PROVA SCRITTA I di FISICA per CHIMICA, 13/06/22

Svolgere i seguenti problemi. Fare almeno un esercizio sui vettori, altrimenti compito non sufficiente. La procedura per arrivare al risultato deve essere chiara.

NOME/COGNOME

ESERCIZI VETTORI

1. Dati i vettori $\vec{A} = (0,4,3) = \vec{B} = (0,2,1)$ calcolare il prodotto vettoriale \vec{V} . $\vec{V} = \vec{A} \times \vec{B} = \begin{vmatrix} \hat{\lambda} & \hat{\beta} & \hat{\kappa} \\ 0 & 4 & 3 \\ 0 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 4 & 3 \\ 2 & 1 \end{vmatrix} \hat{\lambda} - \begin{vmatrix} 0 & 3 \\ 0 & 1 \end{vmatrix} \hat{\beta} + \begin{vmatrix} 0 & 4 \\ 0 & 2 \end{vmatrix} \hat{\kappa} = (4-6)\hat{\lambda} - 0\hat{\beta} + 0\hat{\kappa} = -2\hat{\lambda}$ = (-2,0,0)

2. Dati i vettori $\vec{A} = (3,4,0) = \vec{B} = (1,2,1)$ calcolare il prodotto scalare S; i moduli; l'angolo compreso α . $S = \vec{A} \cdot \vec{B} = \vec{A} \times \vec{B}_{x} + \vec{A}_{y} \vec{B}_{y} + \vec{A}_{z} \vec{B}_{z} = 3 + 8 + 0 = 11 \qquad \vec{A} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = 5 \qquad \vec{A} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{1^{2} + 2^{2} + 1^{2}} = \sqrt{3^{2} + 4^{2}} = 5 \qquad \vec{B} = \sqrt{3^{2} + 4^{2}} = 5$

PROBLEMA I

Tre corpi di ugual massa m=2,00 kg si trovano in quiete su di un piano orizzontale privo di attrito. Applicando al corpo 1 una forza f costante con modulo f=10,0 N, il sistema si muove di moto uniformemente accelerato. Determinare 1) l'intensita' dell'accelerazione a del sistema; 2) l'intensita' delle forze che ogni corpo risente a causa degli atri due (cioe' f_{21} su corpo 1, f_{12} e f_{32} su corpo 2, f_{23} su corpo 3).

Fintensità delle rotal dia concorpo 2, f_{23} su corpo 3). 1) rentero sistema f = 3 ma $a = \frac{1}{3}$ ma $a = \frac{1}{3}$

Un cilindro orizzontale ha l'area di base $S=0,100 \text{ m}^2$ ed e' diviso in due parti da un pistone perfettamente scorrevole e a tenuta. Il pistone e' sottoposto, come in figura, all'azione di una molla che ha costante k=200 N/m; quando la molla e' a riposo il pistone e' in contatto con la parete sinistra del cilindro (quindi la parte A ha volume nullo). Nella parte A vengono introdotte 0.0100 moli di elio e il tutto e' portati alla temperatura $T_1=300 \text{ K}$. Nella parte del cilindro dove si trova la molla e' fatto il vuoto. 1) Si scriva l'equazione di stato del gas perfetto. Determinare quanto vale 2) x cioe' lo spostamento della molla dalla posizione di riposo; 3) il volume V_1 e la pressione p_1 del gas.

Successivamente il gas viene lentamente riscaldato fino a raddoppiare il volume iniziale $V_2 = 2V_1$ (fase II). Determinare: 4) p_2 e T_2 ; 5) la quantita' di calore Q necessaria per il riscaldamento (cioe' completare la fase II), trascurando la capacita' termica del cilindro e del pistone, come tutte le eventuali perdite di calore verso l'esterno.

3)
$$V_{1} = Sx = 0,1.0,353 = \frac{3}{2},53.10^{2} \text{ m}^{3}$$
 $P_{1} = \frac{mRT_{1}}{V_{1}} = \frac{9,1.8,31.300}{3,53.10^{-2}} = \frac{7,06.10^{3}}{7,06.10^{3}} \frac{3}{6}$

4) $V_{2} = 2V_{1} = \left(2.\frac{3}{2},53.10^{-2} = \frac{7}{2},06.10^{-2} \text{ m}^{3}\right)$
 $P_{1}S = K \times_{1}$
 $P_{2}S = K \cdot 2 \times_{1}$
 $P_{2}S = V_{2} \times_{2} = 4T_{1} = 4.300 = 1200 \text{ K}$

5) Applies if I primario

 $Q = \Delta U + W_{2}S = \Delta U + W_{1}S = \frac{1}{2}S =$

bist.

= 6 m RT 1 = 6.0,1.8,31.300=

= 4,50.1035

NOME/COGNOME Rispondere alle domande. Se si scrivono formule con simboli diversi dagli standard dei libri o delle lezioni scrivere cosa vogliono i dire i vari simboli.

1) E' possibile sommare oppure moltiplicare un vettore ad una grandezza scalare?
2) In cinematica, cos'e' l'equazione oraria? Scrivi un esempio.
3) La frase: "il moto circolare uniforme e' un moto in cui la velocita' e' costante" e' vera o falsa, se e' falsa, perche'?
4) Una sferetta lasciata cadere in un recipiente pieno di olio accelera fino a raggiungere una velocita limite di caduta, che equazione scriveresti per calcolarla?
5) Disegna un piano inclinato ed un cubetto su di esso. Disegna poi la forza di reazione vincolare R_v applicata al cubetto sul piano inclinato e di' quanto vale R_v rispetto alla forza peso $P=mg$.
6) Definisci il momento di una forza (riferito ad un punto massa) spiegandolo con un disegno per far capire bene cos'e' il "braccio".
7) Scrivi la definizione di momento di inerzia per un corpo solido di forma qualsiasi.
8) La definizione piu' ampia e corretta per il lavoro meccanico $W=?$.

9) Definizione di differenza di energia potenziale, $\Delta U = ?$
10) Scrivere la formula dell'energia potenziale della forza di gravitazione universale.
11) Il lavoro in termodinamica $W=?$.
12) Scrivere la legge di Stevino. Vale per i liquidi? Vale per i gas? Se una risposta e' NO spiegare velocemente perche'.
13) Quale tra queste variabili Q =calore; W =lavoro; U =energia interna e' una funzione di stato in termodinamica? Come si definisce matematicamente il fatto che una variabile e' funzione di stato?
14) Definisci l'entropia.
15) Perche' si fanno le misure ripetute?

FAC PROVA SCRITTA I di FISICA I-CHIMICA 13/06/22

Scrivere NOMEe COGNOME

PROBLEMA FAC

Assegnato il moto piano di equazioni: $x = 3 + 3/2 * t^2$ e $y = 6 + 5/2 * t^2$, ove le lunghezze si intendono misurate in metri ed il tempo in secondi, si determini l'intensita' dell'accelerazione.

$$x = 3 + \frac{3}{2}t^{2} \quad (m)$$

$$V_{x} = \frac{dx}{olt} = \frac{3}{2}.2t = 3t \quad (m/s)$$

$$V_{y} = \frac{1}{2}.2t = 5t \quad (m/s)$$

$$Q_{x} = \frac{dV_{x}}{olt} = 3 \quad (m/s^{2})$$

$$Q_{x} = \frac{dV_{x}}{olt} = 3 \quad (m/s^{2})$$

$$Q_{x} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$

$$Q_{y} = \frac{1}{2} \cdot 2t = 5t \quad (m/s)$$