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Monoatomic 1D lattice
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Interatomic potential
Now we consider a monatomic 1-D lattice in the x-direction. The lattice atoms are very

close to eqilibrium. Let us examine a single i-th atom and find the ri potential as a function

of displacement from equilibrium, U(ri).
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We expand this potential into a Taylor’s series:
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The first term of this expansion is just the equilibrium binding energy (, const). The second 

term is the slope of the potential at its minimum (= 0). The fourth and higher terms become 

increasingly smaller. We are therefore left with the third term as the only significant change 

in the potential energy for a small displacement u = ri-ro. This has the form 

-U = ½Cu2 (C = d2U/dri
2 at ri = r0)

representing the harmonic approximation, since it is the same as the energy stored in a 

spring, or the potential energy of a harmonic oscillator. Our simple model of the dynamic 

crystal structure should therefore be a “ball and spring” model, with the lengths of the 

springs equivalent to the equilibrium separations of the ion cores.
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Monatomic 1D lattice

Let us examine the simplest periodic system within the context of harmonic approximation

(F = dU/du =  Cu) - a one-dimensional crystal lattice, which is a sequence of masses m

connected with springs of force constant C and separation a.

Mass MThe collective motion of these springs will 

correspond to solutions of a wave equation.

Note: by construction we can see that 3 types 

of wave motion are possible,

2 transverse, 1 longitudinal (or compressional)

How does the system appear with a longitudinal wave?:

The force exerted on the n-th atom in the

lattice is given by

Fn = Fn+1,n – Fn-1,n = C[(un+1 – un) – (un – un-1)].

Applying Newton’s second law to the motion

of the n-th atom we obtain

   u  - un+1 n

   un+1    un+2 un-1    un
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Note that we neglected hereby the interaction of the n-th atom with all but its nearest neighbors. 

A similar equation should be written for each atom in the lattice, resulting in N coupled differential 

equations, which should be solved simultaneously (N - total number of atoms in the lattice). In 

addition the boundary conditions applied to end atoms in the lattice should be taken into account.
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Monatomic 1D lattice - continued

Now let us attempt a solution of the form:                      ,

where xn is the equilibrium position of the n-th atom so that xn= na. This equation represents

a traveling wave, in which all atoms oscillate with the same frequency ! and the same

amplitude A and have a wavevector k. Now substituting the guess solution into the equation

and canceling the common quantities (the amplitude and the time-dependent factor) we obtain

This equation can be further simplified by canceling the common factor eikna , which leads to

We find thus the dispersion relation

for the frequency:

which is the relationship between the

frequency of vibrations and the

wavevector k. The dispersion relation

has a number of important properties.
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Monatomic 1D lattice – continued

Phase and group velocity. The phase velocity is defined by

and the group velocity by

The physical distinction between the two velocities is that vp is the velocity of propagation

of the plane wave, whereas the vg is the velocity of the propagation of the wave packet.

The latter is the velocity for the propagation of energy in the medium. For the particular

dispersion relation the group velocity is given by

Apparently, the group velocity is zero at the edge of the zone where k = ± !/a. Here the

wave is standing and therefore the transmission velocity for the energy is zero.

Long wavelength limit. The long wavelength limit implies that "#>> a. In this limit ka << 1.

We can then expand the sine in ‘$#‘ and obtain for the positive frequencies:

We see that the frequency of vibration is proportional to the wavevector. This is

equivalent to the statement that velocity is independent of frequency. In this case:

This is the velocity of sound for the one dimensional lattice which is

consistent with the expression we obtained earlier for elastic waves.
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Show that and    vg = v0 cos(ka/2) , where v0 is the wave velocity

for the continuum limit.
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Monatomic 1D lattice – continued

Finite chain – Born – von Karman periodic boundary condition.

Unlike a continuum, there is only a finite number of distinguishable vibrational modes. But 

how many?

Let us impose on the chain ends the Born – von Karman periodic boundary conditions 

specified as following: we simply join the two remote ends by one more spring in a ring or 

device in the figure below forcing atom N to interact with ion 1 via a

spring with a spring constant C. If the atoms occupy sites a, 2a, …, Na,

The boundary condition is  uN + 1 = u1 or  uN = u0.

Na

With the displacement solution of the form

un = Aexp[i(kna-wt)],  the periodic boundary

condition requires that  exp(!ikNa) = 1,

which in turn requires  ‘k’ to have the form:

(n – an integer),  and ,  or

(N values of k).    
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Diatomic 1D lattice

Now we consider a one-dimensional lattice with two non-equivalent atoms in a unit cell. It

appears that the diatomic lattice exhibits important features different from the monatomic

case. The figure below shows a diatomic lattice with the unit cell composed of two atoms

of masses M1 and M2 with the distance between two neighboring atoms a.

We can treat the motion of this lattice in a similar fashion as for the monatomic lattice. 

However, in this case, because we have two different kinds of atoms, we should write two

equations of motion:

In analogy with the monatomic lattice we are looking for the solution in the form of 

traveling mode for the two atoms:

in matrix form.
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Diatomic 1D lattice - continued

Substituting this solution into the equations of the previous slide we obtain:

This is a system of linear homogeneous equations for the unknowns A1 and A2. A nontrivial

solution exists only if the determinant of the matrix is zero. This leads to the secular equation

This is a quadratic equation, which can be readily solved:

Depending on sign in this formula there are two

different solutions corresponding to two different

dispersion curves, as is shown in the figure:

The lower curve is called the acoustic branch,

while the upper curve is called the optical branch.
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Diatomic 1D lattice - continued

Substituting this solution into the equations of the previous slide we obtain:
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Diatomic 1D lattice - continued

The acoustic branch begins at k = 0 and !"= 0,

and as k  # 0:

With increasing k the frequency

increases in a linear fashion. This 

is why this branch is called acoustic:

it corresponds to elastic waves, or

sound. Eventually, this curve saturates

at the edge of the Brillouin zone.

On the other hand, the optical branch

Has a nonzero frequency at zero k,

and it does not change much with k.
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Another feature of the dispersion curves is the existence of a forbidden gap between

!a = (2C/M1)
1/2 and !o = (2C/M2)

1/2 at the zone boundaries (k = - "/2a).

The forbidden region corresponds to frequencies in which lattice waves cannot propagate 

through the linear chain without attenuation. It is interesting to note that a similar situation 

also exists in the energy band scheme of a solid to be discussed later.
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Diatomic 1D lattice - continued

The acoustic branch begins at k = 0 and !"= 0,

and as k  # 0:

With increasing k the frequency

increases in a linear fashion. This 

is why this branch is called acoustic:

it corresponds to elastic waves, or

sound. Eventually, this curve saturates

at the edge of the Brillouin zone.

On the other hand, the optical branch

Has a nonzero frequency at zero k,

and it does not change much with k.

1 2

(0)
2( )

a

C
ka

M M
! $ %

&

Forbidden gap

2

1 2

1 1
2

o
C

M M
!

' (
$ &) *

+ ,

Another feature of the dispersion curves is the existence of a forbidden gap between

!a = (2C/M1)
1/2 and !o = (2C/M2)

1/2 at the zone boundaries (k = - "/2a).

The forbidden region corresponds to frequencies in which lattice waves cannot propagate 

through the linear chain without attenuation. It is interesting to note that a similar situation 

also exists in the energy band scheme of a solid to be discussed later.



Lattices

Phonons

19

Phonons

! From quantum mechanics, we 

learn that all energy is quantized 

(it comes only in discrete 

values).

! So, on this dispersion curve, 

there will only be discrete values 

of ! (since energy is released in 

packets of E = "!)

! These quanta of lattice 

vibrations (waves) are called 

phonons in analogy with the 

photons of electromagnetic 

waves.

! These waves are quantized just like harmonic oscillator waves.

For a wave of frequency !:

E = (n + ½) "!
! In this case, the mode is occupied by n phonons, each has an

energy of "!. The zero point energy of the mode is ½"!,

where n = 0.  According to quantum mechanics, there is a

zero-point energy associated with every system. 

!/2a

h"

Energy 

Distance
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Diatomic 1D lattice - continued
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Another feature of the dispersion curves is the existence of a forbidden gap between
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14

Diatomic 1-D lattice - continued

The distinction between the acoustic and optical branches of lattice vibrations can be seen

most clearly by comparing them at k = 0 (infinite wavelength). As follows from the equations

of motion, for the acoustic branch !"= 0 and A1 = A2. So, in this limit the two atoms in the cell

have the same amplitude and phase. Therefore, the molecule oscillates as a rigid body, as

shown in the left figure for the acoustic mode.

On the other hand, for the optical vibrations, by substituting !o we obtain for k = 0:

M1A1 +M2A2 = 0   (M1/M2 = -A2/A1).

This implies that the optical oscillation takes place in such a way that the center of mass of 

a molecule remains fixed. The two atoms move in out of phase as shown. The frequency of 

these vibrations lies in the infrared region (1012 to 1014 Hz) which is the reason for referring 

to this branch as optical. If the two atoms carry opposite charges, we may excite a standing 

wave motion with the electric field of a light wave.

Acoustic and optical modes
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Acoustic and optical modes

Monoatomic chain  
acoustic longitudinal mode

Monoatomic chain  
acoustic transverse mode

Diatomic chain  
acoustic transverse mode

Diatomic chain  
optical transverse mode


