Fluid Dynamics

Lecture II: Statics

Summary of previous lecture

- What is a fluid? definitions
- Properties (mass, weight, density)
- Ideal fluids vs Real fluids
- Viscosity is a very important fluid property
- Newton's law of viscosity: TAU is proportional to fluid mu and the velocity gradient
- Newtonian fluid vs Non-Newtonian fluid
- liquid (gases) have high (low) viscosity

Fluid Statics

- Fluid is at rest
- A static fluid can have no shearing force acting on it.
- The only forces are due to pressure.
- Any force between fluid and boundary must be acting at right angles (normal to).
- Fluid at rest is in equilibrium: sum of components of forces in any direction must be zero.

does pressure have a direction?

 FORCE is a vector (forces on box have different directions and magnitude)

• is PRESSURE a vector too?

Isotropy of Pressure

- In a fluid at rest, the tangential viscous stresses are absent and the only force is normal to the surface.
- The surface force per unit area (PRESSURE) is equal in all directions.
- Pressure at any point in a fluid at rest has a single value (is a scalar). This is known as Pascal's Law.

Gauss theorem (or the divergence theorem)

- relates the flow flux of a vector field through a surface to the behavior of the vector field inside the surface
- The outward flux of a vector field through a closed surface is equal to the volume integral of the divergence over the region inside the surface
- The sum of sources and sinks (divergence) will give you the outward flux

$$\iiint_{v} (\nabla \cdot F) dV = \iint_{A} F dA$$

Pressure variations for incompressible fluids

- P Po = -rho g (z zo)
- Applies to liquids (no need to consider compressibility unless dealing with large changes in z ... deep in the ocean)
- Applies to gases for small changes in z only
- P = rho g h Pressure related to the height h of a fluid column: Pressure head

Absolute and Gage Pressure

- Absolute
 - relative to absolute zero (perfect vacuum)
- if P < Patm we call it a vacuum

Pabs = Patm + Pgage

Pressure

- Atmospheric pressure is also called barometric pressure (I bar = 10^5 Pa). It varies with elevation and changes in meteo conditions
- Absolute pressure used for most problems related to gases/vapor
- Gage pressure related to liquids

Pascal's Law

• All points in a connected body of constant-density fluid at rest are under the same pressure if they are at the same depth below the liquid surface.

$$PI = P2$$

Pascal's Law

Input

if you apply pressure on a liquid, the pressure is transmitted equally and unchanged to all parts of the liquid.

Automobile Hydraulic Lift

diameter dI = 1.25cm diameter d2 = 25 cm

Areas: A I = I.22; A2=490 --> A2/A I = 400 --> F2=400 F I

If car is 6000N ---> FI = 6000N/400 = I5N to lift it $I0 \text{ cm} ---> 400 \times I0 = 40 \text{ m}!!$

Buoyancy force

- Pressure in the atmosphere decreases with height (hydrostatics)
- Pressure force on balloon: bottom greater than at top

- Buoyancy force is the difference
- There is always a buoyancy force in a fluid, and it is always positive.

- A force exerted by a fluid that opposes an object's weight
- force is equal to weight of fluid displaced by the object
- Fb = rho(fluid) $x g \times Vdisp$
- An object whose density (specific weight) is greater than that of the fluid in which it is submerged tends to sink ...

Buoyancy

is it easier to float in a pool or at sea?

• In equilibrium, the net Force must be zero, so that:

$$m g = \rho V_{disp} g = 0$$

If the buoyancy of an object exceeds its weight, it tends to rise. An object whose weight exceeds its buoyancy tends to sink.

Archimedes' principle indicates that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially submerged, is equal to the weight of the fluid that the body displaces.

Materials of human body (density Kg/l): muscle = 1.1; bone = 1.5; air = 0.0012

In fresh water (with air out): MEN all sink - WOMEN some float In fresh water (with air in): MEN some sink - WOMEN all float

Buoyancy and floating

A block of iron dipped in water will sink, while the same metal block shaped like a boat will float.

Buoyancy is thus related to the **density**, **volume** and **shape** of the immersed body.

If Fb = rho x g x V disp, what is volume of the displaced water? Stationarity -> Wboat = Fb = rho x g x V dispVunderwater = Wboat / (rho x g)

A curiosity ... (the Iceberg)

Roughly: rho-ice = 92% rho-water

(another curiosity in itself ...)

- It is in equilibrium,so that mg = Fb
- how much of the iceberg is submerged?

A curiosity ... (the Iceberg)

Roughly: rho-ice = 92% rho-water

(another curiosity in itself ...)

- It is in equilibrium,so that mg = Fb
- how much of the iceberg is submerged?

• 92% (... "you only see the tip of the iceberg ...")

Summary

- Fluid Statics
- Pascal's Law
- Absolute and Gage Pressure
- Buoyancy and Archimedes' Principle