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What is a wave?

WAVE: organized propagating imbalance, 
satisfying differential equations of motion 
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Speed of waves

A general property of waves is that the speed of a wave 
depends on the properties of the medium, but is 
independent of the motion of the source of the waves.

Consider a wave moving along a rope experimentally we find 


(i) the greater the tension in a rope the faster the waves 
propagate


(ii) waves propagate faster in a light rope than a heavy rope

ie   v ∝ tension (F)  and   v ∝ 1/mass   


known as Mersenne’s law     



Mersenne’s law

L’Harmonie Universelle (1637)


This book contains (Marine) Mersenne's laws 
which describe the frequency of oscillation of a 
stretched string. 


This frequency is:

a) Inverse proportional to the length of the 
string (this was actually known to the ancients, 
and is usually credited to Pythagoras himself).

b) Proportional to the square root of the 
stretching force, and

c) Inverse proportional to the square root of 
the mass per unit length.




D’Alembert’s solution

D'Alembert (1747) "Recherches sur la courbe que forme une corde tendue mise en vibration" (Researches 
on the curve that a tense cord forms [when] set into vibration), Histoire de l'académie royale des sciences 
et belles lettres de Berlin, vol. 3, pages 214-219.


D'Alembert (1750) "Addition au mémoire sur la courbe que forme une corde tenduë mise en vibration," 
Histoire de l'académie royale des sciences et belles lettres de Berlin, vol. 6, pages 355-360.
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Harmonic Waves 

A harmonic wave is sinusoidal in 
shape, and has a displacement  y  
at time t=0 

A is the amplitude of the wave and λ is the wavelength 
(the distance between two crests);
if the wave is moving to the right with speed v, the 
wavefunction at some t is given by:
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Time taken to travel one wavelength is the period T

Velocity, wavelength and period are related by 

The wavefunction shows the periodic nature of y:  


at any time t y has the same value at x, x+λ, x+2λ………


and at any x y has the same value at times t, t+T, t+2T…… 

  
∴ y = Asin 2π x
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Harmonic Waves 



It is convenient to express the harmonic wavefunction by 
defining the wavenumber k, and the angular frequency ω

This assumes that the displacement is zero at x=0 and t=0. If 
this is not the case we can use a more general form

where φ is the phase constant and is determined from initial 
conditions

Harmonic Waves 



The wavefunction can be used to 
describe the motion of any point P. 

P

Transverse velocity vy

which has a maximum value, (vy)max= ωA, when y = 0

Harmonic Waves 



Transverse acceleration ay 
P

NB:  x-coordinates of P are constant

which has a maximum absolute value, (ay)max= ω2A, when t=0

Harmonic Waves 



Energy of waves on a string

Consider a harmonic wave 
travelling on a string. Δx, Δm

Source of energy is an external 
agent on the left of the wave 
which does work in producing 
oscillations.

Consider a small segment, length Δx and mass Δm.

The segment moves vertically with SHM, frequency ω and 
amplitude A.

Generally E = 1
2
mω2A2



If we apply this to our small segment, the total energy of the 
element is

If µ is the mass per unit length, then the element Δx has 
mass Δm = µ Δx

If the wave is travelling from left to right, the energy ΔE 
arises from the work done on element Δmi  by the element 
Δmi-1 (to the left).   



Similarly Δmi  does work on element Δmi+1 (to the right) ie. 
energy is transmitted to the right.   

The rate at which energy is transmitted along the string is 
the power and is given by dE/dt. 

If Δx -> 0 then 

but dx/dt = speed



Power transmitted on a harmonic wave is proportional to

(a) the wave speed v

(b) the square of the angular frequency ω
(c) the square of the amplitude A

All harmonic waves have the following general properties:

The power transmitted by any harmonic wave is 
proportional to the square of the frequency and to 
the square of the amplitude.



Wavefunction for a standing wave

Consider two sinusoidal waves in the same medium with the 
same amplitude, frequency and wavelength but travelling in 
opposite directions

This is the wavefunction of a standing wave

y = 2Ao sin(kx) cos(ωt)

y = Ao sin(kx − ωt) + sin(kx + ωt)⎡⎣ ⎤⎦

Using the identity sin A + sinB = 2cos A − B
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Separation of variables

• A starting point to study differential equations is to 
guess solutions of a certain form (ansatz). Dealing with 
linear PDEs, the superposition principle principle 
guarantees that linear combinations of separated 
solutions will also satisfy both the equation and the 
homogeneous boundary conditions. 


•Separation of variables: a PDE of n variables ⇒ n 

ODEs 

•Solving the ODEs by BCs to get normal modes 
(solutions satisfying PDE and BCs). 


• The proper choice of linear combination will allow for 
the initial conditions to be satisfied 


• Determining exact solution (expansion coefficients of 
modes) by ICs 



Separation of variables: string

∂2y(x, t)
∂x2

− 1
c2

∂2y(x, t)
∂t2

= 0

and if it has separable solutions: 

y(x, t) = X(x)T(t)

ω=ck

d2X(x)
dx2

+ k2X(x) = 0

X(x) = Acos(kx) +Bsin(kx) T(t) = Ccos(ωt) +Dsin(ωt)

T"(t) + c2k2T(t) = 0

To be determined by initial and boundary conditions



Standing waves in a string fixed at both ends

Consider a string of length L and fixed at both ends

The string has a number of natural patterns of vibration called 
NORMAL MODES

Each normal mode has a characteristic frequency which we can 
easily calculate

When the string is displaced at its mid point the centre of the 
string becomes an antinode. 

Node Node

L



Standing waves in a string fixed at both ends

String is fixed at both ends   ∴  y(x,t) = 0 at x = 0 and L

y(0,t)=0  when x = 0              as  sin(kx) = 0  at  x = 0 

y(L,t) = 0  when sin(kL) = 0       ie     kn L = n π       n=1,2,3…. 

but kn = 2π / λ       ∴ (2π / λn )L = nπ  or        λn = 2L/n

Node Node

L



Standing waves in a string fixed at both ends

The next normal mode occurs when the length of the string L = 
one wavelength, i.e.   L = λ2  

The third normal mode occurs when  L = 3λ3 /2  

Generally normal modes occur when   L = nλn /2 

For first normal mode   L = λ1 / 2

Node Node
L



Standing waves in a string fixed at both ends

The natural frequencies associated with these modes can be 
derived from    f = v/λ

For a string of mass/unit length µ, under tension F we can replace 
v  by  (F/µ)½ 

The lowest frequency  (fundamental)  corresponds to n = 1





Plucked string

Can one predict the amplitude of each mode 
(overtone/harmonic?) following plucking?


Using the procedure to measure the Fourier 
coefficients it is possible to predict the 
amplitude  of each harmonic tone.



Initial conditions

•You know the shape just before it is plucked.

•You know that each mode moves at its own 
frequency

•The shape when released 

•We rewrite this as 

shape = f(x,t = 0)

f(x,t = 0) = An
n
∑ sin(knx)



The plucked string (continued)

http://www.falstad.com/loadedstring/

f(x,t = 0) = An
n
∑ sin(knx)

f(x,t) = An
n
∑ sin(knx) cos(ωnt)

Each harmonic has its own frequency 
of oscillation, the m-th harmonic 
moves at a frequency fm=mf0 or m 
times that of the fundamental mode. 



Modal summation on a string



Source excitation


