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Part I - Impulse response function



1D or 2D?

 So far we have introduced a number of mathematical 
tools

 Fourier Transforms

 Convolution, Cross Correlation and Autocorrelation

 Useful functions and generalized functions

 All of them have been introduced with reference to 1D,
1-dimensional functions (f(x), (x), III(x), etc.)

 In principle, to deal with images we should consider 2D 
functions (f(x,y), 2(x,y), 2 III(x,y), etc.)

 However, to keep notation simple, we will stick to 1D 
functions, and generalize to 2D only when really 
necessary



Imaging System

 In the following, we will consider a medical imaging 
system as a “black box” that receives an input signal 
and produces an output image

 The theory will be developed with reference to a 
planar x-ray radiographic system, which is the oldest 
and possibly the simplest system.

 The same approach can however be applied also to 
more complex systems.

Imaging system

Input image

(distribution of x-ray quanta)

output image

(either analog or digital)



Images

 We will distinguish among 3 different image types:

 Analog image d(x)

 Expressed as a function of the position variable x

 Arbitrary units (optical density in a film, intensity on a monitor, 
etc.)

 Digital image dn

 Represents image intensity at a particular pixel identified by n

 Dimensionless (just numbers)

 Quantum image q(x)

 Spatial distribution of quanta (function of the position variable x)

 Dimensions: 

 1/length (for a 1D quantum image)

 1/area (for a 2D quantum image)

 Statistical properties (Poisson statistics)



Linear Systems

 We will assume the imaging system S{  } be a linear 

system, i.e.

for any real constant a, which is sometimes summarized 

as “the output is proportional to the input”.

Imaging system

S{ }
input

h(x)

output

S{h(x)}

and



Linear systems as an approximation

 Generally speaking, no real imaging system is 

actually linear, and the linear system approach must 

be considered as an approximation

 However, many systems which are not strictly linear

 Can be linearized by means of an appropriate 

calibration 

 Can be considered linear provided the amplitude of 

the input signal is sufficiently small



Impulse response function irf(x, x0)



The superposition principle

 For any input expressed as a superposition of many 

impulse functions, the output of a linear system will 

consist of the superposition of one irf for each input 

impulse

 A simple example:



The superposition principle

 More generally, let us consider the case in which the 
input is represented by an arbitrary function h(x)

 Since it is readily shown that:

 The latter is said the superposition integral

 Thus the irf contains all the information about an 
imaging system necessary to describe its response to 
any input h(x)
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Linear and shift-invariant systems

 The imaging system will be assumed also to be shift-
invariant (isoplanatic), which means that a particular 
structure will appear the same, regardless of where in the 
image it is placed

 Virtually all imaging systems are (approximately) shift-
invariant, and if they are not, it is always possible to restrict 
the analysis to a central region where they are reasonably 
so.

 Shift-invariant imaging systems must have a shift-invariant 
irf, which means that the shape of the irf is independent of 
the position x0 , i.e. it only depends on the distance of x 
from x0:

irf(x,x0) = irf(x-x0)



Linear and shift-invariant systems

irf(x,x0)=irf(x-x0)

Shift-invariant system Non-Shift-invariant system

x
x1

(x-x1)

impulse

x
x1

irf(x,x1)

impulse response

x
x2

(x-x2)

impulse

x
x2

irf(x,x2)

impulse response

x
x1

(x-x1)

impulse

x
x1

irf(x,x1)

impulse response

x
x2

(x-x2)

impulse

x
x2

irf(x,x2)

impulse response

irf(x,x0) really depends on x0



 When the irf is shift-invariant, the superposition integral

can be written as

which is actually a convolution integral

The convolution integral
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 Ian A. Cunningham, Chapter 2 in Handbook of 
medical imaging.
Volume 1, Physics and psychophysics.
Richard Van Metter, Jacob Beutel, Harold Kundel, 
editors.

Part II – System characteristic 

functions



A special case: a sinusoidal input

 Let us consider the special case of an input that varies 
sinusoidally with the position, i.e.

where u is the spatial frequency (cycles/mm). 
The output d(x) is:

ℎ 𝑥 = 𝑒𝑖2𝜋𝑢𝑥 = cos 2𝜋𝑢𝑥 + 𝑖𝑠𝑖𝑛(2𝜋𝑢𝑥)

 Thus:

𝑑 𝑥 = 𝑆 ℎ 𝑥 = ℎ 𝑥 ∗ 𝑖𝑟𝑓 𝑥 = න
−∞

∞

𝑖𝑟𝑓(𝑥′) 𝑒𝑖2𝜋𝑢(𝑥−𝑥
′)𝑑𝑥′

= 𝑒𝑖2𝜋𝑢𝑥න
−∞

∞

𝑖𝑟𝑓(𝑥′) 𝑒−𝑖2𝜋𝑢𝑥
′
𝑑𝑥′

𝑇(𝑢)

Fourier Transform of irf(x)

We call it the system

characteristic function, T(u)

𝑑 𝑥 = 𝑆 𝑒𝑖2𝜋𝑢𝑥 = T(u)𝑒𝑖2𝜋𝑢𝑥



The system characteristic function T(u)

 In this particular case, the output is thus proportional to 
the input, the scaling factor being T(u), which is the 
Fourier transform of irf(x)

 Thus complex exponential of the form ei2πux are 
eigenfunctions of the imaging system

 T(u) describes the eigenvalues and is called the 
characteristic function of the system

 In general T(u) has complex values, however:

 If irf(x) is real and even, T(u) is also real and even

 T(0) represents the area under irf(x) and is always real

𝑆 𝑒𝑖2𝜋𝑢𝑥 = T(u)𝑒𝑖2𝜋𝑢𝑥



The spatial-frequency domain

 Let us consider again the convolution integral 

 If we define 

 As a consequence of the convolution theorem we 

have that 
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The spatial-frequency domain
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Another sinusoidal input



The Modulation Transfer Function (MTF)



Source: Hasegawa, B. H. - The physics of medical 

X-ray imaging (or the photon and me: how I 

saw the light) - 1990

Part 3 – More on MTF



Measuring MTF(u) (conceptually)

[From Robert M. Nishikawa ]



Measuring MTF(u) (a simple method)

 A very simple method to measure the MTF of a system is by 

means of a bar pattern, which provides an input object with 

several square waves of different spatial frequencies 



Measuring MTF(u) (a simple method)

 The modulation of each square wave of the bar pattern is then 

calculated from the image and the result is plotted as a 

function of the spatial frequency to yield the CTF(u)

C
T
F
(u

)

u (lp/mm)



Measuring the PSF

 Alternatively, the PSF could be measured instead

 Note: following Hasegawa, in this section we will assume 
the irf(x,y) is normalized, i.e.

 irf(x,y) =PSF(x,y)

 T(0,0)=1 and T(u,v)=OTF(u,v)

 Thus the PSF(x,y) is defined as the action of the system 
S[ ] on a point-like object (x,y)

 In practice, however, utilizing a point-like input (x,y) 
can be impractical

 it can be technically challenging to realize it

 the input can be weak and the output dominated by noise

)],([),( yxSyxPSF 



PSF and LSF

 An alternative approach is to consider a line input, e.g. a bright 
line corresponding to the y axis in the image plane

 The action of the imaging system on this line input defines the 
Line Spread Function (LSF)

Imaging system



PSF and LSF

 Formally the line input can be written as:

 We define the Line Spread Function as follows:

 As a consequence

 Often, the OTF is characterized by some symmetry 
properties (e.g. circular symmetry) and thus it is sufficient to 
evaluate it along one direction in the spatial-frequency 
plane

 dyyxxxline ),()()( 

   dyyxPSFdyyxSdyyxSxlineSxLSF ),()],([]),([)]([)( 

)0,(

)],([),(

),()())((

00

)(2

22

uOTF

yxPSFdydxeyxPSF

dxedyyxPSFdxexLSFxLSF

vv

vyuxi

iuxiux













 

  






LSF and ESF

 An even more practical approach is by considering a step 
input, that can easily be obtained placing an opaque edge 
across the field of view

 We thus define an “edge spread function” (ESF):

Imaging system



LSF and ESF

 Formally, the step input can be written as:

 We thus define an “edge spread function”:

 The LSF can then be obtained by differentiating the 
previous equation:

 The OTF(u,0) can then be obtained calculating the 
FT of the LSF(x)
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technicalities



The Optical Transfer Function (OTF)

 More generally, the Optical Transfer Function of an 

imaging system is defined as

 In general, while the MTF is always real, the OTF has 

complex values. Thus, it can be written in the polar form

 where we have introduced the

 Modulation Transfer Function

 Phase Transfer Function PTF(u)
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The Point Spread Function (PSF)

 The OTF and the MTF are normalized (by 
definition): 

 The normalized impulse response function is said
point spread function

 Thus
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irf(x), psf(x), T(u), MTF(u), OTF(u)

 In the previous slides we gave formal definitions of irf(x), 
psf(x), T(u), MTF(u), and OTF(u).

 However, most often in practical cases some property 
applies so that a simplification is possible

 For instance,  if the impulse response function is 
normalized:

then and

 Moreover, if the impulse response function is normalized, 
real and even:
then and

 Some textbooks just assume these conditions apply and 
do no even introduce irf(x), T(u) and OTF(u), but they 
simply use psf(x) and MTF(u) - or OTF(u)
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PSFs and MTFs

note: in this slide the PSF is 

called LSF (which we will 

introduce later) and the 

spatial frequency is 

indicated as f (instead of u)



Measuring MTF(u) (a simple method)

 The basic idea was to measure the modulation of the images 
obtained with a bar-pattern test-object: the input is a square wave 
(rather than a sine wave)

 However, since we measure the response of the system to a square 
wave the result is not exactly the MTF(u): it’s a different function 
which sometimes is called Contrast Transfer Function CTF(u)



Measuring MTF(u) (a simple method)

 Then, a more accurate estimate for the MTF(u) can be 

obtained form the values of CTF(u) according to the 

Coltman formula [J.W. Coltman JOSA 44 468-469, 1954] :


