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1D or 2D¢
N

0 So far we have introduced a number of mathematical
tools
O Fourier Transforms
O Convolution, Cross Correlation and Autocorrelation
O Useful functions and generalized functions

0 All of them have been introduced with reference to 1D,
1 -dimensional functions (f(x), o(x), lll(x), etc.)

0 In principle, to deal with images we should consider 2D
functions (f(x,y), 20(x,y), 2 lll(x,y), etc.)

1 However, to keep notation simple, we will stick to 1D
functions, and generalize to 2D only when really
necessary



Imaging System
N

0 In the following, we will consider a medical imaging
system as a “black box” that receives an input signal
and produces an output image

0 The theory will be developed with reference to a
planar x-ray radiographic system, which is the oldest
and possibly the simplest system.

0 The same approach can however be applied also to
more complex systems.

Imaging system

Input image output image
(distribution of x-ray quanta) (either analog or digital)



Images

-4
0 We will distinguish among 3 different image types:
O Analog image d(x)

m Expressed as a function of the position variable x

m Arbitrary units (optical density in a film, intensity on a monitor,
etc.)

o Digital image d_
m Represents image intensity at a particular pixel identified by n

® Dimensionless (just numbers)

0 Quantum image q(x)
m Spatial distribution of quanta (function of the position variable x)

® Dimensions:
® 1/length (for a 1D quantum image)

® 1/area (for a 2D quantum image)

m Statistical properties (Poisson statistics)



Linear Systems
B

o We will assume the imaging system S{ } be a linear
system, i.e.

Imaging system
input s{) output

h(x) S{h(x)}

S{h1(x) + ha(x)} = S{h1(x) ] + S{h2(x)}

and

S{ah(x)} = aS{h(x)}.

for any real constant a, which is sometimes summarized
as “the output is proportional to the input”.



Linear systems as an approximation
N

01 Generally speaking, no real imaging system is
actually linear, and the linear system approach must
be considered as an approximation

1 However, many systems which are not strictly linear

O Can be linearized by means of an appropriate
calibration

O Can be considered linear provided the amplitude of
the input signal is sufficiently small



Impulse response function irf(x, x,)
—

When a linear system 1s presented with the input §(x — xp), an impulse lo-
cated at x = xq, the corresponding output will be S{§(x — xo)} which 1s called the
impulse-response function (IRF), 1.e.,

irf(x. x9) = S{8(x —xq)}. (2.20)
5 \ irf(x,xq)
X-X
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impulse impulse response



The superposition principle
B

0 For any input expressed as a superposition of many
impulse functions, the output of a linear system will
consist of the superposition of one irf for each input
impulse

0 A simple example:
S{S(x —X1) +0(x — .Xg)} = 1rt(x, x1) 4 1rt(x, x2)

o(x-x1) O(x-X»o) irf(x,xq)+irf(x,xo)




The superposition principle
B

0 More generally, let us consider the case in which the
input is represented by an arbitrary function h(x)

0 Since h(x) = J‘+Ooh(x')5(x—x')dx' it is readily shown that:

s{h(x)}=S {f:h(xw(x - x')dx'}
- f:h(x')S{(S(x —x")}dx

= [ "h(x)irf (x,x")dx

0 The latter is said the superposition integral

1 Thus the irf contains all the information about an
imaging system necessary to describe its response to
any input h(x)



Linear and shift-invariant systems
N

0 The imaging system will be assumed also to be shift-
invariant (isoplanatic), which means that a particular
structure will appear the same, regardless of where in the
image it is placed

0 Virtually all imaging systems are (approximately) shift-
invariant, and if they are not, it is always possible to restrict
the analysis to a central region where they are reasonably
so.

0 Shift-invariant imaging systems must have a shift-invariant
irf, which means that the shape of the irf is independent of
the position x, , i.e. it only depends on the distance of x
from x:

irf(x,x,) = irf(x-x,)




Linear and shift-invariant systems

Shift-invariant system Non-Shift-invariant system

3(x-x1) R,xn

X X
X4 X4
impulse impulse response
O(x-x,) irf(x,x,)
X X
X2 X2
impulse impulse response

irf(x,xq)=irf(x-x,)

3(x-x1) Km)

X

X1
impulse response

X
X4
impulse
O(x-x5)
[ X
X2
impulse

irf(x,x,)
/.\ X
X2

impulse response

irf(x,x,) really depends on x,



The convolution integral
B

0 When the irf is shift-invariant, the superposition integral

S{h(x)} = jw h(x")irf (x, x")dx'
can be written as

S{h(x)}= f: h(x")irf (x —x")dx'

which is actually a convolution integral

S{h(x)} = h(x) *irf (x)



- Part Il — System characteristic
functions

> lan A. Cunningham, Chapter 2 in Handbook of
medical imaging.
Volume 1, Physics and psychophysics.
Richard Van Metter, Jacob Beutel, Harold Kundel,
editors.



A special case: a sinusoidal input
N

0 Let us consider the special case of an input that varies
sinusoidally with the position, i.e.

h(x) = e®?™X = cos(2mux) + isin(2mwux)

where u is the spatial frequency (cycles/mm).
The output d(x) is:

d(x) = S{th(x)} = h(x) xirf(x) = foo irf(x") e 12mu(x=x") g 1

(0.0)
_ i2mux - N ,—i2mux’ '
=€ f irf(x’) e dx Fourier Transform of irf(x)
— 00
' ' We call it the system
T (u) characteristic function, T(u)

0 Thus: d(X) =[S{ei2ﬂuX} — T(u)eiZnuxJ




The system characteristic function T(u)
]

s{ei2mux) = (y)ei2mur
[ |

0 In this particular case, the output is thus proportional to
the input, the scaling factor being T(u), which is the
Fourier transform of irf(x)

0 Thus complex exponential of the form e?™* are
eigenfunctions of the imaging system

0 T(u) describes the eigenvalues and is called the
characteristic function of the system

0 In general T(u) has complex values, however:
o If irf(x) is real and even, T(u) is also real and even

O T(0) represents the area under irf(x) and is always real



The spatial-frequency domain
N

01 Let us consider again the convolution integral
d(x) = S{h(x)}=h(x) *irf (x)
0 If we define d(x) o D(u)
h(x) > H(u)

0 As a consequence of the convolution theorem we

have that
D(u) =H(u)T(u)

/This is a very mteresting result because 1t shows that the Fourier components H ( 1) )
of the input are passed unchanged through the system other than a scaling by T(u).
Thus, the signal-transfer characteristics of an LSI system can be expressed either as
convolution with irf(x) 1n the spatial domain, or equivalently as multiplication with

\T (u) 1n the spatial-frequency domain. This relationship is illustrated graphically »




The spatial-frequency domain
N

Spatial Domain Spatial-Frequency Domain

a) (magnitude)

h(x) > H(u) e H(u)

b) *irf (x) XT(u)

irf (x) o T (u)

c) = d(x)

d(x) > D(u)

d(Xx) = S{h(x)}=h(x) *irf (x) D(u)=H(u)T (u)



Another sinusoidal input

h(x)
A

Consider the input /2(x) where >x
h(x)=a+ be'?™", (2.36)

and where the real component of /2(x) corresponds to the real (measurable) input
signal. Because of the sinusoidal nature of this input, it 1s more meaningful to

characterize 1t in terms of 1its modulation than its contrast. The modulation of /1(x)
mn Figure 2.14 1s given by

h-max — h'mfﬂ b) — —b b
:I | — | |:(a+ ) — (a ):_. (2.37)
\max |+ [Rin (a+b)+ (a —Db) 4

n



The Modulation Transfer Function (MTF)
N

The output signal d(x) 1s given by

d(x) = S{h(x)} = S{a + beizm'"‘} (2.38)
= S{a} + S{be' ™~} (2.39)
= aS{e =01 4 pSlet2m ] (2.40)
= aT(0) + bT(u)e'*™4x, (241)

where T(u«) 1s complex in general but T(0), which 1s equal to the area under the
IRF, must be real only. The output modulation is therefore given by

- |driax| — |@minl . 2 1T (u)] o | T(u)
. |dmax| + |dminl o« T(0) o T(0) .

the ratio M,,;/M;, 1s defined here as the modulation transfer function (MTF)

{ MTFE (1) = '%3']

(2.42)




- Part 3 — More on MTF

Source: Hasegawa, B. H. - The physics of medical
X-ray imaging (or the photon and me: how |

saw the light) - 1990



Measuring MTF(u) (conceptually)

]
Input Output
™\
O\ _
DUDW Imaging ] :
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[From Robert M. Nishikawa ]



Measuring MTF (u) (a simple method)
N

0 A very simple method to measure the MTF of a system is by
means of a bar pattern, which provides an input object with
several square waves of different spatial frequencies

Imaging
System

=)




Measuring MTF (u) (a simple method)

0 The modulation of each square wave of the bar pattern is then
calculated from the image and the result is plotted as a
function of the spatial frequency to yield the CTF(u)
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Measuring the PSF
B

0 Alternatively, the PSF could be measured instead

0 Note: following Hasegawa, in this section we will assume
the irf(x,y) is normalized, i.e.
O irf(x,y) =PSF(x,y)
oT7(0,0)=1 and T(u,v)=0TF(u,v)

0 Thus the PSF(x,y) is defined as the action of the system
S[ ] on a point-like object O(x,y)

PSF (X, y) =S[o(x, y)I

o In practice, however, utilizing a point-like input O(x,y)
can be impractical
O it can be technically challenging to realize it

O the input can be weak and the output dominated by noise



PSF and LSF

1 An alternative approach is to consider a line input, e.g. a bright
line corresponding to the y axis in the image plane

0 The action of the imaging system on this line input defines the
Line Spread Function (LSF)




PSF and LSF

0 Formally the line input can be written as:
line(x) = 5(x) = [ 5(x, y)dy
0 We define the Line Spread Function as follows:

LSF (x) = S[line(x)] = S[| 5(x, y)dy] = [ S[5(x, y)Idy = | PSF (x, y)dy

0 As a consequence
I(LSF(X)) = [ LSF(x)e ™ dx = j j PSF(x, y)dye 2™ dx

_ J. PSF(x Y)e_ZM(UX+Vy)dyd><1V:o = J[PSF(X, Y)]‘V:O

=0OTF(u,0)

0 Often, the OTF is characterized by some symmetry
properties (e.g. circular symmetry) and thus it is sufficient to
evaluate it along one direction in the spatial-frequency
plane



LSF and ESF

0 An even more practical approach is by considering a step

input, that can easily be obtained placing an opaque edge
across the field of view

0 We thus define an “edge spread function” (ESF):

Imaging system
—_—




LSF and ESF

4]
0 Formally, the step input can be written as:

x>0

step(x,y) = S S(x)dx =[ ling(x)dx’
o p(x,y)=[_ S(x)dx' =["_ line(x)

1
step(x, y) = {O

1 We thus define an “edge spread function”:
ESF (x) = S[step(x, y)] = s[ _[_Xooline(x’)dx'} — [* sline(x)ldx' = [* LSF (x)dx

01 The LSF can then be obtained by differentiating the
previous equation:

LSF (X) = % ESF (x)

1 The OTF(u,0) can then be obtained calculating the
FT of the LSF(x)



- technicalities



The Optical Transfer Function (OTF)
B

0 More generally, the Optical Transfer Function of an

imaging system is defined as

T(u)
OTF(H) = m

0 In general, while the MTF is always real, the OTF has
complex values. Thus, it can be written in the polar form

OTF (u) = MTF (u)e™™"
o where we have introduced the

O Modulation Transfer Function MTF (u) = ‘OTF (u)\
O Phase Transfer Function PTF(u)



The Point Spread Function (PSF)

-]
00 The OTF and the MTF are normalized (by
definition): OTF(0) =1
MTF (0) =1
01 The normalized impulse response function is said
point spread function

irf(x) _irf (x)
[Cirfgdx  T(0)

pst (x) =

0 Thus T(U) =
psf(x) o W =OTF(u)



irf(x), psf(x), T(u), MTF(u), OTF(u)

[l

In the previous slides we gave formal definitions of irf(x),
psf(x), T(u), MTF(u), and OTF(u).

However, most often in practical cases some property
applies so that a simplification is possible

For instance, if the impulse response function is
normalized: j irf (x)dx =T (0) =1

then psf(x) =irf (x) and OTF(Uu)=T(u)

Moreover, if the impulse response function is normalized,
real and even:

then psf (x) = irf (x) and MTF(u)=0TF(u) =T (u)

Some textbooks just assume these conditions apply and
do no even introduce irf(x), T(u) and OTF(u), but they
simply use psf(x) and MTF(u) - or OTF(u)



PSFs and MTFs

LSFs
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position

MTF(f) MTF(f)

MTF(f)

MTFs

spatial frequency

note: in this slide the PSF is
called LSF (which we will
infroduce later) and the
spatial frequency is
indicated as f (instead of v)

FIGURE 10-21. The MTF is typically cal-
culated from a measurement of the line
spread function (LSF). As the line spread
function gets broader (left column, top
to bottom), the corresponding MTFs
plummet to lower MTF values at the
same spatial frequency, and the cutoff
frequency (where the MTF curve meets
the x-axis) is also reduced. The best LSF-
MTF pair is at the top, and the worst
LSF-MTF pair is at the bottom.




Measuring MTF(u) (a simple method)
B

0 The basic idea was to measure the modulation of the images
obtained with a bar-pattern test-object: the input is a square wave
(rather than a sine wave)

0 However, since we measure the response of the system to a square
wave the result is not exactly the MTF(u): it’s a different function
which sometimes is called Contrast Transfer Function CTF(u)

1

F= —

2A

line pairs/mm

FIGURE 10-17. The concept of spatial fre-
guency. A single sine wave (bottom) with
the width of one-half of the sine wave,
which is equal to a distance A. The com-

plete width of the sine wave (2A) corre-
sponds to one cycle. With A measured in
millimeters, the corresponding spatial fre-

cyles/mm quency is F = 4. Smaller objects (small A)
\/ correspond to higher spatial frequencies,

and larger objects (large A) correspond to
lower spatial frequencies. The square wave
(top) is a simplification of the sine wave,
and the square wave shown corresponds to
a single line pair.




Measuring MTF(u) (a simple method)

-]
0 Then, a more accurate estimate for the MTF(u) can be
obtained form the values of CTF(u) according to the
Coltman formula [J.W. Coltman JOSA 44 468-469, 1954] .

Given the CTFE. the Coltman formula to determine the MTF. 1s

M) - E{c(rﬂ CGH_CGH  CUPH Calh Cu3h Cash carh  cuon J
4 3 5 7 11 13 15 17 19

and given the MTF, the Coltman formula to determine the CTF, is

(6 - i{M{f}— M(31) N M(5)  M(7D) N M9 M(11D) N M(13f)  M(15D) ) M(170)  M(195) J
T 3 5 7 9 11 13 15 17 19
where, M(f) = sine wave MTF
C(f) = bar target CTF
f = spatial frequency



