MEDICAL PHYSICS LAB LECTURE 7 – DIGITAL IMAGES

Luigi Rigon University of Trieste and INFN

Digital Images

- Part I Sampling
- Part II Aliasing
- Source: Ian A. Cunningham, Chapter 2 in Handbook of medical imaging.
 Volume 1, Physics and psychophysics.
 Richard Van Metter, Jacob Beutel, Harold Kundel, editors.

Part I – Sampling

 Ian A. Cunningham, Chapter 2 in Handbook of medical imaging.
 Volume 1, Physics and psychophysics.
 Richard Van Metter, Jacob Beutel, Harold Kundel, editors.

Digital images

- Usually we have considered (and we will consider) images as <u>analytical</u> functions, e.g.
 - In the space domain: $d(x) = S\{h(x)\} = h(x)*irf(x)$
 - □ In the spatial frequency domain: D(u) = H(u)T(u)
- However, many imaging systems produce <u>digital</u> images, in which image brightness is represented as a sequence of numbers, e.g.
 - $\bullet \ d_n \ 0 \le n \le N-1$

where N is the number of pixels in the image

Today we will investigate the relationship between a function and its discrete (sampled) representation.

Sampling

□ The function d(x) can be represented numerically with the N discrete values d_n $0 \le n \le N - 1$, where N is the number of pixels in the image and

$$d_n \equiv d(nx_0) \equiv d(x) \Big|_{x = nx_0}$$

Sampling

The process of evaluating a function at uniform spacing x₀ is called <u>sampling</u>

 $\square \quad \mathcal{X}_0 \text{ is the sampling interval.}$

 \square 1/x₀ is the <u>sampling</u> (spatial) <u>frequency</u>.

Sampling

- One way to describe the sampling process is by making use of the sampling property of III(x) (see lect. 4).
- In particular, let us consider a function d(x) of infinite extent sampled with a sampling interval x₀, which gives an (infinite) sequence of sample values d_n.
- Ideally, this process can be represented as follows:

$$d^{\dagger}(x) \equiv \frac{1}{x_0} d(x) III(\frac{x}{x_0})$$

$$= d(x) \sum_{n = -\infty}^{+\infty} \delta(x - nx_0) = \sum_{n = -\infty}^{+\infty} d(nx_0) \delta(x - nx_0) \equiv \sum_{n = -\infty}^{+\infty} d_n \delta(x - nx_0)$$

□ Thus, $d^{\dagger}(x)$ is a sequence of delta functions scaled by the sample values of the "presampling" function d(x).

Sampling in the Fourier space

 $d^{\dagger}(x) \equiv \frac{1}{x_0} d(x) III(\frac{x}{x_0})$

provides an analytical representation of the sampling process

- In particular, by means of this expression we can study the sampling process in the Fourier space
- \Box Let us assume $d(x) \supset D(u)$ and $d^{\dagger}(x) \supset D^{\dagger}(u)$
 - by virtue of the similarity theorem: $III(\frac{x}{x_0}) \supset x_0III(x_0u)$ ■ and by virtue of the convolution theorem^{x_0}

we have

The formula

$$d^{\dagger}(x) \equiv \frac{1}{x_0} d(x) III(\frac{x}{x_0}) \supset D(u) * III(x_0 u) \equiv D^{\dagger}(u)$$

Figure 2.16: Sampling the function d(x) is represented as $d^{\dagger}(x) = d(x) \sum_{n=-\infty}^{\infty} \delta(x - nx_0)$ and consists of a sequence of δ functions scaled by the discrete values d_n where n is an integer over $-\infty \leq n \leq \infty$. Spectral aliasing occurs when the aliases overlap in the spatial-frequency domain. Only the magnitude is shown in the frequency domain.

Part II – Aliasing

 Ian A. Cunningham, Chapter 2 in Handbook of medical imaging.
 Volume 1, Physics and psychophysics.
 Richard Van Metter, Jacob Beutel, Harold Kundel, editors.

Sampling and aliasing

- □ Thus, in general, $D^{\dagger}(u)$ consists of an infinite number of replicas (aliases) of D(u) (scaled by $1/x_0$) and centered at frequencies $u = n/x_0$.
- □ It is important to notice that if D(u) extends beyond the "cutoff frequency" $u = \pm 1/2x_0$ then the aliases will overlap and D(u) cannot be simply obtained from $D^{\dagger}(u)$ (aliasing).
- This is equivalent to saying that the original function d(x) cannot be simply obtained from the sampled function d[†](x) once aliasing has occurred.

Sampling and aliasing

- □ Let us consider a function d(x) of infinite extent sampled with a sampling interval x_0 , which gives an (infinite) sequence of sample values d_n .
- □ Let us further suppose that d(x) is <u>band-limited</u>, i.e. its FT D(u) has zero value for every $|u| \ge u_{max}$
- □ Then, the infinite number of replicas (aliases) of D(u)will not overlap if they are separated by more than $2u_{max}$ which is called the Nyquist sampling frequency $u_{Ny} \equiv 2u_{max}$
- This requirement is equivalent to saying that the original function must be sampled with a (spatial) frequency

$$\frac{1}{x_0} \ge u_{Ny} \equiv 2u_{\max}$$

aliasing

NO aliasing

The sampling theorem

The question should be asked whether the original presampling function d(x) can be recovered exactly from the sample values d_n . In the conjugate domain this question is equivalent to asking whether D(u) can be recovered exactly from the aliased spectrum F{ $d^{\dagger}(x)$ } in the lower part of the previous slide

Nyquist-Shannon theorem

Any band-limited function having infinite extent and no component frequencies at frequencies greater than $u = u_{max}$ can be fully determined from an infinite set of discrete samples if sampled at a frequency greater than $u_{Ny} = 2u_{max}$ where u_{Ny} is called the Nyquist sampling frequency.

Recovering a continuous function from sample values

Since x₀Π(x₀u) ⊂ sinc(^x/_{x₀})
 This is equivalent to saying that the original function d(x) can be recovered from the sample values:

$$d(x) = d^{\dagger}(x) * \operatorname{sinc}(\frac{x}{x_0})$$

Recovering a continuous function from sample values

Recalling:
$$d^{\dagger}(x) = \frac{1}{x_0} d(x) III\left(\frac{x}{x_0}\right) = \sum_{n=-\infty}^{+\infty} d_n \delta(x - nx_0)$$

we can write the previous result more explicitly as:
 $d(x) = d^{\dagger}(x) * sinc\left(\frac{x}{x_0}\right)$
 $= \int_{-\infty}^{\infty} d^{\dagger}(x') sinc\left(\frac{x - x'}{x_0}\right) dx'$
 $= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{+\infty} d_n \delta(x' - nx_0) sinc\left(\frac{x - x'}{x_0}\right) dx'$
 $= \sum_{n=-\infty}^{+\infty} d_n \int_{-\infty}^{\infty} \delta(x' - nx_0) sinc\left(\frac{x - x'}{x_0}\right) dx' = \sum_{n=-\infty}^{+\infty} d_n sinc\left(\frac{x - nx_0}{x_0}\right) dx'$

Thus, d(x) can be obtained as the superposition of (infinite) scaled sinc functions, one for each sampled point

Recovering a continuous function from sample values

Figure 2.17: The recovered function $\hat{d}(x)$ is obtained by convolving $d^{\dagger}(x)$ with $\operatorname{sinc}(-x/x_0)$, resulting in the superposition of a scaled sinc function for each sampled point as indicated by the dashed lines in c). Only the magnitude is shown in the frequency domain.

Artifacts from aliasing: a simple approach

Let us consider a simple function d(x) such a cosine wave of infinite extent sampled with a sampling interval x_0 , which gives an (infinite) sequence of sample values d_n .

•
$$d(x) = \cos(2\pi bx) \supset \frac{1}{2} [\delta(u-b) + \delta(u+b)]$$

- d(x) is obviously <u>band-limited</u>, with $u_{max} = b$
- To satisfy the Nyquist creation $1/x_0 \ge u_{Ny} = 2b$

U

Artifacts from aliasing: a simple approach

FIGURE 10-34. The geometric basis of aliasing. An analog input signal of a certain frequency F is sampled with a periodicity shown by the *vertical lines* ("samples"). The interval between samples is wider than that required by the Nyquist criterion, and thus the input signal is *undersampled*. The sampled points (*solid circles*) are consistent with a much lower frequency signal ("aliased output signal"), illustrating how undersampling causes high input frequencies to be recorded as aliased, lower measured frequencies.

Artifacts from aliasing: a simple approach

Spatial Frequency (cycles/mm) Spa

Spatial Frequency (cycles/mm)

FIGURE 10-35. Each of the six panels illustrates the Fourier transform of a sine wave with input frequency F_{IN} , after it has been detected by an imaging system with a Nyquist frequency, F_N , of 5 cycles/mm (i.e., sampling pitch = 0.10 mm). Left panels: Input frequencies that obey the Nyquist criterion ($F_{IN} < F_N$), and the Fourier transform shows the recorded frequencies to be equal to the input frequencies. **Right panels:** Input frequencies that do not obey the Nyquist criterion ($F_{IN} > F_N$), and the Fourier transform of the signal indicates recorded frequencies quite different from the input frequencies, demonstrating the effect of *aliasing*.

 $1/x_0 = 10$ cycles/mm

Appendix: The Discrete Fourier Transform (DFT)

One commonly used form for the DFT of a sequence of N values d_n for $0 \le n \le N - 1$ is given by

$$D_m = \text{DFT}\{d_n\} = \sum_{n=0}^{N-1} d_n e^{-i2\pi nm/N},$$
(2.63)

which consists of a sequence of the N complex values D_m for $0 \le m \le N - 1$. The inverse DFT is given by

$$d_n = \mathrm{DFT}^{-1}\{D_m\} = \frac{1}{N} \sum_{m=0}^{N-1} D_m e^{i2\pi nm/N}.$$
 (2.64)

Other forms of the DFT exist, differing primarily by a scaler constant of N or \sqrt{N} . The dimensions of d_n and D_m must necessarily be the same, and they are often dimensionless.