1	3	•	1	1	1	1	`	٠	1	1	/	/	/	•		`	1	1	1	1	`	•	•	1	/	/	/	1	*	•	1	1	1	1.	• •	-	11	1
1						>	1						1	1						>	>					1	1	1						1	1				1	1

Polnarev, A. G. 1985, Sov. Ast., 29, 607

E and B mode

- <u>Emode</u>: Polarisation directions parallel or perpendicular to the wavevector
- **<u>B mode</u>**: Polarisation directions 45 degree tilted with respect to the wavevector

- Emode: Parity even
- **B mode**: Parity odd

Parity

- Emode: Parity even
- **B mode**: Parity odd

Power Spectra

 $\langle E_{\boldsymbol{\ell}} E_{\boldsymbol{\ell}'}^* \rangle = (2\pi)^2 \delta_D^{(2)} (\boldsymbol{\ell} - \boldsymbol{\ell}') C_{\boldsymbol{\ell}}^{EE}$ $\langle B_{\boldsymbol{\ell}} B_{\boldsymbol{\ell}'}^* \rangle = (2\pi)^2 \delta_D^{(2)} (\boldsymbol{\ell} - \boldsymbol{\ell}') C_{\boldsymbol{\ell}}^{BB}$ $\langle T_{\boldsymbol{\ell}} E_{\boldsymbol{\ell}'}^* \rangle = \langle T_{\boldsymbol{\ell}}^* E_{\boldsymbol{\ell}'} \rangle = (2\pi)^2 \delta_D^{(2)} (\boldsymbol{\ell} - \boldsymbol{\ell}') C_{\boldsymbol{\ell}}^{TE}$

 However, <EB> and <TB> vanish for paritypreserving fluctuations because <EB> and <TB> change sign under parity flip

Measuring the CMB

Measuring the CMB

-10³ -10² -10 -1 0 1 10 10² 10³ 10⁴ 10⁵ 10⁶ 10⁷ 30-353 GHz: δT [μK_{omb}]; 545 and 857 GHz: surface brightness [kJy/sr]

Measuring the CMB

The 2018 Planck maps in polarization (Stokes Q, U, and polarized amplitude P)

• Q and U produced by E and B modes are given by

$$Q(\boldsymbol{\theta}) = \int \frac{d^2\ell}{(2\pi)^2} (E_{\boldsymbol{\ell}} \cos 2\phi_{\boldsymbol{\ell}} - B_{\boldsymbol{\ell}} \sin 2\phi_{\boldsymbol{\ell}}) \exp(i\boldsymbol{\ell} \cdot \boldsymbol{\theta})$$
$$U(\boldsymbol{\theta}) = \int \frac{d^2\ell}{(2\pi)^2} (E_{\boldsymbol{\ell}} \sin 2\phi_{\boldsymbol{\ell}} + B_{\boldsymbol{\ell}} \cos 2\phi_{\boldsymbol{\ell}}) \exp(i\boldsymbol{\ell} \cdot \boldsymbol{\theta})$$

Cosmic Microwave Background

The Bicep2 Collaboration

Declination [deg.]

The plasma physics of the early universe causes the CMB to become slightly polarized.

Polarization can be described as the sum of E-modes and B-modes.

Only inflationary gravitational waves can induce significant B-mode polarization on degree angular scales.

A measurement of degree-scale Bmodes would be direct evidence for the gravitational wave background, free of the parameter degeneracies and cosmic variance inherent to temperature measurements.

B modes until 2014

Search for B-modes

B modes

Search for B-modes

Observational Strategy

Target the "Southern Hole" - a region of the sky exceptionally free of dust and synchrotron foregrounds.

Detectors tuned to 150 GHz, near the peak of the CMB's 2.7 K blackbody spectrum.

At 150 GHz the combined dust and synchrotron spectrum is predicted to be at a minimum in the Southern Hole.

Expected foreground contamination of the B-mode power: $r \le \sim 0.01$.

BICEP2 E- and B-mode Maps

BICEP2: E signal

BICEP2 B-mode Power Spectrum

Constraint on Tensor-to-scalar Ratio r

Brian Keating for The Bicen2 Collaboration

Polarized Dust Foreground Projections

The BICEP2 region is chosen to have lowest foreground emission based on available pre-Planck models.

Use models of polarized dust emission to estimate foregrounds. (default parameter values)

Dust model auto spectra are well below observed signal level.

Cross spectra are lower, though this could indicate limitations of models.

Polarized Dust Foreground Measurements

Map of the dust B-mode polarization, as estimated from the Planck data, in units of the signal expected from primordial gravitational waves. The green color corresponds to a Galactic signal comparable to the signal detected by the BICEP2 experiment over the sky patch marked with a black contour. Blue and red colours identify regions of fainter and brighter dust polarization.

The BICEP2 telescope looked at the area surrounded by the black box at right, which shows higher levels of dust than previously assumed. (Planck Collaboration)

Dust to dust

B-modes Power Spectrum

What comes next?

The Simons Array

Advanced Atacama Cosmology Telescope

CMB-S4(?)

SIMONS

OBSERVATORY

+ participations from USA, Canada, Europe

LiteBIRD

2027- [proposed¹

Polarisation satellite dedicated to measure CMB polarisation from primordial GW, with a few thousand TES bolometers in space

JAXA + participations from

USA, Canada, Europe

LiteBIRD 2027-Selected!

May 21: JAXA has chosen LiteBIRD as the strategic large-class mission. We will go to L2!

Last scattering epoch First hydrogen atoms form

Dark ages

First stars form

Reionization

Figure courtesy: http://www.nature.com/nature/journal/v468/n7320/fig_tab/nature09527_F1.html

Post-reionization

Universe expanding and cooling

Present day

Evidence for reionization of the Inter-Galactic Medium

• CMB

• Lyman alpha Forest

- CMB photons scatter off free electrons.
- The measured quantity in CMB observations is the optical depth due to Thomson scattering off free electrons:

- CMB photons scatter off free electrons.
- The measured quantity in CMB observations is the optical depth due to Thomson scattering off free electrons:

- CMB photons scatter off free electrons.
- The measured quantity in CMB observations is the optical depth due to Thomson scattering off free electrons:

• Current constraints on reionization come from polarization signal at large angular scales

(weak signal, can be confused with polarized foregrounds, e.g., WMAP, Planck)

- dampening of anisotropies at (almost) all angular scales (effect is degenerate with amplitude of density power spectrum)
- Planck and high resolution ground based experiments can break the degeneracy through lensing of the CMB
- The value of τ_{el} can related to a reionization redshift z_{re} . Assume $n_e = n_H$ for $z < z_{re}$ and $n_e = 0$ for $z > z_{re}$, then

$$\tau_{\rm el} = \sigma_T \ c \ n_H \int_0^{z_{\rm re}} \mathrm{d}z \ \left| \frac{\mathrm{d}t}{\mathrm{d}z} \right| \ (1+z)^3$$

(Usually a slightly generalised tanh form is incorporated in CMB data analysis)

• Current constraints imply $z_{re} \approx 7.5 - 8$

Thomson scattering τ_{el} from CMB

$$\tau_{\rm el} = \sigma_T c \int_0^{z[t]} \mathrm{d}t \; n_e \; (1+z)^3$$

Planck Collaboration (2016)

Evidence for reionization: Lyman- α forest

The absorption lines blueward of the emission line arise from Ly α transition (n = 1 to n = 2) of neutral hydrogen (HI) present between the quasar and us.

Absorption lines

• The IGM is detected through the absorption features it produces in the spectrum of a background bright source of light (typically a QSO).

Absorption lines

► Consider radiation (photons) emitted at the QSO (at z = z_Q) rest frame frequency v_Q > v_{fi}. As the universe expands, the frequency will decrease and will reach v_{fi} at a redshift z given by

$$\frac{\nu_Q}{1+z_Q} = \frac{\nu_{fi}}{1+z} \Longrightarrow \lambda_Q(1+z_Q) = \lambda_{fi}(1+z)$$

- Example: Consider a QSO at z_Q = 3. Consider a photon emitted at wavelength λ_Q = 1187 Å, then it would reach the Lyα wavelength 1216 Å at z ≈ 1187 × 4/1216 − 1 ≈ 2.9. If there is neutral hydrogen at that position, it will produce an absorption signature.
- We will observe the feature at $\lambda = \lambda_Q (1 + z_Q) \approx 4742$ Å. Thus any absorption arising at a redshift *z* will show up at $\lambda = \lambda_{fi} (1 + z)$.

Absorption signatures

Absorption spectra

- ► The absorption lines blueward of the emission line arise from Ly a transition of neutral hydrogen (HI) present between the QSO and us.
- The unabsorbed regions correspond to either ionized regions or no matter at all.

Gunn-Peterson effect

Observed flux ~ Unabsorbed flux × exp $(-10^5 x_{\rm HI})$, where $x_{\rm HI} = \rho_{\rm HI}/\rho_H$. The fact that there is non-zero flux implies that $x_{\rm HI} \simeq 10^{-5}$ Non-zero flux observed till $z \sim 5.5$

QSO absorption lines at $z \sim 6$

QSO absorption lines at $z \sim 6$

 $x_{
m HI} \lesssim 10^{-5}$

Does this absorption mean high neutrality?

QSO absorption lines at $z \sim 6$

Gunn-Peterson optical depth:

$$au_{\rm GP} \approx \left(\frac{ar{x}_{\rm HI}}{10^{-5}} \right)$$

- So, even a neutral fraction $x_{\rm HI} \approx 10^{-4}$ would produce **complete absorption**!
- Ly α transition "too strong", saturates too easily....

Fan et al. 2006

Observations of low-z quasars show a clear Gunn-Peterson effects, suggesting that reionization ended around $z\sim6$ (rapid increase in optical depth at z>6).

Perspectives

- Epoch of reionization? When did the sources produce enough photons to ionize the Universe? z = 20 or z = 6?
- Nature of reionization? Sudden or Gradual? Homogeneous or Inhomogeneous?
- What are the sources responsible? Stars, quasars, Exotic Particles?
- Confusing statements while interpreting the data:
 - Quasar absorption spectra imply that "redshift of reionization" is $z \sim 6$?
 - No, they only imply that $x_{HI} > 10^{-4}$ at $z \sim 6!$
 - CMB experiments imply that "redshift of reionization" is $z \sim 8$?
 - But they assume an instantaneous reionization (or a tanh model) which is clearly too simplistic!
 - There is a tension between quasar and CMB data?
 - The data only imply that reionization is an extended process, starting at z > 8 and completing at $z \sim 6$.
- Challenge is to build a reionization model that matches all the data sets simultaneously, i.e.,
 - reionization should start early enough to give a sufficiently (but not too) high $\tau_{_{el}}$
 - reionization must end before z \sim 6
 - the model should produce the right number of photons such that $x_{_{HI}} > 10^{-4}$ at $z \sim 6$

Extremely active field of research in Trieste!! (Fontanot, Cristiani, Dodorico, Feruglio,..)