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The Fourier Transform &
some useful functions

Organized in 3 parts:
Part 1 — the Fourier Transform
Part 2 — convolution

Part 3 — some useful functions

Source:

Ronald N. Bracewell, The Fourier Transform and its
applications, 3 edition, McGraw-Hill, 2000




- Part 1 — the Fourier Transform

Source: Ronald N. Bracewell, The Fourier
Transform and its applications, 3rd edition,

McGraw-Hill, 2000
Chapter 2




The Fourier Transform

Suppose we have a one-dimensional function f(x),
representing a physical quantity

We will define F(s), the Fourier transform of f(x), as:

F) = |~ flx)e 2 dx
This is sometimes written as:
Flf(x)]=F(s),or
f(x) 2 F(s)

Notice that s describes the frequency of the oscillating

term and is equal to the number of cycles per unit of x



The Fourier Transform

The Fourier Transform is somehow reversible, i.e. :

o

F(s) =] __ f(x)e ™ dx

o

f(x) = J F(s)e*™ ds.

The second equation can be written as:
fG) =FHF(s)], or
F(s) c f(x)
Regarding these definitions, sometimes we shall say that:

F(s) is the minus-i transform of f(x)
f(x) is the plus-i transform of F(s)



Oddness and Evenness

Let us remind that

a function E(x) such that

E(.X') — E(—X) e E()

symmetrical, or even
function

a function O(x) such that
O(x) =—-0(—x) isa

O(x)

antisymmetrical, or odd

function \/\/

Fig. 2.2 An even function E(x) and an odd function O(x).




Oddness and Evenness

Any function f(x) can be split unambiguously into its even

[E(x)] and odd [O(x)] parts, f(x) = E(x) + O(x), where:
E(x) = 3[f(x) + f(—x)] O(x) = 3[f(x) = f(—x)]

Odd part \»,r"’\

—f(-x)

Fig. 24  Constructions for the even and odd parts of a given function flx).



Oddness and Evenness

Since f(x) = E(x) + O(x), then F(s) = F|f(x)] can

be written as:

2 [ ’ E(x) cos (2mxs)dx — 2i [ P 0(x) sin (27xs) dx
0 0 D

cosine transform of E(x) i sine transform of O(x)
(defined for s>0) (defined for s>0)

It is immediately noted that if f(x) is even, then F(s) is
even and if f(x) is odd, then F(s) is odd

Another important fact is that if f(x) is even, then the
+i transform is actually the same as the —i transform



Oddness and Evenness

In general f(x) [and thus E(x) and O(x)] can have
complex values. Thus, the following scheme applies:

f(x)
Real and even
Real and odd
Imaginary and even
Complex and even
Complex and odd
Real and asymmetrical
Imaginary and asymmetrical
Real even plus imaginary odd
Real odd plus imaginary even
Even
Odd

F(s)
Real and even
Imaginary and odd
Imaginary and even
Complex and even
Complex and odd
Complex and hermitian”
Complex and antihermitian
Real
Imaginary
Even
Odd

* hermitian = real part is even, imaginary part is odd

** antihermitian = real part is odd, imaginary part is even



- Part 2 — convolution

Source: Ronald N. Bracewell, The Fourier
Transform and its applications, 3rd edition,

McGraw-Hill, 2000
Chapter 3



Convolution

The convolution of two functions f(x) and g(x) is

or briefly,

[* fuigtx - wya,

f(x) * g(x).

The convolution itself is also a function of x, let us say h(x).

f(x)

8(x)

- —

flu)

F——— //\\‘_g(x_u)

- 4 \
N L fluglx - u)

—
-
-
-
-
-
—
—-—

P —
—
—

Fig. 3.1 The convolution integral h(x) = f(x) * g(x) represented by a shaded area.



Graphical construction for convolution

I 7 N

e |

movable piece of paper with a graph of f(x) plotted backwards




Convolution as smoothing

In some contexts, convolution means smoothing

In the following example h(x) is
smoother
more spread out
with less total variation

as compared with f(x)
8(x)

Fig. 3.2  Illustrating the smoothing effect of convolution (h = f * g).



Properties of convolution

convolution is commutative; that is,
f*8=8*f,
or to flu)g(x — u)du = Eﬂ g(u)f(x — u)du. D

Convolution is also associative (provided that all the convolution integrals exist),
fr@*h)y=(f*g)*h,
and distributive over addition,
fr(g+h)=fxg+ fx*h

The abbreviated notation with asterisks (*) thus proves very convenient in for-
mal manipulation, since the asterisks behave like multiplication signs.



- Part 3 — some useful functions

Source: Ronald N. Bracewell, The Fourier
Transform and its applications, 3rd edition,

McGraw-Hill, 2000
Chapter 4




The rect function 11 (x)

the rectangle function of unit height and base is

defined as:
0 x| >3
I(x) = x| = 3)
1 x| <3
I(x)
(N

Fig. 4.1  The rectangle function of unit height and base, Il(x).



The rect function 11 (x)

It provides simple notation for segments of functions which have simple expres
sions, for example, f(x) = Il(x) cos@x is compact notation for

0 x < —3
f(x) = { cos mx -1<x<!
0 1< x
f(x)

Fig. 4.2 A segmented function expressed by I1(x) cos wrx.



The rect function 11(x)

AN (E—g—‘i)

A
&
Y

Fig. 4.3 A displaced rectangle function of arbitrary height and base expressed in
terms of Il(x).



The triangle function A(x)

the triangle function of unit height and area is
defined as:

)0 x| > 1
Aty = {1 ~ x| |x] <1

Note that hA(x/3b) is a triangle function of height h, base b, and area hb.

A(x)

Fig. 4.4  The triangle function of unit height and area, A(x).



The interpolating function sinc(x)
o

We define

SIN7TX
wX i

sinc x =
a function with the properties that
sinc0 = 1,

sincn =0 n = nonzero integer

(s o)
j sinc xdx = 1.

00

sSINC X




The square of sinc(x)
o

. 2
o . SINTX
-1 Of note is also sinc*x =( = )

"1 Among the properties of sinc’ x are the following:
sinc0 =1

sinn =0  n = nonzero integer

[°° sinc® x dx = 1.

sinc? x




Homework

Prove the equations marked with a [4].

Show that:

if f(x) is even, then its (-i) Fourier Transform and its
inverse (+i) Fourier transform coincide

if f(x) is real and even, then F(s) is real and even.
if f(x) is real and odd, then F(s) is imaginary and odd.

Calculate the convolution h(x)= aE(ax) = bE(8x) Where
E(x) is a truncated exponential function:

E(x) = {g“ x>0

< 0.
Show that if f(x)is real, x

[ sescmax = [ moopax— [~ (oporas,

and note that the left-hand side 1s the central value of the self-convolution of f(x); that

is, f * flo
Show that the first derivative of A(x) is given by

A(x) = l'l( )qgnx



ErrataCorrige (Bracewell, 37 edition)

THE FOURIER TRANSFORM AND FOURIER’S INTEGRAL THEOREM

The Fourier transform of f(x) is defined as

j‘; Fla)e R g,

This integral, which is a function of s, may be written F(s). Transforming F(s) by

the same formula, we have
s [ (5)
J }g(i)e—iwas dS.
f(x) i

When}%{) is an even function of x, that is, when f(x) = f(—x), the repeated trans-
formation yields f(w), the same function we began with. This is the cyclical prop-
erty of the Fourier transformation, and since the cycle is of two steps, the recip-
rocal property is implied: if F(s) is the Fourier transform of f(x), then f(x) is the
Fourier transform of F(s).

The cyclical and reciprocal properties are imperfect, however, because when
f(x) is odd—that is, when f(x) = —f(—x)—the repeated transformation yields
f(—w). In general, whether f(x) is even or odd or neither, repeated transformation
yields f(—w).



Correct (Bracewell, 2" edition)

The Fourier transform and Fourier’s integral theorem

The Fourier transform of f(z) is defined as

/ _: f(z)e—27=* dz.

This integral, which is a function of s, may be written F(s). Transform-
ing F(s) by the same formula, we have

[ " F(s)eror ds,

When f(x) is an even function of z, that is, when f(z) = f(—z), the
repeated transformation yields f(w), the same function we began with.
This is the cyclical property of the Fourier transformation, and since the
cycle is of two steps, the reciprocal property is implied: if F(s) is the Fourier
transform of f(z), then f(z) is the Fourier transform of F(s).

The cyclical and reciprocal properties are imperfect, however, because
when f(z) is odd—that is, when f(z) = —f(—z)—the repeated transforma-
tion yields f(—w). In general, whether f(z) is even or odd or neither,
repeated transformation yields f(—w).
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More useful functions & Fourier
Transforms

Organized in 5 parts:
Part 1 — the impulse symbol 0(x)
Part 2 — the sampling or replicating symbol I//(x)

Part 3 — some useful Fourier transforms

Part 4 — theorems on the Fourier transform

Part 5 — more transforms involving O(x)
Source:

Ronald N. Bracewell, The Fourier Transform and its
applications, 3™ edition, McGraw-Hill, 2000




- Part 1 — the impulse symbol 0(x)

Source: Ronald N. Bracewell, The Fourier
Transform and its applications, 3rd edition,

McGraw-Hill, 2000
Chapter 5




The Dirac delta

Often in physics we need to represent an impulse
infinitely concentrated in time (or space), such that

8(x) =20 x#0

J.L d(x)dx = 1.

the impulse symbol 0(x) is commonly referred to as the
“Dirac delta”

Please note that the impulse symbol 0(x) does not
represent a function, since its value is undefined for x=0

Dirac coined the term “improper function” while today we
speak of a generalized function



The Dirac delta and the Heaviside step
function

Considering the definition of the Dirac delta the
following identity is found:

Ji 8(x")dx' = H(x)

Thus, one can state that

5(x) = 1 H(x)

i.e. the Dirac delta “is the derivative of” the
Heaviside step function



The Dirac delta as a generalized
function

Consider 7 'T(x/7)

It is a rectangle function of height T-!, base T and unit
area

As T tends to small values, this function gets taller and
narrower, while keeping unit area

Fn()

———I-———‘

—----J--——-—_

q
H
[ 3]
|
———— e ———

- ————




The Dirac delta as a generalized
function

The Dirac delta can be considered as the limiting
case of this unit-area rectangle functions sequence:

lim 71 (i)
T—0 T

Other sequences that lead to the Dirac delta when
T — 0 are for instance:

~1 ,— /s’
[ ] [ ] [ ] T L
unit-area Gaussian profiles
° ° ° ""l x
unit-area triangle functions T A -
° ° ° - N x
unit-area sinc functions . =

| | (check that all the functions above have unit area)



Graphical representation of 0(x)
N

§(x)

Fig. 53  Graphical representation of the
l _ ] impulse symbol &(x) as a spike of
x unit height.




O &
O \0\:’0‘&\"‘
)
s%.’&«z-.:.:..%.w/}

&L

The sifting property

Let us now consider j: 8(x)f(x) dx.

Thus we substitute the sequence 7~ '[1(x/7) for §(x), perform the multiplication
and integration, and finally take the limit of the integral as 7 — 0:

lim [* 7 (;) £(x) dx.

integrand p— 7 N(F)f)

7!

the area under the integrand
fx) approaches f(0) as T — 0, i.e.:

|” st ax = £0)

—— ——

h—11(7)f)

shaded area = 1 f(0) / ]

//
S

Fig. 52 Explaining the sifting property. The shaded area is approximately 7f (0).




The sifting property as a convolution

The sifting property implies also that
|~ 8x - a)f () dx = fa G
|” s0fx - ayax = f(-a)

The same concept can be written as a convolution
tc 8(x")f(x — x")dx" = I_L 8(x — x')f(x")dx" = f(x)
or, using the asterisk notation

6(x) * f(x) = f(x) * 8(x) = f(x)



Other properties of O(x)

Considering 0(x) as the limiting case of a sequence,
L 1
it's easy to show that sayx) = o 5x). [

In the particular case a = —1 this reduces to §(—x) = 6(x)

if f(x) is continuous at x = 0,
f(x) 8(x) = f(0) 8(x)
From the sifting property, putting f(x) = x, we have
Iiﬂ x6(x)dx = 0.

One generally writes
x8(x) =0,



Part 2 — the sampling or replicating

symbol 11l(x

Source: Ronald N. Bracewell, The Fourier
Transform and its applications, 3rd edition,

McGraw-Hill, 2000
Chapter 5



The shah symbol 11/(x)

Let us consider an infinite sequence of unit impulses

spaced at unit interval. This can be described by the shah
symbol Ill(x):

no

i(x) = > &x — n)

n——2

II(x)

—

A

i x
Fig. 5.4  The shah symbol Ill(x).

’The symbol I11 is pronounced shah after the Cyrillic character III, which is said to have been modeled
v
on the Hebrew letter iz:’ (shin), which in turn may derive from the Egyptian \?? Y ¢ |, a hiero-

glyph depicting papyrus plants along the Nile



Properties of Ill(x)
N

Various obvious properties may be pointed out:

Ii(ax) = al Ea(r - —)

HI(—x) = II(x)
I(x + n) = M(x) n integral
H(x = 3) = I(x + 3)

n+i
Lﬂmmm=1

li(x) =0  x # n.
Evidently, IlI(x) is periodic with unit period.



The sampling property of I1l(x)

A periodic sampling property follows as a generalization of the sifting inte-
gral already discussed in connection with the impulse symbol. Thus multiplica-
tion of a function f(x) by IlI(x) effectively samples it at unit intervals:

HI(x)f(x) = i | f(n) &(x — n).

The information about f(x) in the intervals between integers where IlI(x) = 0 is
not contained in the product; however, the values of f(x) at integral values of x
are preserved (see Fig. 5.5).

f(x) II(x)f(x)
A

_. VS, .

X X

Fig. 5.5  The sampling property of I11{x).



The replicating property of Ill(x)

Just as important as the sampling property under multiplication is a replicat-

ing property exhibited when III(x) enters into convolution with a function f(x).
Thus

(¢ &

Mi(x) * f(x) = >, f(x = n);

n==0oo

as shown in Fig. 5.6, the function f(x) appears in replica at unit intervals of x ad

infinitum in both directions. Of course, if f(x) spreads over a base more than one
unit wide, there is overlapping.

f(x) Ii(x) * f(x)

X X

Fig. 5.6  The replicating property of IIl(x).



- Part 3 — Fourier pairs

Source: Ronald N. Bracewell, The Fourier
Transform and its applications, 3rd edition,

McGraw-Hill, 2000
Chapters 6-7



Fourier pairs

Some useful Fourier Transforms are:
e—TL'.X'2 - e—TL’S2
sinc x D I1(s)
sinc? x D A(s)
6(x) o1 =H(|s])
111 (x) D 1II(s)

Since these are all even functions, the +i transform is actually the

same as the —i transform and thus we have also:
2 2

e—T[X - e—T[S
[1(x) D sinc s
A(x) D sinc? s
1 =H(|x|) 2 (s)
I11(x) > HI(s)

These functions are said to be Fourier pairs



Fourier Pairs




Fourier Pairs

&(s)

[




- Part 4 — Theorems on the Fourier
transform

Source: Ronald N. Bracewell, The Fourier
Transform and its applications, 3rd edition,

McGraw-Hill, 2000
Chapter 6



SIMILARITY THEOREM

If f(x) has the Fourier transform F(s), then f(ax) has the Fourier transform
la|"*F(s/a).

&

VALY N

Fig. 6.2  The effect of changes in the scale of abscissas as described by the simi-
larity, or abscissa-scaling, theorem. The shaded area remains constant.




ADDITION THEOREM

If f(x) and g(x) have the Fourier transforms F(s) and G(s), respectively, then
f(x) + g(x) has the Fourier transform F(s) + G(s).

o

f F

l l /\

x e N S

X G

| A | ——’l/—_-\]
f+x F+G

I | | |

- T

Fig. 6.5 The addition theorem f + ¢ D F + G.



SHIFT THEOR

EM

If f(x) has the Fourier transform F(s), then f(x — a) has the Fourier transform

e 2m=F(s).

o

Imaginary

Real

X

Imaginary

Real

<!(x\~%)
X

Imaginary

S

Imaginary

)ﬁz -

]

mod F(s)

—T

W
pha F(s)

=~

... S

SR

Slope 7/2



CONVOLUTION THEOREM

If f(x) has the Fourier transform F(s) and g(x) has the Fourier transform G(s), then
f(x) * g(x) has the Fourier transform F(s)G(s); that is, convolution of two functions
means multiplication of their transforms.

Quite remarkably, the converse holds as well: D
f(x)*g(x) DF(s)G(s) and also
fx)gx) 2 F(s) * G(s)

f(x) W /\ F(s)
' : b ' oy S

o ... N /‘%\ G(s)
. g I SR

fx) * g(x) e

TS FRTEFEE ik 1HEHART




RAYLEIGH'S THEOREM

The integral of the squared modulus of a function is equal to the integral of the
squared modulus of its spectrum; that is,

[~ ifeorax= |

oL

. |F(s)|* ds.

J(x) E(s)

[fO)P |F(s)]2

1

Fig. 6.9 Rayleigh’s theorem: the shaded areas are equal.



- Part 5 — more transforms involving O(x)

Sources: Ronald N. Bracewell, The Fourier Transform
and its applications, 3rd edition, McGraw-Hill,

2000

http: / /www.thefouriertransform.com/




Transforms involving Dirac delta

Let us consider again the Fourier Pair:

O(x) D 1

1 D o)
If we write out the second identity using the
definition of Fourier transform, we have:

1 D 9ofs)

5(s) = j +: e dx
By changing the name of the variables, we obtain
the so-called integral representation of the Dirac

d IT 4 +00 .
TIH 5() =" du



Transforms involving Dirac delta

Let us consider again the Fourier Pair:
O(x) D 1
1 D o)

1 T &(s)
| | ] ]

More general relations involving Dirac delta are:
O(x-a) D e2Mes (by virtue of the shift theorem)
e2nibx 5 §(s-b) (follows from definition) D




Fourier Transform of cos(7x)

e 12nbx+e —i2whbx

Since cos(2mbx) = , it follows:
cos(2mbx) D %[6(5 —b)+6(s+Db)] D
1 1 1\1 _
cos(mx) D x [5 (S — E) + 6 (s + E)] = |l(s)
COS X - 1i(s)

. ./ R N B

n(x) = 38(x + 3) + 38(x — 3) is the even impulse pair

note: do not confuse with the rectangle function I1 (s)



Fourier Transform of sin(rx)

e lanx_e —i2mbx

Similarly since sin(2mbx) = , it follows:

2i
sin(2mbx) D 2%_[6(5 —b)—6(s+Db)] D
sin(mrx) D 2%[6 (S — %) —0 (S + %)] =i ly(s)
L sin mrx - ily(s)

Y *

(x) = 38(x + ;) — }8(x — 3) is the odd impulse pair



Homework

Prove the equations and the theorems marked with [/}

Check that an imgnedia're gpplicq’rion of the similarity
theoremto e™™* D ™™ is:

g { Y 20sx = S/ p
f e fr{nT(, 125X Jae = i“l 1[, 7rs a)‘.
x

verify that in the limit a — 0 this implies 1 D §(s)
By using the definition of the Fourier Transform, show
that: I1(x) D sinc s
Try to show the following identity:
sinc(x) * sinc(x) = sinc(x)

1) by using the definition of convolution
(don’t waste your time... give up immediately, it’s just
to realize that’s not easy)

2) by using the convolution theorem (that’s easyl)
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Practical Use of Fourier Transforms

Organized in 2 parts:
Part 1 — the time and frequency domains

Part 2 — transforming images: the space and spatial
frequency domains

Sources:

T.A.Gallagher, A.J.Nemeth, L.Hacein-Bey An Introduction
to the Fourier Transform: Relationship to MRI AJR:190
(2008) 1396-1405

http: / /www.imaios.com/en /e-Courses/e-MRI /The-
Physics-behind-it-all /Fourier-transform

http: / /www.thefouriertransform.com/

http: / /www.ysbl.york.ac.uk /~cowtan /fourier /fourier.html




- Part 1 — the time and frequency domains

Sources: T.A.Gallagher, A.J.Nemeth, L.Hacein-Bey An
Introduction to the Fourier Transform: Relationship to MRI

AJR:190 (2008) 1396-1405

http: / /www.imaios.com /en /e-Courses/e-MRI /The-Physics-
behind-it-all /Fourier-transform




Oscillations

Often a physical quantity is an oscillating function of time, the
most obvious example being the simple harmonic motion:

) " X(t) = Acos(awt)
M—O 5 ol 1

A0 A )
o= 2—” =27V

T

1
V==

T

A is the amplitude of the oscillation
T is the period and it is measured in s
vis the frequency and it is measured in Hertz (1 Hz= 1s')



The time and frequency domains

By performing the Fourier Transform of an harmonic oscillation we
represent it in a diagram indicating the amplitude as a function of
the frequency (here the negative frequencies are disregarded)

NOTE: In this and in the !
ot following slides we will use

: histograms to represen’rzrhe
oe{ FT in the frequency domain

frequency (Hz)

The descriptions in the two domains (time or frequency) are
equivalent, thanks to the reversibility of the Fourier Transform



The time and frequency domains

The representation in the frequency domain is particularly useful in
the case of complex oscillations (sum of harmonic oscillations), eg:

X(t) = cos(2rt) + cos(4rxt) + cos(6xt) + cos(8xt)

2fF ]

E ] 0.6(—
N3 B I
F ] 04l
of = i

F ] 02—

-1 =

20 v v o0y by s by by . 0.0 | |
0 1 2 3 4 0 2 4

time (s) frequency (Hz)
Also in this case the two diagrams contain exactly the same
information (even if the one on the right hand side looks simpler)



The time and frequency domains

No information is gained or lost in the two domains:

we merely change the way we see the same information

A
 AVAVAVAVAVAVA
+ C
g(d) J\/\N\/\ﬂW:A+B+c=g(ﬂ
Fourier Transform
- A AT
e | o f] e =] atpea
<1 N RSN -
<— Inverse Fourler Transform:
T -3f, —2f  —f_ f 2f 3f
9 G(f) g(t) = j G(f)e’* " df

Time Domain Frequency Domain



The time and frequency domains

In general, the Fourier transform allows to represent whatever signal
(even non-periodic) in the frequency domain.

In a sense, the signal is decomposed as a sum of harmonic oscillations,
weighted with appropriate coefficients (Fourier theorem).

The Fourier transform allows us to study the frequency content of a variety of

0.0 PRI PRI PRI PO Y PPN PRI I A I s o | e e |
0 1 2 4 5

frequency (Hz)

time (s)



Example: MR spectroscopy

Multiple neuronal metabolites resonate at characteristic frequencies on the
basis of their unique chemical structure.

The so-called echo is a composite signal of many different oscillations from
metabolites in the ROI, which is resolved into individual resonance frequencies
and their relative amplitudes (abundance) by the Fourier transform

Amplitude
Echo N
| FT
4 —>

Frequency (ppm)




Part 3 — the space and spatial

frequency domain

Sources: T.A.Gallagher, A.J.Nemeth, L.Hacein-Bey An
Introduction to the Fourier Transform: Relationship to

MRI AJR:190 (2008) 1396-1405

http: / /www.imaios.com /en /e-Courses/e-MRI /The-
Physics-behind-it-all /Fourier-transform

http: / /www.ysbl.york.ac.uk /~cowtan /fourier /fourier.html



Transforming images

The possibility to utilize Fourier transforms also applies to:
functions of space (rather than functions of time)

functions of several variables.

In particular, Fourier transforms also apply to 2D images, which are
defined in the plane (i.e. are functions of 2 space variables )

In general, the Fourier domain will have the same number of
dimensions of the domain where the original function is defined
(real space), and reciprocal units (reciprocal space)

In the case of images, the Fourier domain (reciprocal space) is the
domain of the 2D spatial frequencies. If the measurement units in
real space are mm (typical for medical images) the measurement
units in Fourier space are cycle/mm (in radiology line pair per mm

or lp/mm)



Spatial frequencies (lp/mm)

In medical imaging, the spatial frequencies are often
defined in terms of "line pairs per millimeter”, Ip/mm

A line is either a dark line or a light line; a line pair
comprises a dark line and an adjacent light line.




Spatial frequencies

line pairs/mm

cyles/mm

FIGURE 10-17. The concept of spatial fre-
gquency. A single sine wave (bottom) with
the width of one-half of the sine wave,
which is equal to a distance A. The com-
plete width of the sine wave (2A) corre-
sponds to one ¢ycle. With A measured in
millimeters, the corresponding spatial fre-
quency is F = %.. Smaller objects (small A)
correspond to higher spatial frequencies,
and larger objects (large A) correspond to
lower spatial frequencies. The square wave
(top) is a simplification of the sine wave,
and the square wave shown corresponds to

a single line pair.



Transforming images

Image Fourier Transform
space domain spatial frequency domain
2D real space 2D reciprocal space
mm (k-space)

cycle/mm or lp/mm



Transforming images

One pixel in k-space, when inverse- -
transformed, contributes a single, specific
spatial frequency (alternating light and

dark lines) to the entire image.

A 2D inverse Fourier transform of the entirety of k-space
combines all spatial frequencies, and results in the image we
see.

Depending on where a pixel resides in k-space, the lines will
be of varying frequency and orientation. By convention, high
spatial frequencies are mapped to the periphery of k-space
and low spatial frequencies are mapped near the origin.

The relative intensity of a pixel reflects its overall contribution
to the image, with brighter pixels contributing more of a
particular spatial frequency.



FT of a white canvas

Fourier transform of a blank canvas (left) is one
bright dot at the origin in the Fourier space (right)



FT of a single spatial frequency image

Fourier transform of a single spatial frequency in the
image domain is simple.

Three bright dots are seen in the Fourier space as a
consequence of symmetry properties inherent to the
Fourier transform
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FT of Abraham Lincoln

"1 Remember: a single pixel in the image does not have o
single pixel correlate in the Fourier space.

=1 Rather, each pixel in Fourier space contributes a spatial
frequency to the overall image of Lincoln



Inverse FT
=g




FT of a blurred disk

f(x,y) F(k,k,)




FT of a sharp disk

f(x,y) F(k,k,)







Homework

Prove the equations and the theorems marked with Ef]
Check that an immediate czzlpplicq’rion of the similarity

1tz 1Lz
theoremto e ™™ D e 5 js:
f ¢ fr{m'T(, 12msx dx = i“l 1[,—11'(5,:?)‘.

X
verify that in the limit a — 0 this implies 1 D §(s)

By using the definition of the Fourier Transform, show
that: T[1(x) D sinc s
Try to show the following identity:

sinc(x) * sinc(x) = sinc(x)

1) by using the definition of convolution
(don’t waste your time... give up immediately, it’s just
to realize that’s not easy)

2) by using the convolution theorem (that’s easyl)
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