
RADIATION FROM 
MOVING CHARGES 

3.1 
CHARGES: THE LIENARD-WECHART POTENTIALS 

RETARDED POTENTIALS OF SINGLE MOVING 

Consider a particle of charge q that moves along a trajectory r=ro(t). Its 
velocity at any time is then u(f)=to(t). The charge and current densities 
are given by 

(3.la) 

(3.lb) 

The 8-function has the property of localizing the charge and current; we 
also obtain the proper total charge and current by integrating over volume: 

Let us calculate the retarded potentials [Eq. (2.67)] due to these charge and 
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current densities. We use the scalar potential as an example: 

using the property of the 8-function. Substitution of Eq. (3.la) for the 
charge density and integration over r‘ yields 

This is now an integral over the single variable 1‘. We now introduce the 
notations 

R(t’)=r-ro( t ’ ) ,  R(r ’ )=  IR(t’)l. (3.3) 

We then have 

A(r,r)= 4 J ~ ( t ’ ) R  - ‘ ( t ’ )a ( r ’ -  r +  R(t’)/c)dr’,  (3.4b) 
C 

where we have performed the identical integrations for A. Equations (3.4) 
are useful forms for the potentials, but they may be simplified still further. 
Note that the argument of the &function vanishes for a value of t’=rrc. 
given by 

~ ( 1 -  t re t )  = R(treJ. (3.5) 

Let us change variables from t’ to t”= t’- t + [ R ( t ‘ ) / c ] ,  which implies that 

dt”=dt‘+ -R(t’)dt’ .  
1 
C 

Since R2(t’)=RZ(t’) ,  it follows that 2R(t’)d( t ’ )= -2R(r’).u(t‘), where R(t’) 
= -u(t‘). We also define the unit vector n by 
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Finally, we obtain 

Now the integration over the &function can be performed by setting r“ =0, 
or equivalently by setting t‘ = trel. This yields 

where we have used the notation 

1 
K( t’) = 1 - - n( t’)*u( t’). 

C 

Then, with the brackets denoting retarded times, we have 

(3.7a) 

(3.7b) 

These are called the LiPnard- Wiechart potentials. These potentials differ 
from those of static electromagnetic theory in two ways: First, there is the 
factor K = 1 - (n*u/c). This factor becomes very important at velocities 
close to that of light, where it tends to concentrate the potentials into a 
narrow cone about the particle velocity. It is related to the beaming effect 
found in the Lorentz transformation of photon direction of propagation. 
(See Chapter 4.) 

The second difference is that the quantities are all to be evaluated at the 
retarded time tre1. We have already discussed the meaning of this. The 
major consequence of retardation is that it makes it possible for a particle 
to radiate. The potentials roughly fall off as 1/r so that differentiation to 
find the fields would give a 1 / r z  decrease if this differentiation acted solely 
on the 1 / r  factor. As we show in the following section retardation allows 
an implicit dependence on position to occur via the definition of retarded 
time, and differentiation with respect to this dependence carries the 1 / r  
behavior of the potentials into the fields themselves. We have seen that this 
allows radiation energy to flow to infinite distances. 
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3.2 THE VELOCITY AND RADIATION FIELDS 

The differentiations of the potentials to obtain the fields are straightfor- 
ward but lengthy, and we omit details (see Jackson, 814.1). The results are 
as follows: If we want the fields at point r at time t we first must determine 
the retarded position and time of the particle rrct and t,,,. At this time the 
particle has velocity u = ro(tr,,) and acceleration U = ro(tret). We introduce 
the notation 

Then the fields are 

B(r, t )  =[ n x E(r, t ) ] .  

Note from Figure 3.1 that at time t the particle is at 
along its path, but only the conditions at the retarded 

.I 

(3.9b) 

some point further 
time determine the 

fields at point r at time t. The magnetic field is always perpendicular to 
both E and n. 

The electric field appears above as composed of two terms: the first, the 
velocity field, falls off as 1 / R 2  and is just the generalization of the 
Coulomb law to moving particles: for u<<c this becomes precisely 
Coulomb’s law. When the particle moves with constant velocity it is only 
this term that contributes to the fields. A remarkable fact in this case is 
that the electric field always points along the line toward the current 
position of the particle. This follows from the fact that the displacement to 

Particle posrtion 

Figure 3.1 
position of the mdiating particle at the mtarded time. 

Geometty for cakulption of the mdiation j2k.i at R fmm the 
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the field point from the retarded point is ncf, where i= t -  tret is the light 
travel time. In the same time the particle undergoes a displacement Ipci. 
The displacement between the field point and the current position is thus 
(n -Ip)ci, which is seen to be the direction of the velocity field in Eq. (3.9a). 

The second term, the acceleration field, falls off as 1/ R, is proportional 
to the particle’s acceleration and is perpendicular to n. This electric field, 
along with the corresponding magnetic field, constitutes the radiation field: 

(3. IOa) 

= [ x Erad]. (3.1 Ob) 

Note that E, B and n form a right-hand triad of mutually perpendicular 
vectors, and that IEradl = lBradI. These properties are consistent with the 
radiation solutions of the source-free Maxwell equations. 

Figure 3.2 demonstrates geometrically how an acceleration can give rise 
to a transverse field that decreases as 1 / R, rather than the 1 / R decrease 
of a nonaccelerated charge. The particle originally moved with constant 
velocity along the x-Exis and stopped at x=O at time t = O .  At t= 1 the 
field outside of a radius c is radial and points to the position where the 
particle would have been had there been no deceleration, since no infor- 
mation of the latter has yet propagated to this distance. On the other hand, 
the field inside radius c is “informed” and is radially directed to the true 
position of the particle. There is only one way these two’ fields can be 

4 n  
Erad(r, t ,  = - [ - x { (n-8) x b } ] .  

K ~ R  

x = o  x = l  

Figure 3.2 Gmphical akmonstmtion of the l / R  accelemtion field Charged 
parti& mouing at uni~orm oelociry in psirive x direction is stopped at x = 0 and 
t -0 .  
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connected that is consistent with Gauss’s law and flux conservation: it is 
graphically illustrated in the figure. It can be seen that a transition zone 
(whose radial thickness is the time interval over which the deceleration 
occurs) propagates outward. In this zone the field is almost transverse and 
is much stronger (closely packed flux lines) than the radial fields outside 
the zone. Further geometrical arguments can be used to show that the field 
intensity in this zone is proportional to I / c t =  1 / R .  If one looks at an 
annular ring centered on and perpendicular to the line of travel, containing 
all the flux lines in the passing wavefront, then the thickness of the ring is 
constant (light travel distance during acceleration time), and the radius of 
the ring varies as R .  Since the total number of flux lines is conserved, the 
strength of the field varies as 1 / R.  

A useful result is obtained by considering the energy per unit frequency 
per unit solid angle corresponding to the radiation field of a single particle 
[cf. Eqs. (3.10a) and (2.33)]: 

2 
-- dW - ’/l[ RE(t)]e”‘drl 
dwdfl 4n2 

/2 - - -- 4z:c 1 J [ n x { (n - p)  x b}  K -’] eiWrdt 

(3.1 la) 

(3.1 lb) 

where the expression in the brackets is evaluated at the retarded time 
f = r -  R(z‘) /c .  Now, changing variables from t to t’ in the integral, 
dt = Kdt‘, and using the expansion R(t’)xIrl -n*r,,, valid for ~ r o ~ < < ~ r ~ ,  we 
have 

2 
-=- dW 42 1 /n  x { (n - p) x 8) K -’ exp [ iw( t’ - n-ro( t ’ ) / c )  ] d f  1 . 
dodo 4aZc I 

(3.12) 

Finally, we may integrate Eq. (3.12) 
involving only p. Using the identity 
(nxp), Eq. (3.12) becomes 

by parts to obtain an expression 
n x { (n - p) x b} K -’ = d/dt’K - ‘N x 
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3.3 RADIATION FROM NONRELATIVISTIC 
SYSTEMS OF PARTICLES 

Using the above formulas we could discuss many radiation processes 
involving moving charges, including particles moving relativistically. How- 
ever, the interpretation of many of these results would be made easier after 
the section on special relativity. Therefore, for the moment, we shall 
specialize the discussion to nonrelativistic particles, that is, the case 

Let us compare the order of magnitude of the two fields Erad and Eve,: 
taking the leading terms we obtain 

‘rad Ru 
‘vet C’ . 
--- (3.14a) 

Now, if we focus on the particular Fourier component of frequency u, or if 
the particle has a characteristic frequency of oscillation u, then u-uv, and 
Eq. (3.14a) becomes 

(3.14b) 

Thus for field points inside the “near zone”, R S A ,  the velocity field is 
stronger than the radiation field by a factor > , c / u ;  whereas for field 
points sufficiently far in the “far zone,” R >X(c/u),  the radiation field 
dominates and increases its domination linearly with R. 

Larmor’s Formula 

When p<< 1 we can simplify equations (3.10) to 

Brad = [ nXErad]. (3.1 5b) 

This is illustrated in Fig. 3.3, which has been drawn in the plane of n and 
i. We note that Erad is also in this plane in the orientation indicated, and 
Brad is into the plane of the diagram. The magnitudes of Erad and Brad are 

(3.16) 
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Figure 3.3 Electric and magnetic radiation fiela confgurations for a slow(y 
mooing particle. The direction of Bd t into the page. 

The Poynting vector is in the direction of n and has the magnitude 

(3.17) 

This corresponds to an outward flow of energy, along the direction n. We 
can put this into the form of an emission coefficient. The energy dW 
emitted per unit time into solid angle d52 about n can be evaluated by 
multiplying the Poynting vector (erg s-’  cm-’) by the area dA = R2dQ 
represented by 52 at the field point: 

(3.18) 

We may obtain the total power emitted into all angles by integrating this 
over solid angles: 

Thus we have Larmor’s formuIa for emission from a single accelerated 
charge q:  

(3.19) 
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There are several points to notice about Eqs. (3.18) and (3.19): 

1. The power emitted is proportional to the square of the charge and the 
square of the acceleration. 

2. We have the characteristic dipole pattern a sin2@: no radiation is 
emitted along the direction of acceleration, and the maximum is 
emitted perpendicular to acceleration. 

3. The instantaneous direction of Erad is determined by u and n. If the 
particle accelerates along a line, the radiation will be 100% linearly 
polarized in the plane of u and n. 

The dipole approximation 

When there are many particles with positions ri, velocities ui, and charges 
qi, i = 1,2.. . N ,  we can find the radiation field at large distances by simply 
adding together the Erad from each particle. However, there is a complica- 
tion here, because the above expressions for the radiation fields refer to 
conditions at retarded times, and these retarded times will differ for each 
particle. Another way of stating the complication is that we must keep 
track of the phase relations between the various pieces of the radiating 
system introduced by retardation. 

There are situations, however, in which it is possible to ignore this 
difficulty. Let the typical size of the system be L, and let the typical time 
scale for changes within the system be T .  If 7 is much longer than the time 
it takes light to travel a distance L, r>>L/c, then the differences in 
retarded time across the source are negligible. We may also characterize T 

as the time scale over which significant changes in the radiation field Erad 
occur, and this in turn determines the typical characteristic frequency of 
the emitted radiation. Calling this frequency u, we write 

1 
Y e - .  

7 

Combining this with the above we obtain 

C 

U 
- >> L, 

or 

A>> L, (3.20) 

that is, the differences in retarded times can be ignored when the sue of 
the system is small compared to a wavelength. 
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We may also characterize r as the time a particle takes to change its 
motion substantially. Letting I be a characteristic scale of the particle’s 
orbit and u be a typical velocity, then r - l / u .  The condition r>>L/c then 
implies u/c<<l /  L. But since I < L, this is simply equivalent to the nonrela- 
tivistic condition 

We may therefore consistently use the nonrelativistic form of the radiation 
fields for these problems. With the above conditions met we can write 

q n x ( n x u , )  E 
i C‘ Ri 

rad (3.21) 

Let R, be the distance from some point in the system to the field point (see 
Fig. 3.4). Since the differences in the actual Ri are negligible as R,+oo, we 
have 

n x ( n x  ii) 
c’R, ’ 

Erad = 

where the dipole moment is 

d =  qiri. 
1 

(3.22a) 

(3.22b) 

The right-hand side of Eqs. (3.22) must still be evaluated at a retarded 
time, but this time can be evaluated using any point within the region, say, 
the point used to define R,. 

K O  

Figure 3.4 Radiation from a medium of sire L. 
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As before, we find 

sin’ 0, dP d2 -=- 
dQ 4nc3 

P=,. 2d2 

3c 

(3.23a) 

(3.23b) 

This is called the dipole approximation and is a generalization of the 
formulas [Eqs. (3.18) and (3.19)] for a single nonrelativistic particle. The 
instantaneous polarization of E lies in the plane of d and n (see Fig. 3.5). 

As an application of the preceding analysis, let us consider the spectrum 
of radiation in the dipole approximation. For simplicity we assume that d 
always lies in a single direction. Then from Eq. (3.22a), we have 

sin 0 
c2R, 

E ( t )  = a( t)- , (3.24) 

where E ( t )  and d(t)  are the magnitudes of E(t) and d(t) ,  respectively. The 

Figure 3.5 Geometry and emission pattern for dipole radiation. 
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Fourier transform of d ( f )  can be defined so that 

d ( t )  = / e-'"'a(w)dw. 
-cc 

Then we have the relations 

1 -  i.(w) = - - w2d(w) sin O. 
c2R, 

(3.25a) 

( 3.25 b) 

For the energy per unit solid angle per frequency range and for the total 
energy per frequency range we have, using Eqs. (2.33), (3.25), and a2 = 
RidQ,  

dW 1 
dwdQ c3 
-- - -w412(o)12sin2~, 

I44 I 2. 
dW 8 r w 4  -=- 
do 3c3 

(3.26a) 

(3.26b) 

These formulas describe an interesting property of dipole radiation, 
namely, that the spectrum of the emitted radiation is related directly to the 
frequencies of oscillation of the dipole moment. This property is not true 
for particles with relativistic velocities. 

The general multiple expansion 

In the above treatment of the dipole approximation we have argued only 
qualitatively. We would like to be slightly more explicit and indicate the 
features of the general case. Since E and B are simply related well outside 
of the source, we may consider the vector potential A to contain all of the 
necessary information. Consider a Fourier analysis of the sources and 
fields [cf. Eq. (2.3)]: 

(3.27a) 

A,(r) = JA(r.z)e'"'dl. (3.27b) 

Then, using the equation analogous to Eq. (3.2) for the vector potential 
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and taking the Fourier transform of this equation, using Eqs. (3.27), we 
obtain 

(3.28) 

where k=w/c. Note that our equations now relate single Fourier compo- 
nents of j and A. 

Let us choose an origin of coordinates inside the source of size L. Then, 
at field points such that r>>L, we have the approximation 

Ir - r'l z r  - nor', (3.29) 

where n points toward the field point r and where r = Irl. Substituting Eq. 
(3.29) into (3.28), we obtain 

(3.30) 

The factor exp( ikr) outside the integral expresses the effect of retardation 
from the source as a whole. The factor exp(-ikn-r') inside the integral 
expresses the relatiue retardation of each element of the source. In our 
slow-motion approximation, kL<< 1. Thus, expanding the exponential in 
the integral: 

(3.31) 

Equation (3.3 1) is clearly an expansion in the small dimensionless parame- 
ter kL =2rL/X. The dipole approximation results from takmg just the first 
term in the expansion (n =O): 

The quadrupole term is the second term in the expansion (n = 1): 

(3.32) 

(3.33) 

Although it is true that the frequencies present in the vector potential 
(and hence in the radiation) are identical to those in the current density, it 
should be pointed out that these frequencies may differ from the frequen- 
cies of particle orbits in the source. For example, in the case of a particle 
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orbiting in a circle with angular frequency oo, the function j,(r) actually 
contains frequencies not only at wo but also at all harmonics 200, 3w0.. . . 
In the dipole approximation only oo contributes, in the quadrupole ap- 
proximation only 20, contributes, and so on (see problem 3.7). 

3.4 THOMSON SCATIERING (ELECTRON SCATTERING) 

An important application of the dipole formula is to the process in which a 
free charge radiates in response to an incident electromagnetic wave. If the 
charge oscillates at nonrelativistic velocities, u<<c, then we may neglect 
magnetic forces, since E = B for an electromagnetic wave. Thus the force 
due to a linearly polarized wave is 

F = ecEosinwot, (3.34) 

where e is the charge and c is the E-field direction. (See Fig. 3.6.) From Eq. 
(3.34), we have 

mr= ecE,sinw,t. 

In terms of the dipole moment, d =  er, we have 

.. e2Eo 
d =  ~ c sin mot, 

m 

c sin wot, 

Figuw 3.6 Scattering of polarized radktion by a charged parti& 
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which describes an oscillating dipole of amplitude 

From our previous results of Eqs. (3.23), we can write the time-averaged 
power as 

(3.35a) 

(3.35b) 

where the time average of sin*w,,t gives a factor t. Note that the incident 
flux is (S } = ( c / 8 a ) E i .  Defining the differential cross section do for 
scattering into dS2 we have 

Therefore, we have the relation 

(3.36) 

(3.37) 

where 

(3.38) 

The quantity ro gives a measure of the ‘‘size’’ of the point charge, 
assuming its rest energy mc2 is purely electromagnetic in origin. For an 
electron ro is called the classical electron radius and has a value ro= 2.82 X 

cm. The total cross section can be found by integrating over solid 
angle, using p = cos 0, 

e2 

me2 . 
r =- 

0-  

This gives the result 

8n 2 

O =  - 7 0 .  
(3.39) 

(Alternatively, one can obtain u from P = ( S  )o.)  
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For an electron u = uT = Thomson cross section =0.665 X cm’. The 
above scattering process is then called Thomson scattering or electron 
scattering. 

Note that the total and differential cross sections above are frequency 
independent, so that the scattering is equally effective at all frequencies. 
However, this is really only valid for sufficiently low frequencies, so that a 
classical description is valid. At high frequencies, where the energy of 
emitted photons hv becomes comparable to or larger than m2, then the 
quantum mechanical cross sections must be used; this occurs for X-rays of 
energies hv20.511 MeV for electron scattering (see Chapter 7). Also, for 
sufficiently intense radiation fields the electron moves relativistically; then 
the dipole approximation ceases to be valid. 

We note that the scattered radiation is linearly polarized in the plane of 
the incident polarization vector E and the direction of scattering n. 

It is easy to get the differential cross section for scattering of unpolarized 
radiation by recognizing that an unpolarized beam can be regarded as the 
independent superposition of two linear-polarized beams with perpendicu- 
lar axes. Let us choose one such beam along E , ,  which is in the plane of the 
incident and scattered directions, and the second along c2, perpendicular to 
this plane. (See Fig. 3.7.) Let 0 be the angle between E ,  and n. Note that 
the angle between c2 and n is 7 / 2 .  We also have introduced the angle 
B = n / 2 - 0 ,  which is the angle between the scattered wave and incident 
wave. Now the differential cross section for unpolarized radiation is the 
average of the cross sections for scattering of linear-polarized radiation 

Figure 3.7 Geotnety for scattering impohtized mdiatim 
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through angles O and n/2.  Thus we have the result 

= t r i (  1 + sin' 0) 

= ;r,2(1 +cosze), (3.40) 

which depends only on the angle between the incident and scattered 
directions, as it should for unpolarized radiation. 

There are several features of electron scattering of unpolarized radiation 
which we now point out: 

1. Forward-backward symmetry: The scattering cross section, Eq. (3.40), 
is symmetric under the reflection f3+ - 0. 

2. Total cross section: The total scattering cross section of unpolarized 
incident radiation is the same as that for polarized incident radiation 
u,,pol=upol=(8n/3)r~. This is because the electron at rest has no net 
direction intrinsically defined. 

3. Polarization of scattered radiation: The two terms in Eq. (3.40) clearly 
refer to intensities in two perpendicular directions in the plane normal 
to n, since they arise from the two perpendicular components of the 
incident wave. Since the polarized intensities in the plane and per- 
pendicular to the plane of scattering are in the ratio cos28: 1, the 
degree of polarization of the scattered wave is [cf. Eq. (2.57)) 

1 - C O S Z 8  

1 +cos2d * 

n= (3.41) 

Since l3 > 0, we have the interesting result that electron scattering of a 
completely unpolarized incident wave produces a scattered wave with 
some degree of polarization, the degree depending on the viewing 
angle with respect to the incident direction. If we look along the 
incident direction ( e = O )  we see no net polarization, since, by symme- 
try, all directions in the plane are equivalent. If we look perpendicular 
to the incident wave (d= a /2 )  we see 100% polarization, since the 
electron's motion is confined to a plane normal to the incident direc- 
tion. 

3.5 RADIATION REACTION 

The energy radiated away by an accelerating charge must come from the 
particle's own energy or from the agency maintaining the particle's energy. 
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We conclude that there must be a force acting on a particle by virtue of 
the radiation it produces. This is called the radiation reaction force. The full 
treatment of this effect from first principles involves the calculation of the 
force on one part of the charge by the fields of another part, including 
retardation within the particle itself. Throughout the calculation the size of 
the particle is kept as nonzero. Afterwards the size can be set to zero, or at 
least to some small value such as ro. Here we derive the main result using 
energy considerations alone. 

We first delineate those regimes in which radiation reaction may be 
considered as a perturbation on the particle’s motion. Let T be the time 
interval over which the kinetic energy of the particle is changed substan- 
tially by the emission of radiation. Then from Eq. (3.19), with a = u, 

mu2 3mc’ 2 

T-- Prod -,z(f)’ 
where m is the mass of the particle, and u its velocity. We estimate u/a-‘p 
as the typical orbital time scale for the particle. Then the condition 
T/t,>>l requires that tP>>7, where, for an electron, 

- 10 - *3s 
2e2 

3mc3 
r s  - (3.42) 

Thus as long as we are considering processes that occur on a time scale 
much longer than r ,  we can treat radiation reaction as a perturbation. It 
should be noticed that T is the time for radiation to cross a distance 
comparable to the classical electron radius, the “size” of the electron: [cf. 
Eq. (3.38)] 

We can infer the formula for the radiation reaction force from elemen- 
tary considerations of energy balance. When the radiation reaction force is 
relatively small, we may sensibly define the force as a term added onto the 
existing external force, such that the energy radiated must be compensated 
for by the work done against the radiation reaction force. Thus we are 
tempted to set 

(3.43) 
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However, one can see that there is no Frad that can instantaneously satisfy 
this equation: Frad cannot depend on u, because this would imply a 
preferred frame relative to which u is measured. But then one side of Eq. 
(3.43) explicitly depends on u whereas the other does not, a contradiction. 
The best we can do is to satisfy this equation in some average sense, the 
remaining energy fluctuations being taken up in the nomadation fields. 
Integrate the above equation over a time interval t ,  to f2 ,  with (fz- t , ) > > ~ .  
Integrating by parts, we obtain: 

- l,f2Fradoudt = - 2e2 Jf2u*udr 
3c3 f ,  

= - 2e2 [ u II - j -? i -udt ] .  
3c3 

(3.44) 

If we assume that the initial and final states are the same (so that the 
nonradiation fields are the same and do not contribute to the energy 
difference) or that u*u(t,)=u*u(t2), the first term on the right-hand side of 
Eq. (3.44) vanishes, leaving 

Thus we take 

2e2u 

3c3 
Frad = - = ~ T U ,  (3.45) 

where Eq. (3.45) now represents the radiation force in some time-averaged, 
approximate sense. 

This formula for the radiation reaction force depends on the derivative 
of acceleration, that is, the third derivative of position. This increases the 
degree of the equation of motion of a particle and can lead to some 
nonphysical behavior if not used properly and consistently. 

For example, the equation of motion for a particle with applied force F 
is 

m ( U - ~ i i ) = F .  

Suppose F=O; then a solution is the obvious 

u=constant, 
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which is also the physically correct solution. However, there is also another 
solution 

u = u 0e‘ /7 ,  

which rapidly becomes exceedingly large (“runaway” solution). We must 
exclude such solutions from consideration. We note that they violate the 
restriction on the motion that it not change on a time scale short compared 
to 7 .  Furthermore, u*u(t,)#u*u(t,). We can thus argue that such solutions 
are spurious, on the mathematical grounds that they violate the assump- 
tions on which the equations were based. 

3.6 RADIATION FROM HARMONICALLY BOUND 
PARTICLES 

Undriven Harmonically Bound Particles 

A particle that is harmonically bound to a center of force (i.e., F = - kr = 
- mu$) will oscillate sinusoidally with frequency w,. Such a system, 
although rarely found in nature, is interesting because it gives the only 
possible classical model of a spectral line. Many of the quantum results are 
stated against the framework of this model (“oscillator strengths,” “classi- 
cal damping widths”). Since there is always a small damping of the 
oscillations by the radiation reaction force, the oscillation will not be 
purely harmonic. We assume that W,TK 1, so that the radiation reaction 
formula is valid. If the oscillations are along the x axis, [cf. Eq. (3.45)] 

- T x + x + ~ ; x = o .  (3.46) 

This is a third-order differential equation with constant coefficients. Since 
the term involving the third derivative is small, a convenient approxima- 
tion is that the motion will be harmonic to first order, with x ( t ) a  cos(oot + 
c+~) .  Therefore, we approximate the damping implied by the third deriva- 
tive by a damping in the first derivative, through 

2.z - w;x. (3.47) 

This approximation preserves an important feature of damping: it is 
expressed as an odd number of time derivatives and is therefore not time 
reversible. Therefore, our equation becomes 

x +a& + w;x = 0. (3.48) 
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This may be solved by assuming x(t) has the form ear,  where a is found 
from 

which has the solution 

when expanded in powers of W ~ T .  Taking as initial conditions for t = O ,  
x(0) = xo, i ( O ) x O ,  we have 

where 

(3.50) 

The Fourier transform of x(t) is, [cf. Eq. (2.27)], 

+ 1 
I ' / ~ - ~ ( W + W ~ )  r / 2 - i ( w - w O )  

1 "  
2 ( w )  = g 1 x( t)e'@'dt = - 

(3.51) 

This becomes large in the vicinity of w = a 0  and w -  -ao. Since we are 
ultimately interested only in positive frequencies, and only in regions in 
which the values become large, let us make the approximations 

The energy radiated per unit frequency is then [cf. Eq. (3.26b)I 

dW e2xi 1 
dm 3c3 (4.1~ (a - ao)2 + (r/212 ' 

(3.52) 

(3.53) 



98 Radiotion fmm Moving Charges 

dW 
dW 

f 

WO 

Figme 3.8 
damped by mdiation neaction. 

Power spctmm for M tutdnmn, hrmonieally b o u n d  pnrtiele 

Equation (3.53) gives the frequency spectrum typical of a “decaying 
oscillator.” Note that this has a sharp maximum in the neighborhood of 
a= wo, since I’/wo< 1.  This is illustrated in Fig. 3.8, where it is seen that r 
is the full width at half maximum (FWHM). 

Using the definition of I‘ and k=mwi=spring constant, we can write 
Eq. (3.53) in the form 

dW 1 - 1 2 ~  
- =(;kx;) 
dw (w - wo)2  + (r12)~ 

(3.54) 

The first factor gives the initial potential energy of the particle (energy 
stored in spring). The second factor gives the distribution of the radiated 
energy over frequency. The integral over w can be performed easily, if we 
note that the range of integration can be taken as infinite, since the 
function is confined essentially to a small region about wo: 

W dw=-tan-’[  I 2(w-oo) ] = l .  

- w  
7r 

Thus we find that 

(3.55) 

is the total emitted energy, as it should by conservation of energy. 
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The profile of the emitted spectrum, 

~2~ 
(3.56) 

is known as a Lorentr profile. 

constant when expressed in terms of wavelength: 
The classical line breadth Au = r for electronic oscillators is a universal 

A W  
M = 2 7 x 7  

where 

W L  

=2Tm= 1 . 2 ~  10-~,-i, 

1 A'= 10-8 cm. 

(3.57) 

Driven Harmonically Bound Particles 

We have just computed the radiation from the free oscillations of a 
harmonic oscillator. Now, we wish to consider forced oscillations, when the 
forcing is due to an incident beam of radiation. This will give the scattered 
radiation from the incident beam. Let us now write 

mx = - muix + mrx'+ eEocoswt, (3.58) 

where the last term is the force due to a sinusoidally varying incident field. 
Here we have left the radiation reaction term as a thrd derivative. With 
the usual trick of representing x by a complex variable, we have 

x - r X + a 0 x - -  2 - ''0 e i w r  , (3.59) 
m 

where we take the real part of x .  The steady-state solution of this equation 
is 

(3.60a) = Xoe iwr = i (wr + 6 ) 
--Ixole 9 

where 

(3.60b) 
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Note that there is a phase shift in the response of the particle displace- 
ment to the driving force, caused by the odd time derivative damping term. 
For w > wo the particle “leads” the driving force and for w < wo it “lags.” 
Taking the real part of x we see that we have an oscillating dipole of 
charge e and amplitude lxol with frequency o. The time-averaged total 
power radiated is therefore 

e21x012w4 - -- e4Ei w4 

3m2c3 (w’ - wo’) 2 + P- 
3c3 

(3.61) 

Dividing Eq. (3.61) by the time-average Poynting vector (S) =(c/8n)E;, 
we obtain the cross section for scattering as a function of frequency: 

(3.62) 
w4 

u(w)  = UT 

(w’-wo’)2 +(w;T)2 ‘ 

Here uT is the Thomson cross section. Three interesting regmes for w can 
be identified (see Fig. 3.9): 

I--w>>wo. In this case u(w)+o,, the value for free electrons. This is to 
be expected, since at high incident energies the binding becomes negligible. 

O’OT t 
Classical radiation 

1 w,.,l~o ( T W O )  ’ 
Fignro 3.9 Scattering cross section for a dn’wn, hamtonically b o d  pamcle as 
a fiurcrion of the driving froqwmy. Hero oo and (IT am t b  mtuml frequency 
and Thornton cross section, rospectiwly. 
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2-w<<oO. Here we have 

(3.63) 

This case corresponds to the electron responding directly to the incident 
field with no inertial effects, so that kx=eE. (Since w<w0, the electric field 
appears nearly static and produces a nearly static force.) The dipole 
moment is then directly proportional to the incident field and therefore is 
describable in terms of a static polurizubility. In such cases the scattered 
radiation will always go as w4, and the scattering is called Rayleigh 
scattering. It is responsible for the blue color of the sky and the red color of 
the sun at sunrise and sunset, because it favors the scattering of htgher 
frequency (bluer) light. 

3 - w e w O .  This case is dominated by the closeness of w’-wi to zero. 
Thus we write 

w2 - 00’ = (w - wo)(w + wo) 

and leave the factor (w-wo) ,  but in every other appearance of w we set 
o = wo. This leads to the approximation 

using r=&. With the definitions of uT and r ,  this can be written 

In the neighborhood of the resonance the shape of the scattering cross 
section is the same as the emission from the free oscillations of the 
oscillator [cf. Eq. (3.56)]. This can easily be explained, since the free 
oscillations can be excited by a pulse of radiation, E ( t ) a S ( t ) .  The 
spectrum of this pulse is independent of w (white spectrum), so that the 
free oscillations may be regarded as the scattering of a white spectrum, 
yielding emission proportional to the scattering cross section. 

An interesting result obtains from integrating a(w) over w :  

2r2e2 
a(w)dw= - 

mc 
(3.65a) 
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or in terms of frequency I ,  

i m u ( v ) d v =  -. re2  
mc 

(3.65b) 

In evaluating this integral we have apparently neglected a divergence, since 
the cross section actually approaches uT for large w. This may be justified 
as follows: the radiation reaction formula is only valid for m<1, so that 
we must cut off the integral at a a,, such that w,,<<l/~. The contribu- 
tion to the integral from the Thomson limit is less than 

This is negligible in comparison to the value of the integral in Eq. (3.65a), 
since u+,,<u~/T =4ae2/mc.  

In the quantum theory of spectral lines we obtain similar formulas, 
which are conveniently stated in terms of the above classical results as 

(3.66) 

where f,,. is called the oscillator strength or f-value for the transition 
between states n and n' (see Chapter 10). 

PROBLEMS 

3.1-A pulsar is conventionally believed to be a rotating neutron star. 
Such a star is likely to have a strong magnetic field, B,, since it traps lines 
of force during its collapse. If the magnetic axis of the neutron star does 
not line up with the rotation axis, there will be magnetic dipole radiation 
from the time-changing magnetic dipole, m( t ) .  Assume that the mass and 
radius of the neutron star are M and R, respectively; that the angle 
between the magnetic and rotation axes is a; and that the rotational 
angular velocity is w.  

a. Find an expression for the radiated power P in terms of w,  R, B, and 

b. Assuming that the rotational energy of the pulsar is the ultimate source 
of the radiated power, find an expression for the slow-down time scale, 
T ,  of the pulsar. 

a. 



c. For M =  1MO-2X ld3 g, R =  lo6 cm, B,= 10l2 gauss, cx=90°, find P 
and 7 for w =  104 s- l ,  Id s- ' ;  I d  s-' .  (The highest rate, O= 10" s-l, is 
believed to be typical of newly formed pulsars.) 

3.2-A particle of mass rn and charge e moves at constant, nonrelativis- 

a. What is the power emitted per unit solid angle in a direction at angle 8 

b. Describe qualitatively and quantitatively the polarization of the radia- 

c. What is the spectrum of the emitted radiation? 

d. Suppose a particle is moving nonrelativistically in a constant magnetic 
field B. Show that the frequency of circular motion is w, = eB/rnc, and 
that the total emitted power is 

tic speed.u, in a circle of radius a. 

to the axis of the circle? 

tion as a function of the angle 8. 

and is emitted solely at the frequency 0,. (Thls nonrelativistic form of 
synchrotron radiation is called cyclotron or gyro radiation). 

e. Find the differential and total cross sections for Thomson scattering of 
circularly polarized radiation. Use these results to find the cross 
sections for unpolarized radiation. 

33-Two oscillating dipole moments (radio antennas) d, and d, are 
oriented in the vertical direction and are a horizontal distance L apart. 
They oscillate in phase at the same frequency w.  Consider radiation at 
angle 8 with respect to the vertical and in the vertical plane containing the 
two dipoles. 

a. Show that 

_-  d p  -- W 4 S i n 2 8 ( d ~ + 2 d , d 2 c o s S + d ~ ) ,  
8TC3 

where 

OL sin8 SE-. 
C 



b. Thus show directly that when L<<h, the radiation is the same as from a 
single oscillating dipole of amplitude d ,  + d2. 

3.4-An optically thin cloud surrounding a luminous object is estimated 
to be 1 pc in radius and to consist of ionized plasma. Assume that electron 
scattering is the only important extinction mechanism and that the 
luminous object emits unpolarized radiation. 

a. If the cloud is unresolved (angular size smaller than angular resolution 
of detector), what is the net polarization observed? 

b. If the cloud is resolved, what is the polarization direction of the 
observed radiation as a function of position on the sky? Assume only 
single scattering occurs. 

c. If the central object is clearly seen, what is an upper bound for the 
electron density of the cloud, assuming that the cloud is homogeneous? 

3.5-A plane-polarized wave is incident on a sphere of radius a, com- 
posed of a solid material. We assume that the wavelength h is large 
compared with a. In that case it is known that the electric field at any 
instant of time is constant throughout the sphere and has the value 
E'=E/(l+4aa/3),  where E is the external (applied) field and a is the 
polarizability of the material. The dipole moment per unit volume is simply 
proportional to the internal electric field P = aE'.  Show that the total cross 
section for scattering the radiation is 

where 

8( ka)4 
Qscatt = 

3( 1 + 3/47r(~)~ 

3.6-Consider a medium containing a large number of radiating par- 
ticles. (For definiteness you may wish to imagine electrons emitting 
bremsstrahlung.) Each particle emits a pulse of radiation with an electric 
field Eo(t) as a function of time. An observer will detect a series of such 
pulses, all with the same shape but with random amval times t , ,  t,, t,, . . . , t,. 
The measured electric field will be 

N 
E ( t ) =  2 Eo( t -  ti). 

i =  1 



a. Show that the Fourier transform of E( t )  is 

i =  1 

where ko(w) is the Fourier transform of Eo(t). 

b. Argue that 

when averaged over the random arrival times. 

c. Thus show that the measured spectrum is simply N times the spectrum 
of an individual pulse. (Note that this result still holds if the pulses 
overlap.) 

d. By contrast, show that if all the particles are in a region much smaller 
than a wavelength and they emit their pulses simultaneously, then the 
measured spectrum will be N 2  times the spectrum of an individual 
pulse. 

3.7-Consider a charge e moving around a circle of radius ro at 
frequency wo. By consideration of the current density and its Fourier 
transform, show that the Fourier transform of the vector potential, A,(x), 
is nonzero only at w = w o  in the dipole approximation, nonzero only at 
w = 2w0 in the quadrupole approximation and so on. 
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