
Montecarlo Methods for
Medical Physics

Francesco Longo
(francesco.longo@ts.infn.it)

Geant4 Tutorial Introduction F.Longo 1

Summary of the Course

n  Part1 (Monday 30.05)
n  General (and brief) introduction to Monte Carlo methods
n  Montecarlo methods in Medical Physics

n  Part2 (Monday 30.05)
n  Introduction to the Geant4 toolkit

n  Part3
n  Fundamentals of a Geant4 application (Tuesday 31.05)
n  Geometry, Physics, Particle Flux, Scoring needs (Tuesday 31.05

- Today)

n  Laboratory (Next weeks)
n  Realisation of an example relevant to Medical Physics

2 Geant4 Tutorial Introduction F.Longo

Simulation basics

Geant4 Introduction F.Longo 3

4

Geant4 simulation toolkit

n  Modeling the experimental set-up
n  Tracking particles through matter
n  Interaction of particles with matter
n  Modeling the detector response
n  Run and event control
n  Accessory utilities (random number generators, PDG particle

information, physical constants, system of units etc.)

n  User interface
n  Interface to event generators

n  Visualisation (of the set-up, tracks, hits etc.)
n  Persistency

n  Analysis

Geant4 Tutorial Introduction
F.Longo 5

Physics Lists

Toolkit
A set of compatible components
n  each component is specialised for a specific functionality
n  each component can be refined independently to a great detail
n  components can be integrated at any degree of complexity
n  it is easy to provide (and use) alternative components
n  the user application can be customised as needed

Openness to extension and evolution
new implementations can be added w/o changing the existing code

Robustness and ease of maintenance
protocols and well defined dependencies minimize coupling

OO technology

Strategic vision

7
Geant4 Introduction

F.Longo

To use Geant4, you have to…

n  Geant4 is a toolkit. You have to build an application.
n  To make an application, you have to

n  Define your geometrical setup
n  Material, volume

n  Define physics to get involved
n  Particles, physics processes/models
n  Production thresholds

n  Define how an event starts
n  Primary track generation

n  Extract information useful to you

n  You may also want to
n  Visualize geometry, trajectories and physics output
n  Utilize (Graphical) User Interface
n  Define your own UI commands
n  etc.

8
Geant4 Tutorial Introduction

F.Longo

User classes
n  main()

n  Geant4 does not provide main().
Note : classes written in yellow are mandatory.

n  Initialization classes
n  Use G4RunManager::SetUserInitialization() to define.
n  Invoked at the initialization

n  G4VUserDetectorConstruction
n  G4VUserPhysicsList

n  Action classes
n  Use G4RunManager::SetUserAction() to define.
n  Invoked during an event loop

n  G4VUserPrimaryGeneratorAction
n  G4UserRunAction
n  G4UserEventAction
n  G4UserStackingAction
n  G4UserTrackingAction
n  G4UserSteppingAction

9
Geant4 Introduction

F.Longo

Physics in Geant4
n  It is rather unrealistic to develop a uniform physics model to cover wide variety of

particles and/or wide energy range.

n  Much wider coverage of physics comes from mixture of theory-driven,
parameterized, and empirical formulae. Thanks to polymorphism mechanism,
both cross-sections and models (final state generation) can be combined in
arbitrary manners into one particular process.

n  Geant4 offers
n  EM processes
n  Hadronic processes

n  Photon/lepton-hadron processes

n  Optical photon processes

n  Decay processes

n  Shower parameterization

n  Event biasing techniques

n  And you can plug-in more

 Physics Processes Provided
by Geant4

●  EM physics
  “standard” processes valid from ~ 1 keV to ~ PeV
  “low-energy” Livermore/ Penelope valid from 250 eV to ~ PeV
  optical photons

●  Weak physics
  decay of subatomic particles
  radioactive decay of nuclei

●  Hadronic physics
  pure hadronic processes valid from 0 to ~100 TeV
  γ-, µ-nuclear valid from 10 MeV to ~TeV

●  Parameterized or “fast simulation” physics

 Pre-packaged Physics Lists (2)

●  Originally referred to as “hadronic physics lists” but include
electromagnetic physics already

●  Can be found on the Geant4 web page at
●  PhysicsList Guide

●  Caveats:

n  these lists are provided as a “best guess” of the physics needed in a
given case

n  The user is responsible for validating the physics for his own
application and adding (or subtracting) the appropriate physics
n  “Trust, but verify.”

n  they are intended as starting points or templates

G4 home page

n  https://geant4.web.cern.ch/

12 Geant4 Introduction F.Longo

Hands On

Geant4 Introduction F.Longo 13

Work on Medical Physics Example
n  Check the Example documentation or the source code.

n  Find the geometrical info
n  Find the physics list
n  Find the particle source mechanism
n  Find the particle scoring mechanism

n  Start designing your application …

14
Geant4 Tutorial Introduction F.Longo

Geant4 Tutorial Introduction
F.Longo 15

Particle Generation

16

G4VUserPrimaryGeneratorAction
n  This class is one of mandatory user classes to control the generation of

primaries.

n  This class itself should NOT generate primaries but invoke
GeneratePrimaryVertex() method of primary generator(s) to make
primaries.

n  Constructor

n  Instantiate primary generator(s)

n  Set default values to it(them)

n  GeneratePrimaries() method

n  Randomize particle-by-particle value(s)

n  Set these values to primary generator(s)

n  Never use hard-coded UI commands

n  Invoke GeneratePrimaryVertex() method of primary generator(s)

17

G4ParticleGun
n  Concrete implementations of G4VPrimaryGenerator

n  A good example for experiment-specific primary generator implementation
n  It shoots one primary particle of a certain energy from a certain point at a certain

time to a certain direction.
n  Various set methods are available
n  Intercoms commands are also available for setting initial values

n  One of most frequently asked questions is :

I want “particle shotgun”, “particle machinegun”, etc.

n  Instead of implementing such a fancy weapon, in your implementation of
UserPrimaryGeneratorAction, you can

n  Shoot random numbers in arbitrary distribution

n  Use set methods of G4ParticleGun

n  Use G4ParticleGun as many times as you want

n  Use any other primary generators as many times as you want to make
overlapping events

18

Primary vertices and primary particles

n  Primary vertices and primary particles are stored in G4Event in advance to
processing an event.

n  G4PrimaryVertex and G4PrimaryParticle classes

n  These classes don’t have any dependency to G4ParticleDefinition nor G4Track.

n  They will become “primary tracks” only at Begin-of-Event phase and put into a

“stack”

MyPrimaryGenerator
(G4VUserPrimaryGeneratorAction)

Computes desired
primary properties

MyParticleGun
(G4VPrimaryGenerator)

Vertices and

Primary particles
are created

G4Event

Primaries are stored
for later tracking

19

Motivation for GPS
n  After first simple tutorial trials, modelling sources in realistic

set-up soon requires relatively more complex sources

n  G4ParticleGun can be used in most cases
 (as in the series of examples during this tutorial), but

n  users still needs to code (C++) almost every change and
n  add related UI commands for interactive control

n  Requirements for advanced primary particle modelling are
often common to many users in different communities
n  E.g. uniform vertex distribution on a surface, isotropic generation,

energy spectrum,…

20

What is GPS?

n  The General Particle Source (GPS) offers as pre-defined
 many common options for particle generation
 (energy, angular and spatial distributions)

n  GPS is a concrete implementation of G4VPrimaryGenerator (as G4ParticleGun but more
advanced)

n  G4 class name: G4GeneralParticleSource (in the event category)

n  User cases: space radiation environment, medical physics, accelerator (fixed target)

n  First development (2000) University of Southampton (ESA contract), maintained
and upgraded now mainly by QinetiQ and ESA

21

GPS vs G4ParticleGun

MyPrimaryGenerator
(G4VUserPrimaryGeneratorAction)

Computes desired
primary properties

G4ParticleGun
(G4VPrimaryGenerator)

Vertices and
Primary particles

are created

G4Event

Primaries are stored
for later tracking

MyPrimaryGenerator
(G4VUserPrimaryGeneratorAction)

G4GeneralParticleSource
(G4VPrimaryGenerator)

Computes desired
primary properties

Creates vertices and
primary particles

G4Event

Primaries are stored
for later tracking

User messenger (UI)

GPS messenger (UI)

user geant4

Geant4 Introduction F.Longo 22

The main program

23 Geant4 Introduction F.Longo

To use Geant4, you have to…

n  Geant4 is a toolkit. You have to build an application.
n  To make an application, you have to

n  Define your geometrical setup
n  Material, volume

n  Define physics to get involved
n  Particles, physics processes/models
n  Production thresholds

n  Define how an event starts
n  Primary track generation

n  Extract information useful to you

n  You may also want to
n  Visualize geometry, trajectories and physics output
n  Utilize (Graphical) User Interface
n  Define your own UI commands
n  etc.

24 Geant4 Introduction F.Longo

User Classes needs
n  Define material and geometry

è G4VUserDetectorConstruction

n  Select appropriate particles and processes and define production threshold(s)
è G4VUserPhysicsList

n  Define the way of primary particle generation
è G4VUserPrimaryGeneratorAction

n  Define the way to extract useful information from Geant4
è G4UserSteppingAction, G4UserTrackingAction, etc.

è G4VUserDetectorConstruction, G4UserEventAction, G4Run, G4UserRunAction

è G4SensitiveDetector, G4VHit, G4VHitsCollection

è G4PrimitiveScorers

25

Extract useful information
n  Given geometry, physics and primary track generation, Geant4 does proper

physics simulation “silently”.
n  You have to add a bit of code to extract information useful to you.

n  There are three ways:
n  Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)

n  You have an access to almost all information

n  Straight-forward, but do-it-yourself

n  Use Geant4 scoring functionality
n  Assign G4VSensitiveDetector to a volume

n  Hits collection is automatically stored in G4Event object, and automatically accumulated if
user-defined Run object is used.

n  Use Geant4 native scorers to get specified quantities (dose, energy release, flux, path
length, etc.)

26

Step in Geant4
n  Step has two points and also “delta” information of a particle (energy loss on

the step, time-of-flight spent by the step, etc.).

n  Each point knows the volume (and material). In case a step is limited by a
volume boundary, the end point physically stands on the boundary, and it
logically belongs to the next volume.
n  Because one step knows materials of two volumes, boundary processes such as

transition radiation or refraction could be simulated.

n  G4SteppingManager class manages processing a step, a step is represented
by G4Step class.

n  G4UserSteppingAction is the optional user hook.

Pre-step point
Post-step point

Step

Boundary

Geant4 Basic Examples

Geant4 Introduction F.Longo 27

Basic Examples
n  The set of basic examples is oriented to "novice" users and covering

many basic general use-cases typical of an "application"-oriented kind of
development.

n  Example B1
n  Simple geometry with a few solids
n  Geometry with simple placements (G4PVPlacement)
n  Scoring total dose in a selected volume user action classes
n  Geant4 physics list (QBBC)

n  Example B2
n  Simplified tracker geometry with global constant magnetic field
n  Geometry with simple placements (G4PVPlacement) and parametrisation

(G4PVParametrisation)
n  Scoring within tracker via G4 sensitive detector and hits
n  Geant4 physics list (FTFP_BERT) with step limiter
n  Started from novice/N02 example

n  Example B3
n  Schematic Positron Emitted Tomography system
n  Geometry with simple placements with rotation (G4PVPlacement)
n  Radioactive source
n  Scoring within Crystals via G4 scorers
n  Modular physics list built via builders provided in Geant4

28
Geant4 Tutorial Introduction F.Longo

Basic Examples
n  The set of basic examples is oriented to "novice" users and covering

many basic general use-cases typical of an "application"-oriented kind of
development.

n  Example B4
n  Simplified calorimeter with layers of two materials
n  Geometry with replica (G4PVReplica)
n  Scoring within layers in four ways: via user actions (a), via user own object (b),

via G4 sensitive detector and hits (c) and via scorers (d)
n  Geant4 physics list (FTFP_BERT)
n  Histograms (1D) and ntuple saved in the output file
n  Started from novice/N03 example

n  Example B5
n  A double-arm spectrometer with wire chambers, hodoscopes and calorimeters

with a local constant magnetic field
n  Geometry with placements with rotation, replicas and parameterisation
n  Scoring within wire chambers, hodoscopes and calorimeters via G4 sensitive

detector and hits
n  Geant4 physics list (FTFP_BERT) with step limiter
n  UI commans defined using G4GenericMessenger
n  Histograms (1D) and ntuple saved in the output file
n  Started from extended/analysis/A01

29
Geant4 Tutorial Introduction F.Longo

Scoring in Geant4

Geant4 Tutorial Introduction
F.Longo

30

31

Extract useful information
n  Given geometry, physics and primary track generation, Geant4 does proper

physics simulation “silently”.
n  You have to add a bit of code to extract information useful to you.

n  There are three ways:
n  Use user hooks (G4UserTrackingAction, G4UserSteppingAction, etc.)

n  You have full access to almost all information
n  Straight-forward, but do-it-yourself

n  Use Geant4 scoring functionality
n  Assign G4VSensitiveDetector to a volume
n  Hit is a snapshot of the physical interaction of a track or an accumulation

of interactions of tracks in the sensitive (or interested) part of your
detector.

n  Hits collection is automatically stored in G4Event object, and
automatically accumulated if user-defined Run object is used.

n  Use user hooks (G4UserEventAction, G4UserRunAction) to get event /
run summary

n  Using the G4 primitive scorers

Scoring I - M.Asai (SLAC) 32

Sensitive detector
n  A G4VSensitiveDetector object can be assigned to G4LogicalVolume.
n  In case a step takes place in a logical volume that has a G4VSensitiveDetector

object, this G4VSensitiveDetector is invoked with the current G4Step object.

n  You can implement your own sensitive detector classes, or use scorer
classes provided by Geant4.

Stepping	
Manager Physics	

Process Particle	
Change Step Track Logical	

Volume Sensitive	
Detector

GetPhysicalInteractionLength
SelectShortest

DoIt Fill
Update

Update
IsSensitive

GenerateHits

33

Defining a sensitive detector
n  Basic strategy

G4LogicalVolume* myLogCalor = ……;

G4VSensitiveDetector* pSensitivePart =

 new MyDetector(“/mydet”);

G4SDManager* SDMan = G4SDManager::GetSDMpointer();

SDMan->AddNewDetector(pSensitivePart);

myLogCalor->SetSensitiveDetector(pSensitivePart);

n  Each detector object must have a unique name.

n  Some logical volumes can share one detector object.

n  More than one detector objects can be made from one detector class with
different detector name.

n  One logical volume cannot have more than one detector objects. But, one
detector object can generate more than one kinds of hits.

n  e.g. a double-sided silicon micro-strip detector can generate hits for
each side separately.

Detector Sensitivities

March 2009
Geant4 Tutorial Introduction

F.Longo 34

Sensitive detector and hit

36

Sensitive detector and Hit

n  Each Logical Volume can have a pointer to a sensitive detector.

n  Then this volume becomes sensitive.

n  Hit is a snapshot of the physical interaction of a track or an accumulation of

interactions of tracks in the sensitive region of your detector.

n  A sensitive detector creates hit(s) using the information given in G4Step

object. The user has to provide his/her own implementation of the detector

response.

n  Hit objects, which are still the user’s class objects, are collected in a G4Event

object at the end of an event.

Hit class

38

Hit class
n  Hit is a user-defined class derived from G4VHit.
n  You can store various types information by implementing your own concrete Hit

class. For example:

n  Position and time of the step

n  Momentum and energy of the track

n  Energy deposition of the step

n  Geometrical information

n  or any combination of above

n  Hit objects of a concrete hit class must be stored in a dedicated collection which is
instantiated from G4THitsCollection template class.

n  The collection will be associated to a G4Event object via G4HCofThisEvent.

n  Hits collections are accessible

n  through G4Event at the end of event.

n  to be used for analyzing an event

n  through G4SDManager during processing an event.

n  to be used for event filtering.

39

Implementation of Hit class
#include "G4VHit.hh"
class MyHit : public G4VHit
{
 public:
 MyHit(some_arguments);
 virtual ~MyHit();
 virtual void Draw();
 virtual void Print();
 private:
 // some data members
 public:
 // some set/get methods
};

#include “G4THitsCollection.hh”
typedef G4THitsCollection<MyHit> MyHitsCollection;

Sensitive detector class

41

Sensitive Detector class
n  Sensitive detector is a user-defined class derived from G4VSensitiveDetector.

#include "G4VSensitiveDetector.hh"
#include "MyHit.hh"
class G4Step;
class G4HCofThisEvent;
class MyDetector : public G4VSensitiveDetector
{
 public:
 MyDetector(G4String name);
 virtual ~MyDetector();
 virtual void Initialize(G4HCofThisEvent*HCE);
 virtual G4bool ProcessHits(G4Step*aStep,
 G4TouchableHistory*ROhist);
 virtual void EndOfEvent(G4HCofThisEvent*HCE);
 private:
 MyHitsCollection * hitsCollection;
 G4int collectionID;
};

42

Sensitive detector
n  A tracker detector typically generates a hit for every single step of every single

(charged) track.
n  A tracker hit typically contains

n  Position and time
n  Energy deposition of the step
n  Track ID

n  A calorimeter detector typically generates a hit for every cell, and accumulates
energy deposition in each cell for all steps of all tracks.
n  A calorimeter hit typically contains

n  Sum of deposited energy
n  Cell ID

n  You can instantiate more than one objects for one sensitive detector class. Each
object should have its unique detector name.
n  For example, each of two sets of detectors can have their dedicated

sensitive detector objects. But, the functionalities of them are exactly the
same to each other so that they can share the same class. See examples/
extended/analysis/A01 as an example.

43

Step
n  Step has two points and also “delta” information of a particle (energy loss on the

step, time-of-flight spent by the step, etc.).

n  Each point knows the volume (and material). In case a step is limited by a

volume boundary, the end point physically stands on the boundary, and it

logically belongs to the next volume.

n  Note that you must get the volume information from the “PreStepPoint”.

Pre-step point
Post-step point

Step

Boundary

44

Implementation of Sensitive Detector
MyDetector::MyDetector(G4String detector_name)
 :G4VSensitiveDetector(detector_name),
 collectionID(-1)
{
 collectionName.insert(“collection_name");
}

n  In the constructor, define the name of the hits collection which is handled by this
sensitive detector

n  In case your sensitive detector generates more than one kinds of hits (e.g.

anode and cathode hits separately), define all collection names.

45

Implementation of Sensitive Detector
void MyDetector::Initialize(G4HCofThisEvent*HCE)
{
 if(collectionID<0) collectionID = GetCollectionID(0);
 hitsCollection = new MyHitsCollection
 (SensitiveDetectorName,collectionName[0]);
 HCE->AddHitsCollection(collectionID,hitsCollection);
}

n  Initialize() method is invoked at the beginning of each event.
n  Get the unique ID number for this collection.

n  GetCollectionID() is a heavy operation. It should not be used for every events.
n  GetCollectionID() is available after this sensitive detector object is constructed

and registered to G4SDManager. Thus, this method cannot be invoked in the
constructor of this detector class.

n  Instantiate hits collection(s) and attach it/them to G4HCofThisEvent object given
in the argument.

n  In case of calorimeter-type detector, you may also want to instantiate hits for all
calorimeter cells with zero energy depositions, and insert them to the collection.

46

Implementation of Sensitive Detector
G4bool MyDetector::ProcessHits
 (G4Step*aStep,G4TouchableHistory*ROhist)
{
 MyHit* aHit = new MyHit();
 ...
 // some set methods
 ...
 hitsCollection->insert(aHit);
 return true;
}

n  This ProcessHits() method is invoked for every steps in the volume(s) where this
sensitive detector is assigned.

n  In this method, generate a hit corresponding to the current step (for tracking
detector), or accumulate the energy deposition of the current step to the existing
hit object where the current step belongs to (for calorimeter detector).

n  Don’t forget to collect geometry information (e.g. copy number) from
“PreStepPoint”.

n  Currently, returning boolean value is not used.

47

Implementation of Sensitive Detector
void MyDetector::EndOfEvent(G4HCofThisEvent*HCE)

{;}

n  This method is invoked at the end of processing an event.

n  It is invoked even if the event is aborted.

n  It is invoked before UserEndOfEventAction.

Sensitive detector
vs.

primitive scorer

49

G4MultiFunctionalDetector

n  G4MultiFunctionalDetector is a concrete class derived from
G4VSensitiveDetector. It should be set to a logical volume as a kind of sensitive
detector.

n  It takes arbitrary number of G4VPrimitiveSensitivity classes. By registering
G4VPrimitiveSensitivity classes, you can define the scoring detector of your
need.

n  Each G4VPrimitiveSensitivity class accumulates one physics quantity for
each physical volume.

n  For example, G4PSDoseScorer (a concrete class of G4VPrimitiveSensitivity
provided by Geant4) accumulates dose for each cell.

n  By using G4MultiFunctionalDetector and provided concrete
G4VPrimitiveSensitivity classes, you are freed from implementing sensitive
detector and hit classes.

50

Sensitive detector vs. primitive
scorer

Sensitive detector
n  You have to implement your own

detector and hit classes.
n  One hit class can contain many

quantities. A hit can be made for
each individual step, or accumulate
quantities.

n  Basically one hits collection is made
per one detector.

n  Hits collection is relatively compact.

Primitive scorer
n  Many scorers are provided by

Geant4. You can add your own.
n  Each scorer accumulates one

quantity for an event.

n  G4MultiFunctionalDetector creates
many collections (maps), i.e. one
collection per one scorer.

n  Keys of maps are redundant for
scorers of same volume.

I would suggest to :
!  Use primitive scorers

!  if you are not interested in recording each individual step but accumulating some physics
quantities for an event or a run, and

!  if you do not have to have too many scorers.
!  Otherwise, consider implementing your own sensitive detector.

Primitive scorers

52

List of provided primitive scorers
n  Concrete Primitive Scorers (See Application Developers Guide 4.4.6)

n  Track length
n  G4PSTrackLength, G4PSPassageTrackLength

n  Deposited energy
n  G4PSEnergyDeposit, G4PSDoseDeposit, G4PSChargeDeposit

n  Current/Flux
n  G4PSFlatSurfaceCurrent, G4PSSphereSurfaceCurrent,G4PSPassageCurrent,

G4PSFlatSurfaceFlux, G4PSCellFlux, G4PSPassageCellFlux
n  Others

n  G4PSMinKinEAtGeneration, G4PSNofSecondary, G4PSNofStep

angle

V : Volume

L : Total step length in the cell.

SurfaceCurrent :
Count number
of
injecting
particles
at defined
surface.

SurfaceFlux :
Sum up 1/cos(angle)
of injecting particles
at defined surface

CellFlux :
Sum of L / V of
injecting particles
in the geometrical cell.

53

For example…
MyDetectorConstruction::Construct()
{ … G4LogicalVolume* myCellLog = new G4LogicalVolume(…);

G4VPhysicalVolume* myCellPhys = new G4PVParametrised(…);

G4MultiFunctionalDetector* myScorer = new
G4MultiFunctionalDetector(“myCellScorer”);

G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new
G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->Register(totalSurfFlux);

G4VPrimitiveSensitivity* totalDose = new G4PSDoseDeposit(“TotalDose”);

myScorer->Register(totalDose);

}
No need of implementing sensitive
detector !

Filter class

55

List of provided filter classes
n  G4SDChargedFilter, G4SDNeutralFilter

n  Accept only charged/neutral tracks, respectively
n  G4SDKineticEnergyFilter

n  Accepts tracks within the defined range of kinetic energy
n  G4SDParticleFilter

n  Accepts tracks of registered particle types
n  G4SDParticleWithEnergyFilter

n  Accepts tracks of registered particle types within the defined range of kinetic
energy

n  G4VSDFilter
n  Abstract base class which you can use to make your own filter
class G4VSDFilter
{
 public:
 G4VSDFilter(G4String name);
 virtual ~G4VSDFilter();
 public:
 virtual G4bool Accept(const G4Step*) const = 0;
…

56

For example…
MyDetectorConstruction::Construct()

{ … G4LogicalVolume* myCellLog = new G4LogicalVolume(…);
G4VPhysicalVolume* myCellPhys = new G4PVParametrised(…);

G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector(“myCellScorer”);

G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);

myCellLog->SetSensitiveDetector(myScorer);

G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux(“TotalSurfFlux”);

myScorer->Register(totalSurfFlux);

G4VPrimitiveSensitivity* protonSufFlux = new G4PSFlatSurfaceFlux(“ProtonSurfFlux”);

G4VSDFilter* protonFilter = new G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);

protonSurfFlux->SetFilter(protonFilter);

myScorer->Register(protonSurfFlux);

}

Work on Medical Physics Example
n  Check the Example documentation or the source code.

n  Find the geometrical info
n  Find the physics list
n  Find the particle source mechanism
n  Find the particle scoring mechanism

n  Start designing your application …

57
Geant4 Tutorial Introduction F.Longo

