
Fluid Mechanics

Lecture X: Vorticity Dynamics



Vorticity

• A vortex line is a curve in the fluid such that its tangent at
any point gives the direction of the local vorticity.

• A vortex line is related to the vorticity the same way a
streamline is related to the velocity vector.

• A vortex line satisfies the equations:
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=
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Vorticity

• A group of vortex lines bound a vortex tube.

• The circulation around a narrow vortex tube is

dΓ = ω ·dA (2)

• The strength of a vortex tube is defined as the circulation
around a closed circuit taken on the surface of the tube.

Γ =
∮
c
uidxi (3)



Vorticity

• IRROTATIONALITY does not imply the absence of viscous
stresses.

• In fact, viscous stresses must always exist in irrotational flows
for real fluids, because the fluid elements deform in such a
flow.



Vorticity

• If the flow is irrotational then the net viscous forces vanish on
the element.

• The only example of vorticity and no viscous stresses is that
of solid-body rotation.

• In solid-body rotation the fluid elements do not deform.

• Viscous stresses are proportional to the deformation rate, and
hence they are zero for this flow.

σij = µ(
∂ui
∂xj

+
∂uj
∂xi

) = 0 (4)



Kelvin’s Circulation Theorem

In an inviscid, barotropic flow with conservative body forces, the
circulation around a closed curve C moving with the fluid remains
constant in time (if the motion is observed from a nonrotating
frame).

DΓ

Dt
= 0 (5)



Assumptions

• inviscid flow: µ = 0

• conservative body forces: fi = ∇(−gz)

• Barotropic flow, Density is a function of pressure only:
ρ = ρ(p)

Reversible forms of compressibility are OK (pressure) but mixing is
irreversible and therefore ρ 6= ρ(T ,S).



Kelvin’s Circulation Theorem

Integrating around a closed contour:

DΓ

Dt
=
∮
c
[−dP +dg + 1/2d(uiui )] = 0 (6)

• P and g are single valued since they are reversible forms of
work

• uiui is single valued since ui is continuous



Kelvin’s Circulation Theorem

Circulation is the surface integral of vorticity. Integrating around a
closed contour:

DΓ

Dt
=

D

Dt

∫
A

ωidA = 0 (7)

or
∫
A ωidA is constant as we follow the flow.

If the flow is irrotational ωi = 0 the flow will remain irrotational
under the four assumptions:

• Inviscid flow

• Conservative body forces

• Barotropic flow

• Nonrotaing frame



Kelvin’s Circulation Theorem

• Inviscid flow: Circulation is preserved if there are no net
viscous forces along the path followed by C. If C moves into
viscous regions such as boundary layers along solid surface,
then circulation changes. Viscous effects cause diffusion of
vorticity in or out of the fluid circuit, thereby changing the
circulation.

• Conservative body forces: gravity acts through the centre
of mass of a fluid particle and therefore does not rotate it.



Kelvin’s Circulation Theorem

• Barotropic flow: in a baroclinic flow, lines of constant p and
ρ are not parallel, and the net pressure force does not pass
through the centre of mass creating a torque which changes
the vorticity and circulation. Geophysical flows, which are
dominated by baroclinicity, are full of vorticity. Examples:
heating from below creates a buoyant force generating a
plume (ρ = ρ(T )), cooling from above will generate rolls and
vorticity.

• Nonrotating frame: motions observed with respect to a
rotating frame of reference can developed vorticity through
Coriolis (shown later).



Vorticity Equation in a Nonrotating frame

• The flow is barotropic

• we retain viscous effects

• baroclinicity and the effect of a rotating frame of reference
will be dealt in the next derivation.

Vorticity is ω = ∇xu and its curl is zero ∇ ·ω = 0. The rate of
change of vorticity is:

D

Dt
ω = (ω ·∇)u + ν∇

2
ω (8)

where the first term on the r.h.s. is the rate of change of vorticity
due to stretching and tilting of vortex lines, and the second term is
the rate of change of vorticity due to diffusion of vorticity.



Vorticity Equation in a Rotating frame

• The flow is nonbarotropic

• We use a rotating frame of reference.

• We still approximate to a nearly incompressible Boussinesq
fluid so that the contonuity equation is ∇ ·u = o

• Continuity is ui ,i = 0

• The momentum equation is

∂ui
∂ t

+ujui ,j + 2εijkΩjuk =−(1/ρ)p,i +gi + νui ,jj (9)

• after some manipulation we get to

∂ui
∂ t

+ (1/2u2j + Π),i − εijkuj(ωk + 2Ωk) =−(1/ρ)p,i −νεijkωk,j

(10)
This is a form of the N-S equation, and we now take its curl.



Vorticity Equation in a Rotating frame

D

Dt
ω = (ω + 2Ω) ·∇u + (1/ρ

2)∇ρ ∧∇p+ ν∇
2
ω (11)

This is the Vorticity equation for a nearly incompressible fluid
(Boussinesq) in rotating coordinates.

1 1st term is the rate of change of relative vorticity following a
fluid particle

2 2nd term is Absolute Vorticity

3 3rd term is the rate of change due to baroclinicity of the flow

4 4th term is the rate of change due to diffusion

(ω + 2Ω) ·∇u is a crucial term in the vorticity dynamics.



Vorticity Equation in a Rotating frame

(ω ·∇)u = ω
∂u

∂ s
(12)

= the magnitude of ω times the derivative of u in the direction of
ω

(ω ·∇)u = ω
∂us
∂ s

+ ω
∂un
∂ s

+ ω
∂um
∂ s

(13)

.
The first is the increase of us along the vortex line s (stretching of
vortex line). The second and third represent the change of normal
velocity components along s: rate of turning and tilting of vortex
lines about the m and n axes.



Vorticity Equation in a Rotating frame

2(Ω ·∇)u = 2Ω
(

∂u

∂z

)
(14)

The third term says that stretching of fluid lines in the z direction
increases ωz .
The first and second say that turning and tilting of fluid lines
increase the relative vorticity along x and y. Here only fluid lines
have to tilt/turn. This is because vertical fluid lines contain
planetary vorticity 2Ω.


