MEDICAL PHYSICS LAB LECTURE 7 – DIGITAL IMAGES

Luigi Rigon University of Trieste and INFN

Digital Images

- Part I Sampling
- \triangleright Part II Aliasing
- ▶ Source: Ian A. Cunningham, Chapter 2 in Handbook of medical imaging. Volume 1, Physics and psychophysics. Richard Van Metter, Jacob Beutel, Harold Kundel, editors.

Part I – Sampling

 $>$ Ian A. Cunningham, Chapter 2 in Handbook of medical imaging. Volume 1, Physics and psychophysics. Richard Van Metter, Jacob Beutel, Harold Kundel, editors.

Digital images

- Usually we have considered (and we will consider) images as **analytical** functions, e.g.
	- \blacksquare In the space domain: $d(x) = S{h(x)} = h(x) * if(x)$
	- \Box In the spatial frequency domain: $D(u) = H(u)T(u)$
- □ However, many imaging systems produce digital images, in which image brightness is represented as a sequence of numbers, e.g. **a** In the space domain: $d(x) = S\{h(x)\}\neq h(x)*iff(x)$
 a In the spatial frequency domain: $D(u) = H(u)T(u)$

However, many imaging systems produce <u>digital</u>

images, in which image brightness is represented as

a sequence of numbe
	- d_n $0 \leq n \leq N-1$

where N is the number of pixels in the image

 \Box Today we will investigate the relationship between

Sampling

 \Box The function $d(x)$ can be represented numerically with the N discrete values d_n $0 \le n \le N-1$, where N is the number of pixels in the image and

$$
d_n \equiv d(nx_0) \equiv d(x)|_{x = nx_0}
$$

Sampling

 \Box The process of evaluating a function at uniform spacing $x_{\overline{0}}$ is called sampling

 I_0 *x*₀ is the sampling interval.

 \blacksquare 1/ x_0 is the <u>sampling</u> (spatial) <u>frequency</u>.

Sampling

- \Box One way to describe the sampling process is by making use of the sampling property of *III(x)* (see lect. 4).
- \Box In particular, let us consider a function $d(x)$ of infinite extent sampled with a sampling interval $x_{\rm o}$, which gives an (infinite) sequence of sample values *dⁿ* .
- \Box Ideally, this process can be represented as follows:

$$
d^{\dagger}(x) = \frac{1}{x_0} d(x)III(\frac{x}{x_0})
$$

= $d(x) \sum_{n=-\infty}^{+\infty} \delta(x - nx_0) = \sum_{n=-\infty}^{+\infty} d(nx_0) \delta(x - nx_0) = \sum_{n=-\infty}^{+\infty} d_n \delta(x - nx_0)$

 \Box Thus, $d^{\dagger}(x)$ is a sequence of delta functions scaled by the sample values of the "presampling" function *d(x)*.

Sampling in the Fourier space

 $d^{*}(x) = \frac{1}{d}(x)III(\frac{x}{a})$ $x₀$ $x₀$

provides an analytical representation of the sampling process

- \Box In particular, by means of this expression we can study the sampling process in the Fourier space
- \Box Let us assume $d(x) \supset D(u)$ and $d^{\dagger}(x) \supset D^{\dagger}(u)$
	- \blacksquare by virtue of the similarity theorem: $III(\stackrel{x}{\longrightarrow}) \supset x_{_{\scriptscriptstyle{0}}} II(x_{_{\scriptscriptstyle{0}}}u)$ \blacksquare and by virtue of the convolution theorem X_0

we have

□ The formula

$$
d^{\dagger}(x) = \frac{1}{x_0} d(x)III(\frac{x}{x_0}) \supset D(u)^* III(x_0 u) \equiv D^{\dagger}(u)
$$

Figure 2.16: Sampling the function $d(x)$ is represented as $d^{\dagger}(x) = d(x) \sum_{n=-\infty}^{\infty} \delta(x$ nx_0) and consists of a sequence of δ functions scaled by the discrete values d_n where n is an integer over $-\infty \leqslant n \leqslant \infty$. Spectral aliasing occurs when the aliases overlap in the spatial-frequency domain. Only the magnitude is shown in the frequency domain.

Part II – Aliasing

 $>$ Ian A. Cunningham, Chapter 2 in Handbook of medical imaging. Volume 1, Physics and psychophysics. Richard Van Metter, Jacob Beutel, Harold Kundel, editors.

Sampling and aliasing

- \Box Thus, in general, $D^{\dagger}(u)$ consists of an infinite number of replicas (aliases) of $\left\vert D(u) \right\rangle$ (scaled by $1 \left/ \right. x_{0}$) and centered at frequencies $u = n / x_0$.
- \Box It is important to notice that if $D(u)$ extends beyond It is important to notice that if $\;D(u)$ extends beyon
the "cutoff frequency" $\;u=\pm 1/ \,2x_{\!0}\;$ then the aliases will overlap and $D(u)$ cannot be simply obtained from $D^{\dagger}(u)$ (aliasing). Thus, in general, $D^{\dagger}(u)$ consists of an infiliant of replicas (aliases) of $D(u)$ (scaled by and centered at frequencies $u = n/x_0$.
It is important to notice that if $D(u)$ exter the "cutoff frequency" $u = \pm 1/2x_0$ then $D(u)$ (scaled by \tilde{u}
entered at frequencies $u = n / x_{0}$.
uportant to notice that if $D(u)$ extend
utoff frequency" $u = \pm 1 / 2 x_{0}$ then the
verlap and $D(u)$ <u>cannot</u> be simply ob
 $D^{\dagger}(u)$ (<u>aliasing</u>).
- \Box This is equivalent to saying that the original function $d(x)$ cannot be simply obtained from the sampled

Sampling and aliasing

- Let us consider a function *d(x)* of infinite extent sampled with a sampling interval x_{0} , which gives an (infinite) sequence of sample values *dⁿ* .
- □ Let us further suppose that *d(x)* is <u>band-limited</u>, i.e. its FT *D*(*u*) has zero value for every $|u| \ge u_{max}$
- Then, the infinite number of replicas (aliases) of *^D ^u*() max *u u* will not overlap if they are separated by more than $2u_{\rm max}$ which is called the Nyquist sampling frequency $u_{_{N_\text{y}}} \equiv 2u_{_{\text{max}}}$
- \Box This requirement is equivalent to saying that the original function must be sampled with a (spatial) frequency

$$
\frac{1}{x_0} \ge u_{Ny} \equiv 2u_{\text{max}}
$$

The sampling theorem

The question should be asked whether the original presampling function $d(x)$ can be recovered exactly from the sample values d_n . In the conjugate domain this question is equivalent to asking whether $D(u)$ can be recovered exactly from the aliased spectrum $F{d^{\dagger}(x)}$ in the lower part of the previous slide

Nyquist-Shannon theorem

Any band-limited function having infinite extent and no component frequencies at frequencies greater than $u = u_{max}$ can be fully determined from an infinite set of discrete samples if sampled at a frequency greater than $u_{Ny} = 2u_{max}$ where u_{N_y} is called the Nyquist sampling frequency.

Recovering a continuous function from sample values

 \Box Since $x_0 \Pi(x_0 u) \subset \operatorname{sinc}(\frac{x}{x})$ \Box This is equivalent to saying that the original function *d(x)* can be recovered from the sample values: x_{0}

$$
d(x) = d^{\dagger}(x) * \operatorname{sinc}(\frac{x}{x_0})
$$

Recovering a continuous function from sample values

$$
\Box \text{ Recalling:} \quad d^{\dagger}(x) = \frac{1}{x_0} d(x) III \left(\frac{x}{x_0}\right) = \sum_{n=-\infty}^{+\infty} d_n \delta(x - nx_0)
$$
\n
$$
\text{we can write the previous result more explicitly as:}
$$
\n
$$
d(x) = d^{\dagger}(x) * \text{sinc}\left(\frac{x}{x_0}\right)
$$
\n
$$
= \int_{-\infty}^{\infty} d^{\dagger}(x') \text{sinc}\left(\frac{x - x'}{x_0}\right) dx'
$$
\n
$$
= \int_{-\infty}^{\infty} \sum_{n=-\infty}^{+\infty} d_n \delta(x' - nx_0) \text{sinc}\left(\frac{x - x'}{x_0}\right) dx'
$$
\n
$$
= \sum_{n=-\infty}^{+\infty} d_n \int_{-\infty}^{\infty} \delta(x' - nx_0) \text{sinc}\left(\frac{x - x'}{x_0}\right) dx' = \sum_{n=-\infty}^{+\infty} d_n \text{sinc}\left(\frac{x - nx_0}{x_0}\right)
$$

 Thus, *d(x)* can be obtained as the *superposition* of (infinite) scaled sinc functions, one for each sampled point

Recovering a continuous function from sample values

Figure 2.17: The recovered function $\hat{d}(x)$ is obtained by convolving $d^{\dagger}(x)$ with $sinc(-x/x₀)$, resulting in the superposition of a scaled sinc function for each sampled point as indicated by the dashed lines in c). Only the magnitude is shown in the frequency domain.

Artifacts from aliasing: a simple approach

 Let us consider a simple function *d(x)* such a cosine wave of infinite beyondence of sample values d_n .
 a $d(x) = \cos(2\pi bx) \supset \frac{1}{2} [\delta(u-b) + \delta(u+b)]$
 $d(x)$ is obviously <u>band-limited</u>, with $u_{\text{max}} = b$

To satisfy the Nyquist crterion $\boxed{1/x_0 \ge u_{\text{ny}} = 2b}$ sequence of sample values *dⁿ* .

$$
\mathbf{u} \, d(x) = \cos(2\pi bx) \supset \frac{1}{2} [\delta(u-b) + \delta(u+b)]
$$

- \Box d(x) is obviously <u>band-limited</u>, with $u_{\text{max}} = b$
- To satisfy the Nyquist crterion $1/x_0 \ge u_{\scriptscriptstyle{N\!v}} = 2b$

u

$$
1/x_0 < u_{Ny} = 2b
$$

Artifacts from aliasing: a simple approach

FIGURE 10-34. The geometric basis of aliasing. An analog input signal of a certain frequency F is sampled with a periodicity shown by the vertical lines ("samples"). The interval between samples is wider than that required by the Nyquist criterion, and thus the input signal is undersampled. The sampled points (solid circles) are consistent with a much lower frequency signal ("aliased output signal"), illustrating how undersampling causes high input frequencies to be recorded as aliased, lower measured frequencies.

Artifacts from aliasing: a simple approach

Spatial Frequency (cycles/mm)

Spatial Frequency (cycles/mm)

FIGURE 10-35. Each of the six panels illustrates the Fourier transform of a sine wave with input frequency FIN, after it has been detected by an imaging system with a Nyquist frequency. F_N, of 5 cycles/mm (i.e., sampling pitch $= 0.10$ mm). Left panels: Input frequencies that obey the Nyquist criterion $(F_{IN} < F_N)$, and the Fourier transform shows the recorded frequencies to be equal to the input frequencies. Right panels: Input frequencies that do not obey the Nyquist criterion ($F_{IN} > F_N$), and the Fourier transform of the signal indicates recorded frequencies quite different from the input frequencies, demonstrating the effect of aliasing.

 $1/x_{0} = 10$ cycles/mm

Appendix: The Discrete Fourier Transform (DFT)

One commonly used form for the DFT of a sequence of N values d_n for $0 \leq$ $n \leq N - 1$ is given by

$$
D_m = \text{DFT}\{d_n\} = \sum_{n=0}^{N-1} d_n e^{-i2\pi nm/N},\tag{2.63}
$$

which consists of a sequence of the N complex values D_m for $0 \le m \le N - 1$. The inverse DFT is given by

$$
d_n = \text{DFT}^{-1} \{ D_m \} = \frac{1}{N} \sum_{m=0}^{N-1} D_m e^{i2\pi nm/N}.
$$
 (2.64)

Other forms of the DFT exist, differing primarily by a scaler constant of N or \sqrt{N} . The dimensions of d_n and D_m must necessarily be the same, and they are often dimensionless.