
MEDICAL PHYSICS LAB
LECTURE 6 –

APPLIED LINEAR-SYSTEMS THEORY

Luigi Rigon
University of Trieste and INFN



Applied linear-systems theory

 Part I - Impulse response function

 Part II – System characteristic functions

 Part III – Measuring system characteristic functions

 Sources: 

 Ian A. Cunningham, Chapter 2 in Handbook of medical 
imaging.
Volume 1, Physics and psychophysics.
Richard Van Metter, Jacob Beutel, Harold Kundel, editors.

 Hasegawa, B. H. - The physics of medical X-ray imaging 
(or the photon and me: how I saw the light) - 1990



 Ian A. Cunningham, Chapter 2 in Handbook of 
medical imaging.
Volume 1, Physics and psychophysics.
Richard Van Metter, Jacob Beutel, Harold Kundel, 
editors.

Part I - Impulse response function



1D or 2D?

 So far we have introduced a number of mathematical 
tools

 Fourier Transforms

 Convolution, Cross Correlation and Autocorrelation

 Useful functions and generalized functions

 All of them have been introduced with reference to 1D,
1-dimensional functions (f(x), (x), III(x), etc.)

 In principle, to deal with images we should consider 2D 
functions (f(x,y), 2(x,y), 2 III(x,y), etc.)

 However, to keep notation simple, we will stick to 1D 
functions, and generalize to 2D only when really 
necessary



Imaging System

 In the following, we will consider a medical imaging 
system as a “black box” that receives an input signal 
and produces an output image

 The theory will be developed with reference to a 
planar x-ray radiographic system, which is the oldest 
and possibly the simplest system.

 The same approach can however be applied also to 
more complex systems.

Imaging system

Input image

(distribution of x-ray quanta)

output image

(either analog or digital)



Images

 We will distinguish among 3 different image types:

 Analog image d(x)

 Expressed as a function of the position variable x

 Arbitrary units (optical density in a film, intensity on a monitor, 
etc.)

 Digital image dn

 Represents image intensity at a particular pixel identified by n

 Dimensionless (just numbers)

 Quantum image q(x)

 Spatial distribution of quanta (function of the position variable x)

 Dimensions: 

 1/length (for a 1D quantum image)

 1/area (for a 2D quantum image)

 Statistical properties (Poisson statistics)



Linear Systems

 We will assume the imaging system S{  } be a linear 

system, i.e.

for any real constant a, which is sometimes summarized 

as “the output is proportional to the input”.

Imaging system

S{ }
input

h(x)

output

S{h(x)}

and



Linear systems as an approximation

 Generally speaking, no real imaging system is 

actually linear, and the linear system approach must 

be considered as an approximation

 However, many systems which are not strictly linear

 Can be linearized by means of an appropriate 

calibration 

 Can be considered linear provided the amplitude of 

the input signal is sufficiently small



Impulse response function irf(x, x0)



The superposition principle

 For any input expressed as a superposition of many 

impulse functions, the output of a linear system will 

consist of the superposition of one irf for each input 

impulse

 A simple example:



The superposition principle

 More generally, let us consider the case in which the 
input is represented by an arbitrary function h(x)

 Since it is readily shown that:

 The latter is said the superposition integral

 Thus the irf contains all the information about an 
imaging system necessary to describe its response to 
any input h(x)
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Linear and shift-invariant systems

 The imaging system will be assumed also to be shift-
invariant (isoplanatic), which means that a particular 
structure will appear the same, regardless of where in the 
image it is placed

 Virtually all imaging systems are (approximately) shift-
invariant, and if they are not, it is always possible to restrict 
the analysis to a central region where they are reasonably 
so.

 Shift-invariant imaging systems must have a shift-invariant 
irf, which means that the shape of the irf is independent of 
the position x0 , i.e. it only depends on the distance of x 
from x0:

irf(x,x0) = irf(x-x0)



Linear and shift-invariant systems

irf(x,x0)=irf(x-x0)

Shift-invariant system Non-Shift-invariant system

x
x1

(x-x1)

impulse

x
x1

irf(x,x1)

impulse response

x
x2

(x-x2)

impulse

x
x2

irf(x,x2)

impulse response

x
x1

(x-x1)

impulse

x
x1

irf(x,x1)

impulse response

x
x2

(x-x2)

impulse

x
x2

irf(x,x2)

impulse response

irf(x,x0) really depends on x0



 When the irf is shift-invariant, the superposition integral

can be written as

which is actually a convolution integral

The convolution integral
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 Ian A. Cunningham, Chapter 2 in Handbook of 
medical imaging.
Volume 1, Physics and psychophysics.
Richard Van Metter, Jacob Beutel, Harold Kundel, 
editors.

Part II – System characteristic 

functions



A special case: a sinusoidal input

 Let us consider the special case of an input that varies 
sinusoidally with the position, i.e.

where u is the spatial frequency (cycles/mm). 
The output d(x) is:

ℎ 𝑥 = 𝑒𝑖2𝜋𝑢𝑥 = cos 2𝜋𝑢𝑥 + 𝑖𝑠𝑖𝑛(2𝜋𝑢𝑥)

 Thus:

𝑑 𝑥 = 𝑆 ℎ 𝑥 = ℎ 𝑥 ∗ 𝑖𝑟𝑓 𝑥 = න
−∞

∞

𝑖𝑟𝑓(𝑥′) 𝑒𝑖2𝜋𝑢(𝑥−𝑥
′)𝑑𝑥′

= 𝑒𝑖2𝜋𝑢𝑥න
−∞

∞

𝑖𝑟𝑓(𝑥′) 𝑒−𝑖2𝜋𝑢𝑥
′
𝑑𝑥′

𝑇(𝑢)

Fourier Transform of irf(x)

We call it the system

characteristic function, T(u)

𝑑 𝑥 = 𝑆 𝑒𝑖2𝜋𝑢𝑥 = T(u)𝑒𝑖2𝜋𝑢𝑥



The system characteristic function T(u)

 In this particular case, the output is thus proportional to 
the input, the scaling factor being T(u), which is the 
Fourier transform of irf(x)

 Thus complex exponential of the form ei2πux are 
eigenfunctions of the imaging system

 T(u) describes the eigenvalues and is called the 
characteristic function of the system

 In general T(u) has complex values, however:

 If irf(x) is real and even, T(u) is also real and even

 T(0) represents the area under irf(x) and is always real

𝑆 𝑒𝑖2𝜋𝑢𝑥 = T(u)𝑒𝑖2𝜋𝑢𝑥



The spatial-frequency domain

 Let us consider again the convolution integral 

 If we define 

 As a consequence of the convolution theorem we 

have that 
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The spatial-frequency domain
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Another sinusoidal input



The Modulation Transfer Function (MTF)



Source: Hasegawa, B. H. - The physics of medical 

X-ray imaging (or the photon and me: how I 

saw the light) - 1990

Part 3 – More on MTF



Measuring MTF(u) (conceptually)

[From Robert M. Nishikawa ]



Measuring MTF(u) (a simple method)

 A very simple method to measure the MTF of a system is by 

means of a bar pattern, which provides an input object with 

several square waves of different spatial frequencies 



Measuring MTF(u) (a simple method)

 The modulation of each square wave of the bar pattern is then 

calculated from the image and the result is plotted as a 

function of the spatial frequency to yield the CTF(u)

C
T
F
(u

)

u (lp/mm)



Measuring the PSF

 Alternatively, the PSF could be measured instead

 Note: following Hasegawa, in this section we will assume 
the irf(x,y) is normalized, i.e.

 irf(x,y) =PSF(x,y)

 T(0,0)=1 and T(u,v)=OTF(u,v)

 Thus the PSF(x,y) is defined as the action of the system 
S[ ] on a point-like object (x,y)

 In practice, however, utilizing a point-like input (x,y) 
can be impractical

 it can be technically challenging to realize it

 the input can be weak and the output dominated by noise

)],([),( yxSyxPSF 



PSF and LSF

 An alternative approach is to consider a line input, e.g. a bright 
line corresponding to the y axis in the image plane

 The action of the imaging system on this line input defines the 
Line Spread Function (LSF)

Imaging system



PSF and LSF

 Formally the line input can be written as:

 We define the Line Spread Function as follows:

 As a consequence

 Often, the OTF is characterized by some symmetry 
properties (e.g. circular symmetry) and thus it is sufficient to 
evaluate it along one direction in the spatial-frequency 
plane
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LSF and ESF

 An even more practical approach is by considering a step 
input, that can easily be obtained placing an opaque edge 
across the field of view

 We thus define an “edge spread function” (ESF):

Imaging system



LSF and ESF

 Formally, the step input can be written as:

 We thus define an “edge spread function”:

 The LSF can then be obtained by differentiating the 
previous equation:

 The OTF(u,0) can then be obtained calculating the 
FT of the LSF(x)
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technicalities



The Optical Transfer Function (OTF)

 More generally, the Optical Transfer Function of an 

imaging system is defined as

 In general, while the MTF is always real, the OTF has 

complex values. Thus, it can be written in the polar form

 where we have introduced the

 Modulation Transfer Function

 Phase Transfer Function PTF(u)
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The Point Spread Function (PSF)

 The OTF and the MTF are normalized (by 
definition): 

 The normalized impulse response function is said
point spread function

 Thus
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irf(x), psf(x), T(u), MTF(u), OTF(u)

 In the previous slides we gave formal definitions of irf(x), 
psf(x), T(u), MTF(u), and OTF(u).

 However, most often in practical cases some property 
applies so that a simplification is possible

 For instance,  if the impulse response function is 
normalized:

then and

 Moreover, if the impulse response function is normalized, 
real and even:
then and

 Some textbooks just assume these conditions apply and 
do no even introduce irf(x), T(u) and OTF(u), but they 
simply use psf(x) and MTF(u) - or OTF(u)
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PSFs and MTFs

note: in this slide the PSF is 

called LSF (which we will 

introduce later) and the 

spatial frequency is 

indicated as f (instead of u)



Measuring MTF(u) (a simple method)

 The basic idea was to measure the modulation of the images 
obtained with a bar-pattern test-object: the input is a square wave 
(rather than a sine wave)

 However, since we measure the response of the system to a square 
wave the result is not exactly the MTF(u): it’s a different function 
which sometimes is called Contrast Transfer Function CTF(u)



Measuring MTF(u) (a simple method)

 Then, a more accurate estimate for the MTF(u) can be 

obtained form the values of CTF(u) according to the 

Coltman formula [J.W. Coltman JOSA 44 468-469, 1954] :


