
COMPTON SCATTERING 

7.1 CROSS SECTION AND ENERGY TRANSFER FOR THE 
FUNDAMENTAL PROCESS 

Scattering from Electrons at Rest 

For low photon energies, hv<< mc’, the scattering of radiation from free 
charges reduces to the classical case of Thomson scattering, discussed in 
Chapter 4. Recall that for Thomson scattering, when the incident photons 
are approximated as a continuous electromagnetic wave [cf. Eq. (3.40)], 

E = €1’ (7.la) 

(7.lb) 

8 r  2 (7 .1~)  
aT = 3 ro. 

Here z and c, are the incident and scattered photon energy, respectively, 
daT/ d 0  is the differential Thomson cross section for unpolarized incident 
radiation, and ro is the classical electron radius. When E = the scattering 
is called coherent or elastic. 
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Quantum effects appear in two ways: First, through the hnematics of 
the scattering process, and, second, through the alteration of the cross 
sections. The kinematic effects occur because a photon possesses a 
momentum h v / c  as well as an energy hv. The scattering will no longer be 
elastic (c,#r) because of the recoil of the charge. Let us set up the 
conservation .of energy and momentum relations. The initial and final 
four-momenta of the photon are P,; =(r/c)( l,ni) and_P,f=(e,/c)( 1, n,) and 
the initial and final momenta of the electron are Pej=(rnc,O) and Fe,= 
( E / c , p ) ,  where ni and n, are the initial and final directions of the photons 
(see Fig. 7.1). Conservation of momentum and energy is+expres:ed 9 
Pei f P . = Per+ PTP Rearranging terms and squaring gives I Pe,lz= I Pei + P,; 
- P, fy  which eliminates the final electron momentum. We thus finally 
obtain 

+ - - -  

In terms of wavelength, this can be written: 

A,  -A=A,(I -case) 

where the Compton wavelength is defined by 

h 
mc 

X , r  - 

= 0.02426 A for electrons. 

(7.3a) 

(7.3b) 

Figure %I  Geometry for scattering of a photon by an electron Ltitially at rest. 
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We see that there is a wavelength change of the order of A, upon 
scattering. For long wavelengths A>>& (i.e., hv<<mc2) the scattering is 
closely elastic. When this condition is satisfied, we can assume that there is 
no change in photon energy in the rest frame of the electron. 

Although a derivation is outside the scope of this text, let us briefly 
describe the quantum effect on the cross section. 'The differential cross 
section for unpolarized radiation is shown in quantum electrodynamics 
(Heitler, 1954) to be given by the Klein-Nishina formula 

Note that for C , - E  Eq. (7.4) reduces to the classical expression. The 
principal effect is to reduce the cross section from its classical value as the 
photon energy becomes large. Thus Compton scattering becomes less 
efficient at high energies. The total cross section can be shown to be 

3 l + x  2X(l+X) 
(I = (IT' 4 [ - ( 

x3 1 +2x 

(7.5) 

where x f h v /  mc2. In the nonrelativistic regime we have approximately 

0 4 1 - 2 x + - + . . .  26x2 
5 

, x<<l, (7.6a) 

whereas for the extreme relativistic regime we have 

x>>l. (7.6b) 

Scattering from Electrons in Motion: Energy Transfer 

In the rest of this section we assume that in the rest frame of the electron 
hv< mc2, so that the relativistic corrections in the Klein-Nishma formula 
may be neglected. Whenever the moving electron has sufficient kinetic 
energy compared to the photon, net energy may bt: transferred from the 
electron to the photon, in contrast to the situation indicated in Eq. (7.2). In 
such a case the scattering process is called inverse Compton. 

Let us call K the lab or observer's frame, and let K' be the rest frame of 
the electron. The scattering event as seen in each frame is given in Fig. 7.2. 
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f 

K K ’  

F i p e  7.2 Scattering geometries tr the obseroer’s frame K and in the electron 
mst fmme K’.  

Note that our previous formulas for scattering from electrons at rest 
should now be written in primed notation, since they hold in the electron 
rest frame. From the Doppler shift formulas, [cf. (4.12)], 

Now, we also know, from Eq. (7.2) that 

1 €’ 
€ ; = € I  1 - - ( I  -cos0)  [ mc2 

(7.7a) 

(7.7b) 

(7.8a) 

cos0 = cosB; cos6’+ sinB’sinB;cos(+’ - (p’,), (7.8b) 

where +; and (p’ are the azimuthal angles of the scattered photon and 
incident photon in the rest frame. 

In the case of relativistic electrons, y2  - 1 >>hv/rnc2, the energies of the 
photon before scattering, in the rest frame of the electron, and after 
scattering are in the approximate ratios 

1 : y : y*, 

providing that the condition for Thomson scattering in the rest frame 
yr<<mc2 is met. This follows from Eqs. (7.7), since B and 6,’ are characteris- 
tically of order 7r/2. 

This process therefore converts a low-energy photon to a high-energy 
one by a factor of order y2. Since the intermediate photon energy can be as 
high as, say, 100 keV and still be in the Thomson limit, it can be seen that 
photons of enormous energies ( y x  100 keV) can be produced. If the 
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intermediate energy is too high, then both quantum effects mentioned in 
the previous section act to reduce the effectiveness of the process, by 
making c;<c and by reducing the probability of scattering. Kmematical 
effects alone limit the energy attainable: From the conservation of energy 
we can write c, <ymc2 + c. Fixing E and letting y become large, we see that 
photon energies larger than - y m Z  cannot be obtained. 

7.2 INVERSE COMIYTON POWER FOR SINGLE 
SCATTERING 

In the preceding section the formulas referred to Compton scattering of a 
single photon off a single electron. Now we want to derive average 
formulas for the case of a given isotropic distribution of photons scattering 
off a given isotropic distribution of electrons. An elegant way to average 
Eqs. (7.7) and (7.8) over angles, due to Blurnenthal and Gould (1970), is 
sketched below. Let the photon phase space distribution function be n(p) ,  
which is a Lorentz invariant. Let udc be the density of photons having 
energy in range dc. Then v and n are related by 

udc= n d 5 .  (7.9) 

Recall that d$ transforms in the same way as energy under Lorentz 
transformations [cf. Eq. (4.106b)l. Thus udc/c is a Lorentz invariant: 

vdc v'dd -- -- 
c E' * 

(7.10) 

The total power emitted (i.e., scattered) in the electron's rest frame can 
be found from 

(7.1 1) 

where u'dd is the number density of incident photons. We now assume 
that the change in energy of the photon in the rest frame is negligible 
compared to the energy change in the lab frame, y2 - 1 > > c / m c 2 ;  thus we 
can equate E; = d. Now, we also know 

dE, dE; 
dt dt' 

-=- (7.12) 



by the invariance of emitted power. Thus we have the result 

(7.13) 

In Eqs. (7.12) and (7.13) we have again made the assumption that yE<<mc2, 
so that the Thomson cross section is applicable. As is seen in Problem 7.3, 
a variety of scattering processes might be expected to satisfy h s  criterion. 

Now, since c' = q( 1 - p cos e), Eq. (7.13) becomes 

dt (7.14) 

which now referes solely to quantities in frame K. For an isotropic 
distribution of photons we have 

1 
3 

(( 1 - pcosq2)  = 1 + - p2,  

since (cose) = 0 and (cos2e) = f. Thus we obtain 

(7.15a) 

where 

is the initial photon energy density. The rate of decrease of the total initial 
photon energy is 

Thus the net power lost by the electron, and thereby converted into 
increased radiation, is 

Since y2  - 1 = y 2 p  ', we finally have 

(7.16a) 
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When the energy transfer in the electron rest frame is not neglected, Eq. 
(7.16a) becomes (cf. Blumenthal and Gould, 1970, but subtract out incom- 
ing energy) 

(7.16b) 

where (c2) and ( E )  are mean values integrated over up,,. Note that Eq. 
(7.16b) allows energy to be either given or taken from the photons. 

Recall that the formula for the synchrotron power emitted by each 
electron is [cf. Eq. (6.7b)l 

Using Eq. (7.16a), we have the general result: 

(7.17) 

(7.18) 

that is, the radiation losses due to synchrotron emission and to inverse 
Compton effect are in the same ratio as the magnetic field energy density 
and photon energy density. Note that this result also holds for arbitrary 
values of the electron's velocity, not just for ultrareiativistic values. It does, 
however, depend on the validity of Thomson scattering in the rest frame so 
that Y E  << mc'. 

From Eq. (7.16) one can compute the total Compton power, per unit 
volume, from a medium of relativistic electrons. Let N(y)dy  be the number 
of electrons per unit volume with y in the range y to y + dy. Then 

For example, if 

(7.19) 

(7.20) 

(7.2 I )  
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From Eq. (7.16a) we can also compute the total power from a thermal 
distribution of nonrelativistic electrons of number density ne. Taking y w  1, 
( p 2 )  = ( v 2 / c 2 )  =3kT/mc2, we obtain 

(7.22) 

We show below, in Eq. (7.36), that the factor in parentheses is the 
fractional photon energy gain per scattering, when ~<<4kT. 

7.3 
SCATTERING 

INVERSE COMPTON SPEnRA FOR SINGLE 

The spectrum of inverse Compton scattering depends on both the incident 
spectrum and the energy distribution of the electrons. However, it is only 
necessary to determine the spectrum for the scattering of photons of a 
given energy c0 off electrons of a given energy ymc2, because the general 
spectrum can then be found by averaging over the actual distributions of 
photons and electrons. We consider here cases in which both the photons 
and electrons have isotropic distributions: the scattered photons are then 
also isotropically distributed, and it only remains to find their energy 
spectrum. 

To demonstrate the techniques involved without being burdened by 
excessive detail, we treat the case yq,<<rnc2, implying Thomson scattering 
in the rest frame. The small energy shift given by Eq. (7.2) is also ignored. 
In addition, we make the assumption that the scattering in the rest frame is 
isotropic, that is, we assume that 

instead of the more exact Eq. (7.lb). This will give the correct qualitative 
behavior of the results. 

It  is convenient when dealing with such problems of scattering to use an 
intensity I based on photon number rather than energy. The number of 
photons crossing area dA in time dt within solid angle d Q  and energy 
range dc is, then, IdAdrdadc. This intensity can be found from the 
monochromatic specific intensity by dividing by the energy. A similar 
definition holds for the emission functions. 

Suppose that the isotropic incident photon field is monoenergetic: 

I (  E )  = Fo6( E - Eo), 



where Fo is the number of photons per unit area, per unit time per 
steradian. Let us determine the scattering off a beam of electrons of 
density N and energy ymc2 traveling along the x axis (see Fig. 7.2). The 
incident intensity field in the rest frame K ’  is 

using Eq. (4.1 10) and remembering the extra factor of c implied by the 
present definition of I .  From the Doppler formulas (4.12) we have 

where p‘ is the cosine of the angle between the photon direction in the rest 
frame and the x axis. The emission function in K’ is given by Eqs. (1.84) 
and (1.85): 

wherej’ is the number of emitted photons per unit volume per unit per 
steradian. We have here introduced the elastic scattering assumption that 
the scattered photon energy ci equals the incident energy c’. It follows that 

= 0, otherwise. 

The emission function in frame K can be found from Eq. (4.1 13) 

= 0, otherwise. 
(7.23) 
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Here we have used N = yN' ,  relating the densities in the two frames, and 
also Eq. (4.12). 

The above results hold for a beam of electrons. To obtain the results for 
an isotropic distribution of electrons we must average over the angle 
between the electron and emitted photon: 

N+O A 4  = -. 
4e0y2/32 

The quantityj(cl,pl) is nonzero only for a certain interval of pl: 

1-p - < 2 < 1 (7.244 ( 1  + p)f' -( 1 - p), 
€0 l + P  €0 

€ 1  € 1  l + P  (7.24b) 
(1 + P )  - - (1 - P ) ,  

€0 €0 1-p'  1 < - < - 

$ [ l - $ ( l + P )  < P I < -  1- - (1 -P) ,  ] ;[ :: I 
which follows from the restriction on Eq. (7.23). When is less than 
(1 - P ) / (  1 + @) or greater than (1 + P ) / (  1 - p), there is no overlap between 
this interval and ( -  1, l), soJ'(cI) vanishes. The other cases for the limits of 
the pl integral are: 

Therefore, we obtain the result: 

0, otherwise. (7.24~) I 

Since Na,Fo is the rate of photon scattering per unit volume, per unit solid 
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angle, the first of these simply expresses the conservation of number of 
photons upon scattering. The second expresses the average increase in 
photon energy per scattering [cf. Eq. (7.16a)l. 

The function j ( c , )  is plotted for several values of p in Fig. 7.3~2. For 
small p the curves are symmetrical about the initial photon energy q,. As p 
increases, the portion of the curve for e>c0 becomes more and more 
dominant, expressing the upward shift of average energy of the scattered 
photon. 

For values of p near unity (y>>l)  it is convenient to rescale the energy 
variable and write 

(7.25) € 1  X f  -, 
4Y2% 

The emission function, in our isotropic approximation, is dominated by 
Eq. (7.24b) and can be written as 

(7.26a) 

where 

f ,so(x)=-(l-x),  2 O<x<l, (7.26b) 
3 

and zero otherwise. Note that the vanishing of fis,(x) for x > 1 comes about 
from the restriction eI/cO < (1 + p) / (  1 - p )  on Eq. (7.24), whch for y>> 1 
becomes ~ ~ / ~ ~ < 4 y ' .  

When the exact angular dependence in da'/dQ2' is included, the expres- 
sion forf(x) in the limit y>> 1 is given by (see Blumenthal and Gold, 1970): 

A comparison of these two forms for f ( x )  is given in Fig. 7.3b. Notice that 
most qualitative features of the exact result are preserved by the approxi- 
mate one. 

The spectrum resulting from the scattering of an arbitrary initial 
spectrum off a power law distribution (Eq. 7.20) of relativistic electrons 
can now be found. Let us use u(c),  the initial photon number density 
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Figurn 7.3 Functions describing the inverse Compton spectrum from a single 
scattering. (a) Enussion function for various values of f l  within isotropic ap- 
proximation (b) Comparisons of exact (&shed) utui isotropic (so&') 4pproxima- 
tiom forflx). 
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introduced in Eq. (7.9), related to the isotropic intensity by u(c) = 
4 ~ c - ~ I ( c ) .  Then the total scattered power per volume per energy is 

dE 
dVdt dc 

= 477.5, j (  € 1 ) 

Changing the variable of integration from y to x in the second integral 
yields 

(7.28 b) 

where x ,  -~~/ (4y:e)  and x2=c1/(4y;c).  Now, suppose that y2>y1 and that 
D ( E )  peaks at some value i. The second integral in Eq. (7.28b) is then 
independent of c, and can be removed. The final result is then 

where 

We point out that Eq. (7.29) is valid only over a range in e, such that the 
upper and lower limits in the integral of Eq. (7.28b) can be extended to 
zero and infinity. If Z is the typical energy of a photon in the distribution 
of incident photons, then this range is approximately given by 4y:Z<<rl<< 
47222. In particular, Eq. (7.29) cannot be integrated over all e l  to obtain the 
total power-instead, one must return to Eqs. (7.28a) or (7.28b) in their 
exact forms. The spectral index is seen to be 

(7.30) 

identical to the case of synchrotron emission (cf. i6.3). 
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When o(e) is the blackbody distribution, that is, 

8TE2 1 
h3c3 exp(e/kT)- 1 ' 

U ( E )  = - 

we obtain from (7.29), and 23.2.7 of Abramovitz and Stegun (1965), 

where 

and 3 denotes the Riemann zeta function, defined by 

The general problem of scattering of an isotropic photon field from an 
isotropic electron distribution, including the Compton effect and Klein- 
Nishina cross section, has been solved by Jones (1968), and the interested 
reader should look there for details. 

7.4 
IN A FINITE, THERMAL MEDIUM: THE COMPTON Y 
PARAMETER 

ENERGY TRANSFER FOR REPEATED SCATTERINGS 

Before discussing in some detail the effect of repeated Compton scattering 
on the spectrum and total energy of the photon distribution, it is useful to 
determine the conditions under which the scattering process significantly 
alters the total photon energy. We restrict our considerations to situations 
in which the Thomson limit applies: yc<mc2. 

In finite media one may define a Compton y parameter, to determine 
whether a photon will significantly change its energy in traversing the 
medium: 

Y E  
average fractional 
energy change per 
scattering 

). (7.32) 
mean number of 
scatterings 
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The quantities in parentheses are evaluated below. In general when y z  1, 
the total photon energy and spectrum will be significantly altered; whereas 
fory<<l, the total energy is not much changed. 

It is convenient to evaluate the first term in Eq. (7.32) for a thermal 
distribution of electrons. Consider first the nonrelativistic limit. Averaging 
Eq. (7.8a) over angles, we obtain 

(7.33) 

Now, in the lab frame to lowest order in the two small parameters e / m c 2  
and k T / m c 2 ,  this must be  of the form 

E akT +- A€ -= - -  
E mc2 me2’  

(7.34) 

where a is some coefficient to be determined. To calculate a, imagine that 
the photons and electrons are in complete equilibrium but interact only 
through scattering. We assume that the photon density is sufficiently small 
that stimulated processes can be neglected. The photons thus have a 
Bose-Einstein distribution with a chemical potential rather than a Planck 
distribution because photons cannot be created or destroyed by scattering. 
In the nondegenerate limit (where sticlulated effects are negligible) the 
appropriate distribution is Eq. (6.51), and we have the averages 

( E )  = J c  dc / dc = 3 kT, (7.35a) 

(€2)  = 12(kT)2. (7.35b) 

For this hypothetical case no net energy can be transferred from photons 
to electrons, so 

( A E ) = O =  - ( E )  akT  - - (c2> 
mc2 mc ’ 

= x ( a  -4)kT, 
mc2 

giving the result a =4. Thus for nonrelativistic electrons in thermal 
equilibrium, the expression for the energy transfer per scattering is 

€ 
(A€)NR = - (4kT- E). 

mc2 
(7.36) 
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Note that if the electrons have high enough temperature relative to 
incident photons, the photons may gain energy. This is called inverse 
Compfon scattering. If r>4kT,  on the other hand, energy is transferred 
from photons to electrons. 

In the ultrarelativistic limit, y>> 1, ignoring the energy transfer in the 
electron rest frame, Eqs. (7.7) show that 

(7.37) 

where the 4/3 results from angle averaging Eqs. (7.37) and is derived in 
97.2. For a thermal distribution of ultrarelativistic electrons, we have, using 
arguments analogous to those leading to Eq. (7.39, 

Thus Eq. (7.37) becomes 

(7.38) 

Now, the second term in Eq. (7.32) may be evaluated using Eqs. (1.89a) 
and (1.89b). For a pure scattering medium we have 

mean number of 
scatterings (7.39a) 

(7.39b) 

Here K~~ is the electron scattering opacity, which for ionized hydrogen is 

OT 

mP 
K,, = - = 0.40 cm2 g- ' (7.40) 

and where R is the size of the finite medium. Combining Eqs. (7.32), (7.36), 
(7.37), and (7.39), we then obtain expressions for the Compton y parameter 
for relativistic and nonrelativistic thermal distributions of electrons: 

(7.4 1 a) 

(7.41b) 
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We have assumed that the energy transfer in the electron rest frame is 
negligible, that is, 4kT>> E in the nonrelativistic case. The importance of 
they parameter is illustrated in Problem 7.1. There it is shown that input 
photons of initial energy c, emerge with average energy q-eie-” after 
scattering in a cloud of nonrelativistic electrons (as long as ~,<<4kT). 

In media in which absorption is important, it is convenient to define a 
frequency-dependent Compton parameter, y( Y). For this parameter the 
relevant 7es(v) must be measured from an effective absorption optical 
depth, 7 * ( ~ ) ,  of order unity. Thus 7, , (v )=p~, , I*(~)  (cf. 51.7), and using Eqs. 
(1.96), we obtain 

(7.42) 

where K , ( Y )  is the absorption opacity. Equation (7.42) gives the scattering 
optical depth to the surface from the characteristic point of emission of a 
photon of frequency v. The definitions for y,,(v) and y,(v) are identical to 
Eqs. (7.41a) and (7.41b) with 7es replaced by 7 J v )  of Eq. (7.42). 

7.5 
REPEATED SCATTERINGS BY RELATIVISTIC ELECTRONS 
OF SMALL OPTICAL DEPTH 

INVERSE COMPTON SPECTRA AND POWER FOR 

In 57.3 it has been shown that a power-law spectrum results from inverse 
Compton scattering off a power-law distribution of relativistic electrons. 
This is not surprising, since any quantity scaled by a factor that has a 
power-law distribution will itself have a power-law distribution. However, 
as we now show here, for relativistic electrons, and below for nonrelativis- 
tic electrons, a power-law photon distribution can also be produced from 
repeated scatterings off a nonpower-law electron distribution of small 
scattering depth. 

Let A be the mean amplification of photon energy per scattering, that is, 

€1 A = -  
€ 

- - (y2)  4 = 16( -) kT ’ , 
3 mc2 

(7.43) 

where the second equation follows for a thermal electron distribution, (cf. 
57.4). Consider an initial photon distribution of mean photon energy 4, 
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such that q <<(y2) - ‘/2mc2 , and intensity Z(q) at E,. Then, after k scatter- 
ings, the energy of a mean initial photon will be 

(7.44) k ck-€,A . 

If the medium is of small scattering optical depth (and much smaller 
absorption depth), then the probability pk(7,,) of a photon undergoing k 
scatterings before escaping the medium is approximately pk(re3)-r$ The 
intensity of emergent radiation at energy ck is roughly proportional to 
pk(T,,), since the bandwidth of the Compton produced spectrum is compar- 
able to the frequency. Thus the emergent intensity at energy ck has the 
power-law shape 

where 

- In res a=----..- - 
1nA * 

(7.45a) 

(7.45b) 

The above qualitative derivation of Eq. (7.45) was first given by Ya. B. 
Zeldovich and has been verified in numerical Monte Carlo calculations by 
L. A. Pozdnyakov, I. M. Sobol, and R. A. Sunyaev (1976). 

Equation (7.45) only holds for emergent photons satisfying c k / (  y 2 ) 1 / 2 s  
me2, so that the energy amplification at the last scattering is correctly 
described by Eq. (7.43). Note, however, that such photons are just those 
that emerge at energies - k T  in a thermal distribution of relativistic 
electrons. 

The total Compton power in the output spectrum is given by 

The factor in square brackets is approximately the factor by which the 
initial power a Z(q)c, is amplified in energy. Clearly, this amplification will 
be important if a < 1. From Eq. (7.45b) we conclude that energy amplifica- 
tion of a soft photon input spectrum is therefore important when 

A 7 e s - 1 6 ( k T / m c 2 ) 2 ~ e s ~  1, (7.47) 

where the intermediate step holds if the electrons are thermal. Note that 
Eq. (7.47) is equivalent toy,>,l [cf. Eq. (7.41b)l for ~ ~ ~ 5 1 .  
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7.6 REPEATED SCATTERINGS BY NONRELATIVISTIC 
ELECTRONS: THE KOMPANEETS EQUATION 

Consider now the evolution of the photon phase space density n(w) due to 
scattering from electrons. We assume that n(w) is isotropic. Iff,@) is the 
phase density of electrons of momentum p, then the Boltzmann equation 
for n(o) is 

where we consider the scattering events 

The first term in Eq. (7.48) represents scattering into frequency w by 
photons of frequency a,, whereas the second term represents scattering out 
of frequency w into frequencies w , .  The relationship between w and w ,  is 
given by Eqs. (7.50), (7.53) and Problem 7.4 and is a function of the 
scattering angles. The dependence on angles disappears after integration 
over dQ. The factors 1 + n(o) and 1 + n(wl) take into account stimulated 
scattering effects; that is, the probability of scattering from frequency w ,  to 
w is increased by the factor 1 + n(w) because photons obey Bose-Einstein 
statistics and tend toward mutual occupation of the same quantum state 
[cf. Eqs. (1.68) and (1.74) and 0 1.51. Aside from these quantum mechanical 
correction factors, Eq. (7.48) is a standard form in kinetic theory. In 
general, the Boltzmann equation can be solved only for special cases or 
with approximations. We give approximate solutions in the nonrelativistic 
limit below. 

A detailed analysis of the evolution of the spectrum in the presence of 
repeated scatterings off relativistic electrons is difficult because the energy 
transfer per scattering is large and one must solve the full integrodifferen- 
tial equation, (7.48). However, when the electrons are nonrelativistic, the 
fractional energy transfer per scattering is small. In particular, the Boltz- 
mann equation may be expanded to second order in this small quantity, 
yielding an approximation called the Fokker- Planck equation. For photons 
scattering off a nonrelativistic, thermal distribution of electrons, the 
Fokker-Planck equation was first derived by A. S. Kompaneets (1957) and 
is known as the Kompaneets equation. 

For a thermal distribution of nonrelativistic electrons, the phase space 
density f , (E ) ,  where E =p2 /2m,  is given by 

L( E )  = n e ( 2 T m k ~ )  - 3/2e  - (7.49) 



214 Compton Scattering 

where n, is the electron space density. We define the dimensionless energy 
transfer to the photons as 

(7.50) 

We now consider situations in which the energy transfer is small, A 4 1 ,  
and expand & ( E l )  and n ( w l )  for this regime. For example, for n(wJ this 
expansion, ro second order, is 

(7.51) + -(wl 1 - w )  2 ___ a ’n(4 + . . . n(w,)=n(w)+(w,  -0)- 
aw 2 aw2 

Now letting 

we obtain, to second order in A, 

du 
at dS2 

c - = [ n‘+ n( 1 + n)] / I d $  - dS2feA 

(7.52) 

where n’=an/ax and so on. The term in A gives the “secular” shift in 
energy, and the term in A’ gives the “random walk” change in energy. 

Let us first compute the second integral, 12, in Eq. (7.52), whch gives the 
random walk contribution to an/&. Using a derivation completely analo- 
gous to that leading to Eq. (7.2) but with the electron not initially at rest, 
one finds (Problem 7.4), 

(7.53) 

where p is the electron momentum before collision and n and n, are unit 
vectors along the photon direction before and after collision, respectively. 
Now, using the formula for d u / d 0 ,  Eq. (7.1 b), and the above equations, 
one obtains (Problem 7.4), 

1 , = 2 x 2 n , 4 2 ) + 0 ( ~ ) .  2 

me’ mc2 
(7.54) 
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We can similarly evaluate the integral I , ,  but this is more difficult than 
I,. A simpler method uses photon conservation and detailed balancing. 
Since n is the photon phase space density and x is proportional to 
momentum, then the change in number of photons per unit volume, which 
must vanish, is proportional to 

d I n x 2 d x  = J 2 x 2 d x  = O .  
dt 

It is thus clear that a n / &  must be of the form (Problem 7.4) 

an ~a [ x ” j 4 ] .  at x 2  ax  
-=- - -  (7.55a) 

By comparison with Eq. (7.52), j must be of the form 

j =  g ( x ) [  n’ + h h x ) ] ,  (7.5%) 

with h and g two functions to be determined. Now, we know that a 
Bose-Einstein photon distribution with finite chemical potential, 

n = ( e a + x  - I)-‘, (7.56) 

must be in thermal equilibrium with the electrons, with j =O. Requiring 
n’+ h(n,x)=O for n given by Eq. (7.56) then determines 

h ( n, x )  = n( 1 + n). (7.57a) 

Comparison of Eqs. (7.57a) and (7.55) with (7.54) and (7.52) then yields the 
two desired results: 

(7.57 b) 

(7.58) 

Note that the “secular term” of the Fokker-Planck equation, proportional 
to I , ,  states that energy is gained or lost depending on the sign of 4- x ,  in 
agreement with Eq. (7.36). 

Substitution of Eqs. (7.57) into (7.55) then yields the Kompaneets 
equation, describing the evolution of the photon distribution function due 
to repeated, nonrelativistic, inverse Compton scattering: 

at, an =( z),rax kT ’ a [ x 4 ( n ’ + n + n 2 ) ]  (7.59) 



Here, the quantity 

t,=(n,o,c)t 

is the time measured in units of mean time betbeen scatterings. 
In general, Eq. (7.59) must be solved by numerical integration. However, 

several important limiting cases can be pointed out here. First, note that 
the spectrum reaches equilibrium after photons have been “scattered up” 
to energies forming the Bose-Einstein distribution, Eq. (7.56). This 
steady-state, “saturated” spectrum is approximated by a Wien law (cf. Eq. 
(1  .54)1 

n( x) a e - (7.60) 

when the occupation number is small; that is, cu>>l. Note also that for 
times short compared to that required to reach saturation, so that the mean 
hv of an initially low energy photon distribution is still small compared to 
kT, x<<l, the total energy density of the photons increases with time 
according to 

dE 8.rr 4kT 
- dtc = 

- ( k T ) 4 g J m n x ’ d x ; s (  c3h3 4 0 -) mc E .  (7.6 la) 

Here we have neglected the n and n2 terms compared to the n’ on the 
right-hand side of Eq. (7.59) and have performed two integrations by parts. 
From Eq. (7.61a) i t  can be seen that the total energy in a soft input 
spectrum increases initially as 

E(t)=E(O)exp( 7 4kT t c ) .  

mc 
(7.6 1 b) 

Note the similarity between this expression and that for the energy gain of 
a single photon in scattering out of a finite medium, Problem 7.1: 

E,= q e Y ,  (7.62) 

where Max(T,,,& plays the role of r,. 

7.7 
NONRELATIVISTIC ELECTRONS 

SPECTRAL REGIMES FOR REPEATED SCATTERING BY 

A detailed analysis of Compton spectra requires a solution of the 
Kompaneets equation, Eq. (7.59), with a photon source term. For 
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frequencies where y<< 1 (modified blackbody) or y>> 1 (saturated Comp- 
tonization), approximate analyses are usually adequate. For intermediate 
cases (unsaturated Comptonization) we return to the more detailed treat- 
ment required by the Kompaneets equation. 

To delineate regimes it is convenient to introduce several characteristic 
frequencies. We are concerned with thermal media in which absorption 
and emission arise from free-free (bremsstrahlung) processes, (see 85.3). In 
such media the relative importance of absorption is greatest a t  low 
frequencies. Consider first the frequency, yo, at which the scattering and 
absorption coefficients are equal: From Eqs. (1.22), (5.18), and (7.40), we 
have 

(7.63b) 

where xo=hv,/kT and #,Ax) is the free-free Gaunt factor. In the range of 
interest, g,, is approximated by, (Fig. 5.2) 

For x=hv/kT<x,,, scattering will be unimportant; whereas for x >xo, 
scattering will modify the spectrum. Note that if xoN> 1, scattering is 
unimportant over most of the spectrum. In all the following discussion we 
assume xo<< 1. 

Consider next the frequency v, at which the medium becomes effectively 
thin. From Eqs. (1.97) and (5.18) we have 

(7.64b) 

where x,-hv,/kT and T~~ is the total optical depth to electron scattering, 
Eq. (7.39b). For values of x>x,, absorption is unimportant. Note that in 
the range xo <x <xI  both scattering and absorption are important. 

Finally, we introduce the frequency vCoh for which incoherent scattering 
(inverse Compton effects) can be important. This frequency is so defined 
that y(vcoh)= 1, that is, for p > v c o h  inverse Compton is important between 
emission and escape from the medium. Note that this frequency is defined 
only if they parameter for the full thickness of the medium, Eqs. (7.39)- 
(7.41), exceeds unity. Otherwise, inverse Compton scattering is unim- 
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portant at all frequencies. From Eqs. (7.41), (7.42), and (5.18), for X,,h<<l, 

(7.65a) 

From Eqs. (7.64) and (7.65), we see that inverse Compton is important, 
and xcoh is defined, only when x,,h <x,. 

Modified Blackbody Spectra; y << 1 

For y<< 1, only coherent scattering is important. Then, from Problem 1.10, 
we have for the emergent intensity in a scattering and absorbing medium 

2 4  I” = (7.66) 

The functional form of Eq. (7.66), in the limit Kes>>K,hv>, may also be 
derived by the simple random-walk considerations leading to Eq. (1.102). 
We see that at values of x<<x, Eq. (7.66) reduces to the blackbody 
intensity, whereas at values of x>x0 Eq. (7.66) becomes a “modified 
blackbody spectrum,” 

I,”” = 2 (7.67a) 

=8.4x 10-4~5/4,,1/2-’/2 3/2e-X/2(eX- 
gfl 

X erg s - ’  cm-2 Hz-’  ster-I. (7.67b) 

For xo<< 1 Eq. (7.63bj gives the approximate equation for xo: 

x,-6.3 x 1 0 ’ * ~  -7/4pi/2[ gr,(xo)]’/2. (7.68) 

Note that at frequencies xo<< x << 1, I,”” cc Y instead of the Rayleigh-Jeans 
law IvWa v2. The total flux in a modified blackbody spectrum is approxi- 
mately 

(7.69) 
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where we have taken the Rosseland mean, K ~ ,  for the frequency-averaged 
K,, [cf. Eq. (5.20)]. 

Equation (7.66) actually applies only to a medium that is an infinite 
half-space. For finite media it is necessary to determine the value of x, [cf. 
Eq. (7.64b)l. For x,<xo the emission is blackbody at x<x, and optically 
thin bremsstrahlung for x >x,, with scattering never important. For xo <x, 
< 1, the emission is correctly described by Eq. (7.66) for x <x, and is then 
optically thin bremsstrahlung for x >x,. For x, > 1 the medium behaves as 
if it were infinite, and Eq. (7.66) may be used for the entire spectrum. 

The above relations for the modified blackbody spectrum were first 
discussed by Felten and Rees (1972) and by Illarionov and Sunyaev (1972). 

Wien Spectra; y >> 1 

When y>> 1, inverse Compton may be important, depending on whether 
xcoh<< 1 or xcoh>> 1. In the latter case, inverse Compton may be neglected, 
since the majority of the photons and energy, that is, the spectrum in the 
region x . 5  1, undergo coherent scattering. The preceding subsection may 
be used to describe the spectrum. We therefore consider only the case 
Xcoh << 1. 

For xcoh << 1, Eqs. (7.63) and (7.65) give 

(7.70) 

The spectrum is correctly described by Eq. (7.66) for x<<xcoh, but for 
x 2 x C o h  we must consider inverse Compton effects, (see Fig. 7.4). In this 
region of the spectrum, if xc,,<<l, inverse Compton will go to saturation, 
and $7.6 shows that a Wien intensity will be produced [cf. Eq. (1.54)]: 

(7.7 1) 

where the factor e - a  is related to the rate at which photons are produced. 
(Recall that the photon number is conserved in the scattering process.) The 
total flux in a spectrum of the form of Eq. (7.71) is 

1 2 ~ e ~ " k ~ T ~  
FW(erg s - '  c m - 2 ) = r  Ivwdv= J c2h3 

(7.72) 

while the mean photon has an energy hv= 3kT. 
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-\ y 3 <, I ,  v , I. 7' 

log v 

Figure 7.4 Spectrum from a thermal, nonrelativistic medium chamcterized by 
free-free emission and absorption and by saturated k r s e  Compton scattering. 
At  low frequencies the spectnun is bkckbody then becomes modified blackbody 
luui, at high fiequench, becomes a Wwn spectrum 

The rate at which energy is generated in the Comptonized spectrum can 
be calculated approximately by shifting all of the bremsstrahlung photons 
to energies kT: 

dWW dt d V  (erg - '  cm-')-kT/( g ) d v  hv 

Here 4f(erg s - '  cm-' Hz-I) is the bremsstrahlung (free-free) energy 
generation rate given by Eq. (5.14), and d(erg  s-'  cm-') given by Eq. 
(5.15) is the total energy per unit time per unit volume. This integral may 
be approximated by evaluating g at the lower limit, vCh, and letting ephVlkT 
be a step function that is unity for hv <kT and then zero for hv>kT. The 
result is, using the analytical approximation to 2 given in Fig. 5.2, 

(7.74a) 

3 
~ ( p ,  T)= - 4 [ ln(2.25/~~,,,)]~. (7.74b) 

Here A(p,T) is the factor by which inverse Compton amplifies the 
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bremsstrahlung power. Equation (7.74), including the more exact overall 
numerical factor, was first derived by Kompaneets (1957). 

To calculate the emergent flux from Eq. (7.74), and hence the normaliza- 
tion of Eqs. (7.71) and (7.72), we must multiply Eq. (7.74) by a characteris- 
tic depth. If x, << 1, then the medium is effectively t h n  for most photons 
and Fw-RAcfl, where R is the size of the medium. If x,>l then, since 
photons at energies x>xc,, amplify quickly to x-1, R is replacei by E, 
where T * (  F,x = 1)-1. The emergent intensity is shown in Fig. 7.4. 

Unsaturated Comptonization with Soft Photon Input 

Finally, we must consider situations in which y>>l, but in whch xco,,-l; 
that is, media for which the inverse Compton process is important but does 
not saturate to the Wien spectrum for most photons. In this case an 
analysis of the Kompaneets equation is required. 

Let us consider a steady-state solution to this equation, under certain 
idealizations. For steady-state solutions in a finite medium it is necessary 
to consider both the input and the escape of photons. Denote the photon 
source by Q(x). The photon escape is a spatial diffusion process. However, 
for photons which have scattered many times, it is a fair approximation to 
assume that the probability for a photon to escape per Compton scattering 
time is equal to the inverse of the mean number of scatterings, Max(.r,,, ~ 2 ~ ) .  
With this approximation, one may consider a modified, steady-state 
Kompaneet’s equation of the form 

(7.75) 
n 

Max( 7es, 7:) ’ 
[ x 4 ( n ’ + n ) ] + Q ( x ) -  

where the n2 term, usually small in astrophysical applications, has been 
dropped. 

Assume now that Q(x) is nonzero only for x <xs, where x,< 1; that is, 
we have an input of “soft” photons, rather than the bremsstrahlung input 
considered previously. For x>>l, the term in brackets shows that an 
approximate solution is 

n cc e-”;  (7.76a) 

that is, the spectrum falls roughly exponentially at photon energies much 
above the electron temperature, as would be expected for a thermal 
spectrum. On the other hand, for x,<<x<< 1, the n term in brackets may be 
neglected in comparison with the n’ term, and one obtains the approximate 
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power-law solution: 
n a x m ,  

4 

Y 
m ( m + 3 ) -  - =0, 

(7.76b) 

(7.76~) 

(7.76d) 

where the Compton y parameter is given in Eq. (7.41a). The + root in Eq. 
(7.76d) is appropriate if y > l  (leading to the low-frequency limit of the 
Wien law in the limit y - + o o , i , c c x 3 n a x 3 ) ;  for y<<l, the minus root is 
appropriate. For y-1, one must take a linear combination of the two 
solutions, and no power law exists. 

Figure 7.5 illustrates the spectrum resulting from unsaturated Comptoni- 
zation. Note that measurement of only the shape of an unsaturated 
Compton spectrum with soft photon source determines both the electron 
temperature and the scattering optical depth of the source. The emergent 
intensity in the power-law regime satisfies 

1, - i,, ( $ ) + m. (7.77) 

The spectrum is clearly sensitive to y .  The input energy is significantly 
amplified for m 2 -4, that is, y 2 1. This result is quite analogous to that 
for the relativistic case considered previously in §7.5. Unsaturated Comp- 
ton spectra are treated in some detail in Shapiro, Lightman, and Eardley 
(1976) and Katz (1976). 

- 
h 

Fi- 7.5 Spctrum prodrrced by unsatumted Comptonization of low eneqp 
photons by thermal electrons. 
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PROBLEMS 

7.1-A cloud of nonrelativistic electrons is maintained at temperature T. 
The cloud is thick to electron scattering, ?,,>>I, but very thin to absorp- 
tion, ~ * ( h v = k T ) < < I .  A copious supply of “soft” photons, each of char- 
acteristic energy \,<<kT, is injected into the cloud. As a result of inverse 
Compton scattering, these initially soft photons emerge from the cloud 
with characteristic energies qf>>~,. It  is found that increases rapidly with 
increasing T ~ ,  as the latter is varied, until T,, reaches a critical value 7,,t, 

above which the Comptonization process “saturates.” 

as a function of E,, T , ~ ,  T,  and a. Find an approximate expression for 

b. Find an approximate expression for T,,~. 

c. Find a single parameter of the fixed medium that determines whether 
inverse Compton is a significant effect. 

fundamental constants. 

7.2-Consider the observed X-ray source of Problem 5.2. From the 
deduced characteristics of the source, determine a lower limit to the central 
mass M such that inverse Compton effects in the emission mechanism are 
negligible. 

7.3-Show that the photon energy in the electron rest frame is small 
compared to mc2 for the following cases: 

a. Electrons with y-lo4 scattering synchrotron photons produced in a 

b. Electrons with y-lo4 scattering the 3 K photons of the cosmic 

magnetic field B-0.1 G (typical of compact radio sources). 

microwave background. 

7.4-Derive Eqs. (7.53) to (7.55) for the Kompaneets equation. 
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Let us assume that our plasma consists of electrons with density n. The 
ions are neglected here, because they are very much less mobile than the 
electrons and contribute negligibly to the current. (They are important for 
certain wave motions other than radiation, however, and they do keep the 
plasma neutral globally.) We also assume that there is no external mag- 
netic field; thus the plasma is isotropic. Each electron responds to the 
electric field according to Newton's law (for an electron charge q = - e )  

m i  = - eE. (8.2) 

The magnetic force, being of order v/c, has been neglected. In terms of 
oscillating quantities v becomes 

eE 
iwm ' 

v =  - (8.3) 

Since the current density is given by j = - nev, we have 

where the conductivity, u, satisfies 

ine' 
l7= -. 

om 

By means of the charge conservation equation we find: 

- iwp+ ik*j =0, 

so that 

Using these expressions for j and p and introducing the dielectric constant 
c, defined by 

4TU 
€ 3 1 - - ,  

IW 

we find that Maxwell's equations become 

ik YE = 0, 

ikxE=i-B,  ikxB= - i-cE. 

ik*B = 0, 
w 0 

C C 
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These equations are now “source-free’’ and can be solved in precisely the 
same way as before. We find again that k, E, and B form a mutually 
orthogonal right-hand vector triad, but now the relation between k and w 
becomes 

c2k2 = w2. (8.9) 

Substituting in Eq. (8.5) for u, we obtain an alternate expression for the 
dielectric constant 

2 

c=l-(:), 

where we have introduced the plasma frequency up, defined by 

47rne2 
m 

-. 

(8.10) 

(8.11) 

Numerically, we obtain 

wp = 5.63 x lo4,, s - l ,  (8.12) 

where n is given in crnp3. The dispersion relation connecting k and w can 
now be written: 

k = c-’dw-, 

w2 = up’+ k2c2. 

(8.13a) 

(8.1 3b) 

We see immediately from these equations that for w<w,, the wave 
number is imaginary 

(8.14) 

In this case the amplitude of the wave decreases exponentially on a scale of 
the order of 27rc/wp. Thus up defines a plasma cutoff frequency below which 
there is no electromagnetic propagation. For example, the earth’s iono- 
sphere prevents extraterrestrial radiation at frequencies less than about 1 
MHz from being observed at the earth’s surface (corresponding to naverage 
-lo4 cm-9. 

Note from the purely imaginary nature of u, Eq. (8.5), that j and E are 
90” out of phase with each other ( i =  e’”’’). Thus there is no time-averaged 
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mechanical work done on the particles by the field in an isotropic plasma, 
and no dissipation. 

The existence of the plasma cutoff yields an important method of 
probing the ionosphere. Let a pulse of radiation in a narrow range about w 
be directed straight upward from the earth's surface. When there is a layer 
at which n is large enough to make wp > w,  the pulse will be totally reflected 
from the layer. The time delay of the pulse provides information on the 
height of the layer. By making such measurements at many different 
frequencies, the electron density can be determined as a function of height. 

Group and Phase Velocity and the Index of Refraction 

When w ;> up, there is propagation of electromagnetic radiation with phase 
velocity 

w c  
k = - "r 

where n, is the index of refraction 

(8.15) 

(8.16) 

The phase velocity always exceeds the speed of light. The group velocity 

(8.17) 

on the other hand, is always less than c.  The wave energy travels at the 
group velocity, as does any modulation of the wave (information coding). 
See Jackson (1975) for a standard discussion of vph and vg and Problem 8.2 
for an alternative treatment. 

In a medium with variable electron density, and hence variable index of 
refraction, radiation travels along curved paths rather than in straight lines. 
Radio propagation in the ionosphere and solar corona is affected by such 
curved paths. The curved trajectories in inhomogeneous media may be 
obtained straightforwardly from application of Snell's law for ray bending 
(see e.g., Rossi, 1957) and are given by 

-- - Vn,  
d( nk) 

dl 
(8.18) 
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where n, k, and I are the index of refraction, ray direction, and ray path 
length, respectively. It can be shown (Problem 8.1) that it is the quantity 
ZV/$ that is constant along the ray, rather than I,. This is a generalization 
of Liouville's theorem, Eq. (1.12). 

An important application of the formula for group velocity is to pulsars. 
Each individual pulse from the pulsar has a spectrum covering a wide 
band of frequency. Therefore, the pulse will be dispersed by its interaction 
with the interstellar plasma, since each small range of frequencies travels at 
a slightly different group velocity and will reach earth at a slightly different 
time. 

Suppose the pulsar is a distance d away. Then the time required for a 
pulse to reach earth at frequency w is 

where s measures the line-of-sight distance from the pulsar to earth. The 
plasma frequencies in interstellar space are usually quite low (-ld Hz), so 
we can assume w>>wp and expand 

Thus we obtain 

(8.19) 

The first term is the transit time for a vacuum; the second term is the 
plasma correction. What is usually measured is the rate of change of 
arrival time with respect to frequency, dtp/dw. With the formula for w; this 
can be written 

(8.20a) 

where 

(8.20b) 
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is the dispersion measure of the ray. By assuming a typical value for the 
electron density in interstellar space (n-0.03 ~ m - ~ )  an estimate of the 
pulsar's distance can be obtained. 

8.2 PROPAGATION ALONG A MAGNETIC FIELD; FARADAY 
ROTATION 

We now want to extend somewhat the above discussion of plasma propa- 
gation effects by considering the effect of an external, fixed magnetic field 
B,. The properties of the waves will then depend on the direction of 
propagation relative to the direction of B,. For this reason the plasma is 
called anisotropic. We also make the cold plasma approximation here, and 
treat only the special case of propagation along the magnetic field. 

Because of the magnetic field, a new frequency enters the problem, 
namely, the cyclotron frequency 

eB0 w e = - ,  
mc 

(8.21) 

which is the frequency of gyration for an electron about the field lines. 
Numerically we obtain, for B, in gauss, 

we = 1.67 X 107B, s - ', 
hoe = 1 .16X IO-'B, eV. 

(8.22a) 

(8.22b) 

The dielectric constant is no longer a scalar; it becomes a tensor and has 
different effective values for waves of different directions. The medium 
now also discriminates between different polarizations. Only waves with 
special polarizations have the simple exponential forms we have been 
assuming, E exp i (k .  r - w f )  where E is consfant. 

If the fixed magnetic field B, is much stronger than the field strengths of 
the propagating wave, then the equation of motion of an electron in the 
plasma is approximately 

dv e 
dt C 

m- = -eE- -vxB,. (8.23) 

Assume that the propagating wave is circularly polarized and sinusoidal: 

E(f)=Ee-.'"'(c, T&) ,  (8.24) 



where the - corresponds to right circular polarization and the + corre- 
sponds to left circular polarization. Assume further, for simplicity, that the 
wave propagates along the fixed field B,: 

B,= B,,e3. (8.25) 

Substituting Eqs. (8.24) and (8.25) into (8.23), one finds that the steady- 
state velocity v(t) has the form 

E(th (8.26) 
- ie 

v( t )  = 
m ( 0  * W E )  

where wE is given in Eq. (8.21). 

expression for the dielectric constant 
Comparison of Eq. (8.26) with Eqs. (8.3)-(8.5) and (8.7) then gives an 

€ R , L = I -  Up’ 

w(O rf. W B )  ’ 
(8.27) 

where the R,L corresponds to the + and - signs, respectively. These 
waves travel with different velocities. Therefore, a plane polarized wave, 
which is a linear superposition of a right-hand and a left-hand polarized 
wave, will not keep a constant plane of polarization, but t h s  plane will 
rotate as it propagates. This effect is called Faradq rotation. 

The phase angle + through which the electric vector of a circularly 
polarized wave moves in traveling a distance d is simply k-d. More 
generally, if the wave number is not constant along the path, the phase 
angle is 

where 

(8.28a) 

(8.28b) 

A plane-polarized wave is rotated through an angle A6, equal to one-half 
the difference between GR and +=, as can be seen from Fig. 8.1. We assume 
that w>>w,, and w>>w, so that 

(8.29) 
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( a )  

Figwe 8.14 Decomposition of linear polarization into conpments of right and 
kfi circular plarization 

(b )  

Figure 8.16 Faraday rotation of the prcUre of polarizatioa 

Thus we have the result 

or, substituting for and oB, we obtain the formula for Faraday rotation: 

(8.31) 

As derived here, this formula holds only if the direction of B is always 
along the line of sight. However, it can be shown that this formula holds in 
general if we use B,,,  the component of B along the line of sight. 

Since A 0  varies with frequency (as up*) for the same line of sight, we 
can determine the value of the integral JnB, ,  ds by malung measurements at 
several frequencies. This can be used to deduce information about the 
interstellar magnetic field. However, if this field changes direction often 
along the line of sight (as we believe it does), then this method gives only a 
lower limit to actual field magnitudes. 
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8.3 PLASMA EFFECTS IN HIGH-ENERGY EMISSION 
PROCESSES 

When fast particles radiate by means of a high-energy emission mechanism 
-like synchrotron, inverse Compton, or bremsstrahlung emission-this 
radiation is subject to all the plasma propagation effects mentioned previ- 
ously. In particular, we can expect little observable radiation below the 
cutoff frequency wp, whereas above wp the phenomena of pulse dispersion 
and path curvature may occur. When magnetic fields are present, Faraday 
rotation will degrade the degree of polarization of synchrotron sources. 

In addition, however, there are some specific effects on the high-energy 
emission processes themselves that can change the entire character of the 
emitted radiation. We shall describe two such effects, Cherenkm radiation 
and the Razin effect. Both of these require us to consider the induced 
motions and subsequent emission from the particles comprising the 
medium through which the fast particles are moving. Since we are only 
interested in the collective response of the medium, it is permissible to treat 
the medium in terms of a macroscopic dielectric constant E. For certain 
parts of the following discussion we make the assumption that the dielec- 
tric constant is independent of frequency and wave number. This is not 
strictly true, as we have seen, but it allows us to obtain the principal results 
quickly. For more detailed derivations, without use of this assumption, see 
Ginzburg and Syrovatskii (1965) and Razin (1960). For our assumption, 
Maxwell's equations can be written as 

1 V*E= - 4 ~ p ,  V*B=O, 
€ 

(8.32) 
1 aB 471 € aE 

VxE=---, V x B = - j + - - - .  
c dt c at 

It can easily be shown that these equations forma& result from Maxwell's 
equation in vacuum by the substitutions 

B-tB, @+fi @, (8.33) 

e - + e / f i ,  A+A. 

These equations may be solved in the same manner as before for the 
retarded and Lienard-Wiechert potentials, using Eqs. (3.7a), (3.7b), and 
(3. lo), and then making the substitutions indicated in Eqs. (8.33). 
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Cherenkov Radiation 

A charge moving uniformly in a vacuum cannot radiate, as such radiation 
would violate the results of relativity theory. The same conclusion holds 
for a charge moving uniformly through a dielectric medium, providing the 
velocity of the charge is less than the phase velocity of light in the medium. 
This can be proved directly from the modified Lienard-Wiechert poten- 
tials. These potentials differ from the vacuum case only in the scale of 
some of the parameters, according to the substitutions in Eqs. (8.33); thus 
these changes do not affect the conclusion that the fields fall off as 1 /R * 
and do not carry energy over large distances. 

If the medium has an index of refraction greater than unity, n, > 1, the 
velocity of the charge can exceed the phase velocity. In this case the 
potentials differ qualitatively from those of the vacuum. From Eqs. (8.33) 
the factor K =  1 - PcosO in Eqs. (3.7) becomes 

K =  1 -pn,cosO, (8.34) 

and this can vanish for an angle O such that cose =(n$) - ’ .  The potentials 
become infinite at certain places, and this invalidates the usual arguments 
concerning the 1 /R2  behavior of the fields. In consequence, the particle 
can now radiate. 

Another qualitatively different effect appears when u >c/n,, namely, 
that the potentials at a point may be determined by two retarded positions 
of the particle, rather than just one. This can be seen from Fig. 8.2. The 
points I ,  2, 3, and 4 denote successive positions of the particle, and the 
spheres represent “information spheres” generated at these positions, 
which move outward with the velocity c /nr .  

Looking at the case u>c /n ,  we note that space is divided into two 
distinct regions by a cone, the Cherenkm cone, such that points outside the 
cone feel no potentials as yet; inside the cone each point is intersected by 
two spheres, and thus each point feels the potentials due to two retarded 
positions of the particle. 

The resulting radiation, called Cherenkov radiation, is confined within 
the cone and moves outward in a direction normal to the cone with the 
velocity c/n,. Notice the similarity of this pattern with a shock pattern 
generated by a supersonic airplane: both are due to motion of a body at a 
velocity greater than that of wave propagation in the medium. The relation 
cosO=( Pn,)-’ can be understood from Fig. 8.3. Since cos0 < 1 and u / c  < 
1 it follows that 

C 
- < v < c  
n* 

for Cherenkov radiation. 

(8.35) 
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v > 4  
V < +  “ r  

Figure 8.2 Propagation of w m  fronts generated by a partic& m&g with 
uelmity v through a refractice medium 

Figure 8.3 Geometry of Che&m cone. 

The precise direction of the radiation can be used as an energy measure- 
ment for fast particles in the laboratory or observatory. Cherenkov radia- 
tion due to high energy cosmic rays has been observed in the earth’s 
atmosphere. Since the radiation is quite intense for fast particles, it acts as 
an effective mechanism for energy loss. 

Razin Effect 

When n,< 1, as it is in a cold plasma, Cherenkov radiation cannot occur. 
In this case there is an effect that has important implications for synchro- 
tron emission. The “beaming” effect associated with emission from a fast 
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particle can be attributed to the factor K = 1 - Pcos8 appearing in the 
denominators of the Lienard-Wiechert potentials. Making the above sub- 
stitutions? this factor is now given by Eq. (8.34). 

For n, < 1, as in a plasma, the beaming effect is suppressed, for now 
there is no velocity and angle combination for which K is small. This can 
be seen as follows: The critical angle defining the beaming effect has been 

shown to be given by 8,- l /y=4= in a vacuum. Therefore, in a 
medium we have 

using the substitutions 
that can be identified, 
keeping 13, from being 

of Eqs. (8.33). There are two cases of this formula 
depending on which factor, n, or ,$ dominates in 
small. If n, is sufficiently close to unity, then 8, is 

determined by  /3, as in the vacuum case. On the other hand, if n, differs 
substantially from unity, then we have 

t l b - d q  = ". w . (8.37) 

From this it can be seen that the medium will dominate beaming at low 
frequencies. At higher frequencies 8, decreases until it becomes of order of 
the vacuum value 1 ,/ y. and thereafter the vacuum results apply. Therefore, 
the medium is unimportant when 

and the medium is important when 

This suppression of the beaming effect at  low frequencies has a pro- 
found effect on synchrotron emission, as can be appreciated from the 
dominant role beaming has in the physical explanation of this process. 
Below the frequency yw, the synchrotron spectrum will be cut off because 
of the suppression of beaming. This is called the Razin effect. It is obvious 
that this effect dominates the ordinary plasma cutoff, which occurs at the 
much lower frequency up. 
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PROBLEMS 

8.1-In a medium with dielectric constant n,, show that Z V / $  is constant 
along a ray. 

8.2-Consider a traveling wave packet of amplitude 

m 
A ( k ) .  i Ikr - w(k)r1 dk 

where w ( k )  is a real function of k. Define the centroid of the wave packet, 
(40)  by 

Show that the wave centroid travels with the velocity (aw /ak ) ,  

d 
dt - ( r ( t ) )  =(ao/ak) ,  

where 

83-The signal from a pulsed, polarized source is measured to have an 
arrival time delay that varies with frequency as dt,/dw= 1.1 X lop5 s2, and 
a Faraday rotation that varies with frequency as dAO/dw= 1.9 X s. 
The measurements are made around the frequency w=108  s-', and the 
source is at unknown distance from the earth. Find the mean magnetic 
field, ( B , , ) ,  in the interstellar space between the earth and the source: 
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ATOMIC STRUCTURE 

The classical theory of radiation is unable to treat physical processes in 
which the interaction between matter and radiation takes place by means 
of single (or a few) photons. We have already dealt with some elementary 
aspects of this interaction when we discussed the Planck law and the 
Einstein coefficients. However to really solve problems we need to find 
explicit expressions for the A and B coefficients or equivalents. This must 
involve detailed investigation of the structure of the matter that interacts 
with the radiation, its energy levels, and other physical properties. In this 
chapter we treat the structure of atoms, and in the next chapter we 
consider the radiative transitions of these atoms. 

9.1 A REVIEW OF THE SCHRODINGER EQUATION 

We begin with the time-dependent Schrodinger equation for a system with 
Hamiltonian H: 

a* 
at 

iA-=H\k. (9.1) 

Often we are interested in the stationary solutions found by separating the 
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time and space parts of the wave function 'k, which is possible if H is 
independent of time: 

\ k ( r , t )  = $(r)eiEr/". (9.2) 

It follows that 1c/ satisfies the time-independent Schrodinger equation 

H q  = Et). (9.3) 

Here E is the energy and I) is the wave function of the corresponding 
energy state. In the case of electrons surrounding a nucleus of charge Ze, 
neglecting spin, relativistic effects and nuclear effects, the Hamiltonian is 

A2 1 e2 H=--xQf-Ze2C-++---. 
2m J 5 i>j 'i j  

(9.4) 

Here the first term in H is the sum over electron kinetic energy, the second 
term is the Coulomb interaction energy between nucleus and electrons, 
and the third term is the Coulomb energy of the electrons interacting with 
themselves. We then obtain the equation 

This determines an approximation to the atomic states. This equation can 
be put into dimensionless form by using the electron mass and charge as 
units of mass and charge, and using the first Bohr radius, 

a =-- h2 -0.529x 10-8 cm 
0 -  

me2 

as the unit of length, With this unit of length, the energy E is measured in 
units 

eL 
- =4.36x lo- ' '  erg=27.2 eV. 
a0 

(9.7) 

(This unit of energy equals two Rydbergs.) Characteristic sizes and binding 
energies of atoms will be of the order of the above values. In bmensionless 
form, the Schrodinger equation becomes 

- -  1 2 --)$=(I. 1 
, r. i,,  rij 

J 



9.2 ONE ELECTRON IN A CENTRAL FIELD 

Even in complete atoms with N electrons it is useful to consider single- 
electron states. We assume that each electron moves in the potential of the 
nucleus plus the averaged potential due to the other N - I electrons. This is 
called the self-consistent field approximation. When, in addition, this 
averaged potential is assumed to be spherically symmetric, it is called the 
central fieid approximation and represents one of the most powerful con- 
cepts in atomic theory. It provides a useful classification of atomic states 
and also a starting point for treating correlations as perturbations. 

In the central field approximation each electron feels a different poten- 
tial, which may be regarded as a shielded nuclear charge. When the 
electron is far from the nucleus and outside the cloud of other electrons, 
the potential is 

When the electron is close to the nucleus, so that all the other electrons are 
further away, we have 

Z 
r 

V(r)-+ - - + C ,  r+O. 

Wave Functions 

In classical mechanics a central potential implies the constancy of orbital 
angular momentum. The same is true in quantum mechanics. If H depends 
only on the magnitude of r,  we can make the separation 

The functions Y(8,+) are the spherical harmonics, defined by 

(9.10) 

where P;" is the associated Legendre function, and I and m are integers. 
The functions Y/m are eigenfunctions of the orbital angular momentum 
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operator L= r x p. That is, 

L2Ylm = [(I+ I )  Y/m, 

L, Y,m = m Ylm, 

(9.1 la) 

(9.11b) 

where angular momentum is in units of A. The values of 1 are I =  
0 , 1 , 2 , 3 , 4 , .  . . , called s states, p states, d states, f states, g states, and so on, 
respectively. The value m ranges from - I  to + I  in integer steps. The 
functions Ylm are orthonormal: 

J ~ Q  y ~ ( 0 ,  +) y/*m,(0, = 8/, / ,8m,m,.  (9.12) 

Note that the angular eigenfunctions, unlike the radial functions below, are 
independent of the form of the potential, V(r) ,  as long as it is spherically 
symmetric. 

The radial part of the wave function satisfies the equation 

(9.13) 

We see that R depends on I but not on m. The index n labels the energy 
states. Generally for a given value of I, the states in increasing order of 
energy are labeled: 

n = / +  1 ,  1+2 ,  / + 3  ,... . 

The radial functions have the normalization 

(We have not put a complex conjugation here, since the Rs can always be 
chosen as real). In addition to the above discrete eigenfunctions, there is 
also a continuous set of eigenfunctions, corresponding to unbound states. 

The solutions for the pure Coulomb case, when V( r )  = - Z /  r, are 

E, = - z 2 / 2 n 2 ,  (9.15b) 
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where p = 2 Z r / n .  The functions LiL;' are the associated Laguerre poly- 
nomials. The first three radial functions are: 

R , ,  = 2 2  3/2re -", (9.16a) 

(9.16b) 

(9.16~) 

The quantity R i  is the probability that the electron is between r and r + dr. 
Figure 9.1 shows the probability distribution for the lowest states of 
hydrogen. 

Spin 

The electron possesses an intrinsic angular momentum s, with 1sI= k. 
There are thus two states, m, = t i, for the spin. To incorporate spin into 
the theory in a completely satisfactory way one should use the relativistic 
Dirac equation. However, for nonrelativistic cases it is usually sufficient to 
treat the spin in terms of wave functions with two components. The wave 
functions corresponding to the values m, = f are defined as 

(9.17) 

A single particle state must now include specification of m, as well as n, I, 
and m. 

9.3 MANY-ELECTRON SYSTEMS 

Statistics: The Pauli Principle 

We now have a set of single-particle states specified by n, I, m, and m,. 
(These are called orbitals). From these we want to construct states of the 
whole system. As a first step let us form products of the sort 

%I( 1)%(2).  * * %AN)> 

where each subscript a, be . . k represents the set of values (n,I,m,m,) and 
the numbers 1,2,. . . , N represent the space and spin coordinates of the lst, 
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2nd,, . . , Nth particle. The functions u are the orbitals with spatial part I ) ~ , ~ ,  

multiplied by a spin part a or p. 
Such products are satisfactory from one point of view: they form a 

complete set in terms of which any state of the system of N electrons can 
be represented. They fail, however, to satisfy a basic principle of quantum 
mechanics, namely, that all electrons are identical and that it should not be 
possible to say that particle 1 is in orbital a,  particle 2 is in orbital 6, and 
so on. We may avoid this by forming linear combinations of the above 
products, including every permutation P of the particles among the 
orbitals. Since there are N ! permutations, the weight we choose must have 
magmtude ( N ! ) - T .  Its phase is determined by the Pauli exclusion principle, 
which states that no two electrons can occupy the same orbital. Thus we 
choose the phase as 

I 

according as the permutation is an even or odd permutation of some 
standard ordering. Thus if two electrons are put into the same orbital, the 
linear combination will vanish, so that no physical (normalizable) state 
exists. Therefore, the basis states for the whole system are 

This may be conveniently written as the Slater determinant 

(9.18) 

(9.19) 

In this form it is clear that when two electrons occupy the same orbital, 
two rows of this determinant are equal and it therefore vanishes. 

Particles with the above symmetry for their wave functions are called 
Fermi-Dirac particles or simply jermions. There is complete antisymmetry 
of the wave function under interchange of two particles, +( 1,2,. . . N )  = 

$PI)( 1,2,. . . N ) ,  as can be seen by interchanging two columns in the above 
determinant. 
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Hartree-Fock AQQE‘OximatiOn: Configurations 

An important method for choosing the orbitals used to construct atomic 
states is based on a variational principle for the expectation value of the 
energy. The exact energy states of the system are determined by the 
variational condition 

6 ( H ) = G J # * H J , d ( l ) d ( 2 ) .  . * d ( N ) = O ,  

where 6 is an arbitrary variation of the normalized trial wave function 4. 
We now can determine approximate energy states by using a restricted 
variation in which J ,  is a properly antisymmetrized product of orbitals (a 
Slater determinant) and considering only variations with respect to a 
choice of these orbitals. When the details of this variation are carried out 
one obtains the Hartree-Fock equations for each orbital. These are Schro- 
dinger equations with two types of potentials: (1) a term representing the 
electrostatic potential of the nucleus and of the averaged charge density of 
all other electrons and (2) a term having no classical analogue, called the 
exchange potential. This exchange term has its origin in the Pauli principle 
and may be regarded as an expression of an effective repulsion of electrons 
with the same spin (see Problem 9.1). 

There is no real “potential” in the N-electron problem corresponding to 
this exchange repulsion, only the antisymmetry of the wave functions, 
which prevents two electrons with the same spin from occupying the same 
volume element. It is only when one formulates the N-electron problem in 
terms of single-particle states that the repulsion manifests itself by means 
of an effective potential in the equations. The essentially nonclassical 
nature of the exchange potential is clear, since it takes a “nonlocal” form, 
which cannot easily be interpreted classically. 

If the Hartree-Fock potentials are averaged over all angles, one obtains 
a central potential, which is used to compute the orbitals. It is found that 
these orbitals give a fair description of the gross structure of atomic 
systems, including the main features of the periodic table. 

The configuration of an atomic system is defined by specifying the nl 
values of all the electron orbitals: nl” means x electrons in the orbital 
defined by n and 1. There are 2(21+ 1) electron states available to each I 
value because m has 21+ 1 values for each I and there are two possible 
spins. A fairly complete table of ground-level configurations is given in 
Table 9.1. We see here the regular filling of shells up to the case of 
A r ( Z =  18). Then there is a nonuniformity in that K ( Z =  19) fills the 4s 
orbital rather than the 3d orbital. This is because the effective potential 



Table 9.1 
Neutral doma 

- 
K 

Atom K L hf N 0 Ground --- 
Is 282p 383p3d 484p4d 58 level 

H 1 1  'St 
He 2 2 ___ 'So 
Li 3 2 1  
B e 4  2 2  ' S o  
B 6 2 2 1  'Pt 
C 6 2 2 2  3P0 
N 7 2 2 3  'SP, 
0 8 2 2 4  3p1 

F 9 2 2 6  T I  
Ne 10 2 2 6 IS0 

zs,---- 
Mg 12 2 'So 
A1 13 2 1  2Pg 
Si 14 10 2 2 3P0 

S 16 Necore 2 4 3pz 
C1 17 2 5  'Pp, 

2 6  IS0 
2 s ,  ~- 

A L L  _ _ ~ _ . _ _ _ _ _ ~  

Ce 20 2 'So 
Sc 21 1 2  =Dll 
Ti 22 2 2  3F2 
V 23 18 3 2  'FI, 
Cr 24 5 1  7s3 

Mn 25 A c o r e  5 2 %i 

Fe 20 6 2  'D4 

Co 27 7 2  'Far 
8 2  3F, Ni 28 

C u 2 9  2 2 6  2 6 1 0  1 'SI 
Zn 30 2 'So 
Ce 31 2 1  'Pp 
Ge 32 28 2 2  
A0 33 2 3  4 s 3  

se 34 2 4  3P, 
Br 36 2 6  w, 
Kr 36 2 6  'So- 

% I 1  2 2 6  1 

P 16 2 3  's?k 

K 19 2 2 6  2 6  1 _____ 

- ~ _ _ _ _ _ _  

-7 2 2 6  2 6 m - 6  1 
8r 38 ____ 2 ' S O  
Y 39 1 2 'Drt 
Zr 40 2 2 'Fa 
Nb 41 36 4 1 OD, 

To 43 Kr cow 6 2 'Sa+ 

Rh 46 8 1 'Fa, 

6 1  '53 

Ru 44 7 1  OF6 

io 'So 

Mo 42 

Pd 46 

L 
Atom hi N 0 P 

_ _ _ _ _  
4f 585p5d5j 6a6p6d 

Ag 47 1 
Cd 48 2 
In 49 2 1  
Sn 50 2 2  
Sb 51 2 3  
Te 52 2 4  

Q Ground 

78 l 6 V d  

Pm 61 
Sm 62 3 
Eu 63 8 
Gd 64 

Tb 65 ' 'H!I 
Dy 66 ' 6J8 

Tm 69 ' 'F% 
Yb 70 c? 'SO 

Hf 72- 3F2 
Ta 73 3 'FII  
w 74 ; 0d0 
Re 75 - %I 

0 s  76 OD, 
Ir 7 7  'Fit 
-__ Pt 78 ___ 9 1  3D3. 
Au 79 fi 14 2 6 10 1 
Hg 80 e ___ 
TI 81 2 1  aP? 
Pb 82 
Bi 83 
Po 84 % 

Ho 67 ' I P I  
Er 68 * 3H'3 

__-- Lu 71 
-. -~~ 

2 'SO 

A t  86 
Rn 86 
Fr 87 
Ra 88 
Ac 89 
Th 90 
Pa 91 
U 92 

5 
6 

7 8  1 
9 

10 
1 1  
12 
13 
14 

I 

14 1 
1 4 2 6 2  

3 

___._ 

4 
46+22 6 

6 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

-2- 

7 2  

3p0 
2 3  '% 
2 4  3p, 

2 0  '8 ,  

48+32 2 2 

2 6  

14 2 6 10 2 6 1 a s I  

2 '80 

2 2  "a 
2 1 2 'XS) 
3 1 2 "Lp 

40f32 1 2 sD,, 
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due to the electron cloud gives more binding to electrons that penetrate 
closer to the nucleus and thus feel the higher Coulomb field; such electrons 
are just the low-l electrons. 

Closed shells generally are not much influenced by changes in the outer, 
partially filled shells, so that often one will only specify the configuration 
of the outer shell, such as: Al-3s23p.  Radiative transitions, at least at 
optical frequencies, usually affect only outer electrons. 

By using the Pauli principle in this way, one can understand qualita- 
tively the building up of the periodic table of elements. 

The Electrostatic Interaction; LS Coupling and Terms 

The specification of the electron configuration, the n, l values of all 
electrons, leaves a great deal of unspecified information, since we are not 
gven the values of m, and m,. Note that in the central field approximation 
all of these states are degenerate, since the central field Hamiltonian is 
spherically symmetric and does not depend on spin. To proceed further we 
write the exact Hamiltonian as 

(9.20) 
P2 1 

2m ri 
H =  x 1- - Z Z  - + x V i ( r i ) + H , = H o + H , .  

We have added and subtracted the central field potentials due to the 
smeared-out electrons. We regard this as a perturbation problem in which 
Ho is the zeroth-order potential, whose states are just the configurations we 
have been discussing. The perturbation part H ,  is 

1 

i > j  ' i j  i 
(9.21) H , =  2 --z ~ ( r i ) + H , 0 3 H , , + H , , + . . . ,  

where Hso is the spin-orbit interaction to be discussed later, and where 
there are additional terms that are to be regarded as negligible. The first 
two terms represent the residual electrostatic interaction between the 
electrons after the averaged central field has been subtracted. This is what 
we simply call the electrostatic interaction, Hes. 

For the present we are concerned with the splitting of the configurations 
by the electrostatic interaction. We note first of all that the individual 
orbital angular momenta will not remain constant under this interaction, 
although their total L = z i l i  will be constant. Also the sum of the spin 
angular momenta, S = Bi, will be constant. 

According to degenerate perturbation theory the first-order energy cor- 
rections must be found by evaluating the diagonal matrix elements be- 
tween the particular linear combinations of the unperturbed states that 
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diagonalize the perturbation. Another way of characterizing these linear 
combinations is that they are eigenstates of operators that commute with 
the perturbation. We note that two such operators are L and S so that the 
whole perturbation problem is simplified (and in many cases completely 
solved) by forming those linear combinations of unperturbed states that 
represent states of total spin and total orbital angular momenta. 

In this way we find the configurations split into terms with particular 
values of L and S (the magnetic numbers m, and m, do not enter by 
rotational symmetry arguments). These terms then split further by the 
action of the spin-orbit interaction. The fact that the electrostatic interac- 
tion is the dominant splitting interaction of a configuration for many 
atoms (especially of low 2)  and that the remaining spin-orbit splitting is 
much smaller makes this perturbation scheme and its attendant characteri- 
zation and labeling of states a very useful one. It is called LS coupling or 
Russell-Saunders coupling. 

Let us discuss the origin of this electrostatic splitting from a physical 
point of view. The electrons repel each other, and therefore their mutual 
electrostatic energy is positive. The farther away the electrons get, the 
lower will be the contribution of the electrostatic energy to the total 
energy. This leads to an important set of rules governing the splitting of the 
configuration energies as a function of spin and orbital angular momen- 
tum. First we note that a large spin implies that the individual spins are 
aligned in the same direction. By the nature of the Pauli principle, we have 
that the electrons will be further apart on the average. Thus the rule: terms 
with larger spin tend to lie lower in energy. There is a similar effect 
regarding the orbital angular momentum L. A large L implies that the 
individual li are aligned so that the sense of orbiting around the atom is the 
same for most electrons. Such a pattern lends itself to the electrons keeping 
farther apart on the average than when they orbit in opposite directions. 
This effect is usually smaller than the preceding, thus the rule: of those 
terms of a given configuration with a given spin those with largest L tend to 
lie lower in energy. These two rules are known as Hund’s rules and apply 
strictly only to the ground configuration. 

9.4 
DIAGRAMS 

PERTURBATIONS, LEVEL SPLITTINGS, AND TERM 

Equivalent and Nonequivalent Electrons and Their Spectroscopic Terms 

A problem of great importance is the evaluation of the possible spectro- 
scopic terms that can arise from a given configuration of single particle 
states. This is a matter of listing the possible values of m, and m, for the 
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electrons outside of the closed shells and then determining what values of 
S and L can be constructed from them, subject to limitations imposed by 
indistinguishability and the Pauli exclusion principle. The reason that only 
the electrons in the closed shells need be considered is the following: 
Closed shells are spherically symmetric ( L  =0) and have very little interac- 
tion with external electrons. This fact results from a property of the 
spherical harmonics: for given n and I, if all possible electron states are 
filled, the: total electron density distribution is precisely spherically sym- 
metric. Flor example, for I =  1, 

3 3 .  3 3 
477 877 877 477 * 

1 y,,,l2 + I Y, - + I y,,I2 = -cos2e + -sin28 + -sin2@= - 

It is useful to distinguish the cases of nonequivalent electrons and 
equiualenr electrons. Nonequivalent electrons are those differing in either n 
or 1 values, whereas equivalent electrons have the same n and 1 values. For 
two equivalent s electrons, for example, we write s2; if they are nonequiv- 
alent, we write s-s or 3s'. 

The terms of nonequivalent electrons are fairly simple to find. For 
sample, the configuration ls2s can only have L=O, since both electrons 
have l=O. The spin can be S =0,1, corresponding to the two ways of 
orienting the spins. Thus we have the two possible terms 'S  and 3S, where 
the letter refers to the total L value and the superscript refers to the 
number of m, values, namely, (2S+ 1). The S=O and S =  1 total spin states 
are called singlet and triplet states, respectively, in accordance with the 
number of m, values. If the electrons are equivalent, say 1s2, then the 
triplet term cannot occur, since this would imply both spins are the same, 
and all sets of quantum numbers would be identical. Thus the only term 
for the equivalent electrons is IS. 

The distinction between the spectroscopic combination of equivalent 
and nonequivalent electrons can be seen in the following illustration. 
Consider the combination of two p electrons. If  they have different values 
of n, so that they are nonequivalent, the possible L-S combinations are 
S=O,  1, I .  =0,1,2, leading to the spectroscopic terms IS, 'P, 'D, 3S, 3P, 3D 
and 1 + 3 + 5 + 3 + 9 + 15 = 36 distinguishable states, corresponding to the 
6 x 6 product of the one-electron states. Now, suppose the two p electrons 
have the same n values and are thus equivalent. Then all the 36 states are 
not available: some are ruled out by the Pauli exclusion principle, and 
some are ruled out because they are not distinguishable from others. To 
count the distinguishable permitted states, we construct Table 9.2, giving 
possible combinations of m,,, m,*, m,y,, mJ2, marking OUT for Pauli excluded 
states and labeling only distinguishable states. We find there are 15 
distinguishable states allowed. 
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Table 9.2 

+1 

+1 

+I 

0 

0 

Label 

OUT 
1 
1 

OUT 
2 
3 
4 
5 

(i 

7 
8 
9 

2 
4 
3 
5 

OUT 
10 
10 

OUT 

~ 

- 

mrl 

0 

- 1  

- I  

- 1  

mrl 

-1 

+1 

0 

-1 

mrl 

- , +  
I -  - 

I 
I 

Label 

11 
12 
13 
14 

6 
8 
7 
9 

11 
13 
12 
14 

OUT 
15 
15 

OUT 

Which spectroscopic terms do these combinations correspond to? We 
simply use the fact that 

(9.22a) 

(9.22b) 

Since the combination mL = ? 2, m, = ? 1 does not occur, the 'D state can 
be ruled out. On the other hand, state 2 requires a 3P configuration. State 1 
requires a 'Dz configuration. These two configurations take up 3 x 3 + 1 x 5 
= 14 of the 15 distinguishable states. The only remaining configuration can 
be 'S, with one associated state. Thus the allowed terms for two equivalent 
p electrons are 

When more than two equivalent electrons are involved, the counting is 
straightforward, but more tedious. 
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Tabk 9.3 

TERMS OF NON-EQUIVALENT ELECTRONS 

Electron 
Configuration 

P d f  

Similar arguments can be used to obtain the terms for other configura- 
tions, although the details become quite tedious for complicated cases. In 
these cases tables such as Table 9.3 may be consulted. 

A useful rule concerning the terms of equivalent electrons is that the 
terms for a shell more than half filled are the same as for the complemen- 
tary number of electrons needed to fill the shell. Since 6 electrons are 
required to fill the p shell, the terms corresponding to p and p' are the 
same; also p z  and p4. This rule is simply proved by noting that the total 
spin and orbital angular momentum of a closed shell are both zero, as 
mentioned previously. In enumerating the various values of m, and ms it 
makes no difference if we use mi and m, of the missing electrons, since 
only the magnitudes of the sums Emi, and Em, are relevant. This is 
sometimes stated as the equivalence of electrons and holes in a shell. 

Parity 

Besides the quantum numbers L and S there is another important quan- 
tum number called the parity of the configuration. This is simply ? 1 or 
(even, odd) according to the even or oddness of the sum Cf, extended over 
all the electrons of the configuration. Since the sum of the f,. for a closed 
shell is even, we may restrict the sum to incomplete shells. Physically the 
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parity corresponds to the symmetry or antisymmetry of the wave function 
when all spatial coordinates are reflected: x+ - x ,  y+ - y ,  z+ - z. For 
even parity +++, and for odd parity $-.-#. Since this property of the 
wave function is maintained under the usual interactions with which we 
deal, if a wave function has a certain parity at one time, it will keep that 
parity for all times. It should be noted that although the individual orbital 
angular momenta li do not in general have meaning, the evenness or 
oddness of their sum does. Note also that the sum 21, does not, in general, 
equal the total L of the configuration. 

The panty of a configuration is usually given as a superscript “0” on 
the terms arising from this configuration when the panty is odd; when the 
parity is even no superscript appears. Thus a s-p configuration leads to 
terms ‘ P o  and 3P0,  whereas s-d leads to terms ‘D and 3D. (Sometimes the 
parity is not indicated at all, so that the absence of a superscript does not 
always mean even parity). 

Spin-Orbit Coupling 

The next step in the resolution of the degenerate levels of a configuration is 
through the spin-orbit coupling. In L-S coupling ths is assumed to be 
much smaller than the electrostatic interaction. The effect is to split each 
term into a set of levels, each of which is labeled by the one remaining 
quantum number, the total angular momentum J .  The magnetic quantum 
number M,, or simply M, does not participate in the splitting, unless there 
are external fields to break the rotational symmetry of the internal interac- 
tions. 

The basic spin-orbit interaction may be illustrated by an individual 
electron moving in a central electrostatic force field. In the rest frame of 
the electron this electric field will be perceived as having a magnetic field 
component 

B = - - v x E = - - .  1 I dU 
mecr dr C 

(9.23) 

Here v is the electron’s velocity, I = mv x r is its orbital angular momentum, 
and U(r)  is the equivalent electrostatic potential. This magnetic field 
interacts with the electron’s magnetic moment, which is 

e 
mc 

p =  - -s. (9.24) 

This is twice the value one obtains by considering the electron to be a 
classical charge and mass distribution of the same shape, and it requires 
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the Dirac equation of relativistic quantum mechanics for its derivation. 
(See, e.g., Bjorken and Drell, 1964.) 

From the above, we might expect the interaction energy to be Uint= - 
p*B. However, an exact derivation from the Dirac equation yields a value 
of one-half this. The discrepancy can be traced to the use of the instanta- 
neous rest frame of the electron, which is constantly changing as the 
electron orbits. The effect of this acceleration can be described by Thomas 
precession (see Leighton, 1959), which is one-half the naively expected rate, 
but in the opposite direction, leading to the final result 

This is often written, for the sum of the interactions of all electrons, 

where 

(9.25) 

(9.26a) 

(9.26b) 

When we find matrix elements of this H,, between states of S and L, the 
individual spin and orbital angular momenta become averaged over in 
such a way that an equivalent interaction for our purposes is simply 

H,, = [S *L, (9.27a) 

where 

S = &  L = x i i  (9.27b) 

and 6 is an appropriate average of the &. (For details see Bethe and Jackiw, 
1968.) 

With this simplified spin-orbit term we are in a position to find the 
splittings of a given term as a function of the total angular momentum 
quantum number J .  To do this we note that 

J2 = (L+ S)-(L+ S )  = Lz + S2 + 2L- S, (9.28) 

so that 
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Note also that J2, L2 and S2 are mutually commuting operators, since L 
commutes with L2 and S commutcs with S2. Therefore, when we take 
diagonal elements of this quantity between states of given L, S, and J we 
obtain 

( H s o )  = f C[ J(J+ 1) - L(L + 1) - S ( S +  I)] ,  (9.30) 

where C is a constant related to the average of [ ( r )  over the spatial part of 
the wave function. 

For fixed L and S, that is, for a given term, the energy shift is 
proportional to J ( J +  I), so that the consecutive splittings are given by 

EJ + - EJ = f C [  ( J  + 1 )( J + 2) - J (  J + 1) ] 
= C(J + 1). (9.3 1) 

Therefore, we have the Lande interval rule: the spacing between two 
consecutive levels of a term is proportional to the larger of the two J values 
involved. This rule is very useful in determining the J values of levels 
empirically. 

The J value of a level is given as a subscript on the term symbol: 'Pz, 
2Si. Often the allowed values of J are given on the term symbol, separated 
by commas, for example, 2 P , / 2 , 3 / 2 ;  3D,,2,3.  The number of J values in any 
term is equal to the smaller of (2L + 1) and (2S+ 1). 

The ordering of the energies within the levels of a term are with 
increasing J if the shell is less than half-full, that is, the constant C above is 
positive. Such a term is called normal. On the other hand for shells more 
than half full the ordering is with decreasing J .  Such terms are called 
inverted. An illustration of this is the two cases of the ground levels of 
carbon and oxygen. Each has the same terms, as the configurations p 2  and 
p4, respectively. The ground term is a ' P  in both cases, but the ground level 
is 'Po for C, and a 'P2 for 0. 

The progressive splitting of a configuration into terms and levels is 
illustrated by Fig. 9.2. 

The degeneracy of each of the levels is (2J+ I), corresponding to the 
values of the magnetic quantum numbers MJ = - J , .  . . - 1,0,1,. . .J .  These 
levels remain degenerate, unless external fields are applied, for example, a 
magnetic field (Zeeman effect) or an electric field (Stark effect). I t  is easily 
verified from Fig. 9.2a that for the case of the 4p4d configuration the total 
number of states represented by the final fine structure levels is 60. Th~s is 
the same as the number of states represented by the configuration: 
2.(21+ 1).2(2/'+ l)=60, where I=  I ,  1'=2. 
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The usual mode of presentation of this information is in a term diagram, 
which separates the terms of different S values, and withm each group 
separates according to L values. The energies are represented by lines 
drawn on the proper vertical scale. 

Zeeman Effect 

As is shown in Chapter 3, electrical particles of charge e,  mass m, 
oscillating at frequency wo radiate dipole radiation of frequency wo. As is 
easily shown (Leighton, 1959), a classical analysis indicates that in the 
presence of a magnetic field of strength B, the radiation is split into three 
separate frequencies, w +  =ao+ eB/2mc,  wo, and w -  -ao- eB/2mc.  This 
splitting, due to the Lorentz force on the electron, also has well-defined 
polarization properties: If the radiation is viewed at right angles to B, all 
three components are visible, with the component w, plane polarized and 
w ,  circularly polarized. If the radiation is viewed along the magnetic field, 
the undeviated component wo is no longer visible. These classical line 
patterns are termed normal Zeeman lines. 

Unfortunately, the observed Zeeman splittings are generally anomalous; 
that is, they disagree with the classical prediction because of quantum 
mechanical effects. As in the spin-orbit coupling discussed previously, the 
interaction energy between the electrons of total magnetic moment p and 
the external magnetic field is 

U, = - p*B. (9.32) 

The total magnetic moment is the sum over all electrons of the orbital and 
spin magnetic moments of the individual electrons 

(9.33) 

The different proportionality factors multiplying li and si result from the 
quantum mechanical nature of intrinsic spin, [cf. Eq. (9.24)]. Now, since 
the energy of Zeeman splitting is generally much smaller than that of the 
fine-structure levels, we may treat the former as a perturbation, with L and 
S remaining good quantum numbers. Thus Eq. (9.33) becomes, using Eqs. 
(9.27b) and (9.28) 

e 
p= - ;( - ) (L+2S) mc 

= - i ( - ) ( J + S ) .  e 
mc 

(9.34) 
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The torque of the external magnetic field causes the magnetic moment p 
to precess around B. However, this precession frequency is much smaller 
than the precession frequency of S around J (because of the much more 
energetic L-S coupling). Thus the component of p along J can be consid- 
ered fixed, with the component along S precessing around. The time- 
averaged component of p along B (assumed to lie along the t axis) can be 
approximated by the component along J multiplied by the component of J 
along B: 

(9.35a) 

where 

MJ = J ,  

and 

Here we have used Eq. (9.28) to evaluate Eq. (9.35). The quantity g is 
called the Lande g factor; if the proportionality factors multiplying li and 
si in Eq. (9.33) were equal, g would be independent of J, L and S. 

The frequency of a transition from level 1 to level 2 is 

(9.36) 

If AM, =0, & 1 (see Chapter 10) and if g, =gz, the splittings would agree 
with the classical theory. However, in general J, L and S change in the 
transition in such a way that g also changes, leading to a variety of 
different split tings. 

Role of the Nucleus; Hyperfine Structure 

Up to this point we have made several simplifying assumptions concerning 
the nucleus: (1) infinite mass; (2) point particle; (3) interaction with 
electrons only through the Coulomb field of its total charge Ze. The 
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violations of these assumptions produce small effects on the atomic elec- 
tron states called hyperfine structure. The small effects on the states are not 
so important in themselves as are the splittings of the states into several 
substates, since this is much easier to observe. The splittings may be 
divided into two groups which have rather different origins: 

I-Isotope Effect: An atomic nucleus of charge Ze can have a number 
of different masses, depending on the total number of neutrons it 
possesses. The various species of nuclei with the same atomic number Z 
are called isotopes. Each isotope will have a slightly different set of atomic 
energy levels, because of finite (noninfinite) mass and finite (nonzero) size 
effects, which differ for each isotope. In any naturally occurring material 
there will be a distribution over the various isotopes in proportions that 
depend on the origin, age, and history of the material. The spectra 
produced by such an isotopic mixture show splittings of lines, each 
component of which comes from a different isotope. 

One may regard isotope splittings as due purely to the production of 
spectra by differing atomic species, where the differences are extremely 
small. The splittings as such do not occur in a single atom, and it would be 
meaningless to speak of an atomic transition between the split states, as 
this would require a nuclear transformation. 

11-Nuclear Spin: Like electrons, other subatomic particles possess 
spin and associated magnetic moments. The nucleus therefore also has a 
total spin angular momentum I, with eigenvalues I ( I +  1) for its square and 
M, for its z component. We may express the magnetic moment pN by 
means of a nuclear g factor: 

e 
2Mc 

p”g-1. (9.37) 

For the proton, for example, where M-I840 me, we have g=5.5855. 
(Recall that for the electron g=2.00232.)  Since g factors are normally of 
order unity we see that nuclear magnetic moments are about 103-4 
smaller than that of the electron. 

The nuclear magnetic moment interacts with the magnetic moments of 
the atomic electrons, and each previously described atomic state is further 
split by this interaction. In analogy with the L-S coupling scheme we now 
introduce the total angular momentum vector F= J + I and label the 
hyperfine states by the quantum number F. For example, when I = 2  for a 
’D3 state, we have five splittings, corresponding to F= 1 to 5. 

In contrast to the isotope effect, the nuclear spin effects produce 
splittings within a single atom, and the states so produced may be reached 
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by an appropriate atomic electron transition, such that the orientation of 
J = L + S changes relative to I. 

An example of extreme importance in astrophysics is the ground level of 
neutral atomic hydrogen, which is a *Sf level. The proton spin is so that 
two hyperfine states occur, the ground state with F=O and an excited state 
with F- 1. The energy difference between these states corresponds to a 
frequency of 1420 MHz, or a wavelength of 21 cm. Radiative transitions 
from F =  1 to F=O are extremely rare for a given atom, that is, about once 
every lo7 years, but with the enormous abundance of neutral hydrogen this 
nonetheless gives rise to an observable 21-cm line. 

9.5 
1ONIZATION 

THERMAL, DISTRIBUTION OF ENERGY LEVELS AND 

Thermal Equilibrium: Boltzmann Population of Levels 

The relative populations of the various atomic levels is a difficult question 
in general, since it depends on the detailed processes by which any level 
becomes populated or depopulated. An exception is the case of thermal 
equilibrium, where the populations are completely determined by the 
temperature T. Then in any collection of atoms of a specific type the 
number in any given level is proportional to ge-pE,  where /3= l / k T ,  
k = Boltzmann's constant, and g = statistical weight (degeneracy) of the 
level. In L-S coupling the g factors are simply g = ( 2 J +  1). It is customary 
to measure energies using the ground level as a zero point; let us call these 
energies Ei for the ith level. If N, is the population (number per unit 
volume) of the ith level and N is the total population of the atom we have 
the Boltzmann law: 

(9.38) 

Here U is the constant of proportionality; it is called the partition function. 
We may find U by demanding that 

N =  Ni ,  

where the sum is over all levels. This yields 

(9.39) 



At sufficiently low temperatures only the first term in the sum is signifi- 
cant, and we obtain 

where go is the degeneracy of the ground level. 
At finite temperatures we run into a mathematical difficulty: the sum 
gie - p 4  diverges. This occurs because g = 25 + 1 approaches infinity 

while e-Be approaches a constant as the ionization continuum is ap- 
proached. Physically this is resolved by recognizing that in an actual gas 
the atoms are not at infinite distances, so that the idealized model of an 
atom extending to infinity is not valid. The high principal quantum 
number n values that cause the divergence are just those states that are 
affected by the presence of the neighboring atoms. These high-n electrons 
can be easily ripped off by perturbations from the neighbors, so that an 
atom reaches its effective ionization potential at some large but finite value 
of the principal quantum number, nmW This lowering of the ionization 
potential can be taken into account approximately by cutting off the 
summation over levels at the value n=n,,,. One limit on nmax may be 
deduced from the condition that the Bohr orbit corresponding to n = n- 
be of order of the interatomic distances 

For hydrogen at N =  lo'* ~ m - ~ ,  for example, we would have n m a x - l d .  
Actually, there are other effects operating here as well (e.g., Debye shield- 
ing) which depend on temperature as well, so that the computation of nmax 
is quite involved. A really basic understanding of the cutoff has probably 
not yet been achieved. Fortunately, for many cases of interest the precise 
value of the cutoff is not too critical. In the range of temperatures up to 
l@K, U is in most cases equal to go, the exceptions being low-ionization 
potential elements like the alkali metals. 

The Saha Equation 

So far we have considered the distribution among the levels of a single 
atom in thermal equilibrium. Now we want to determine the distribution 
of an atomic species among its various stages of ionization. The resulting 
equation is called the Saha equation. We now derive this equation for the 
case of a neutral atom and its first stage of ionization. 



We start with the generalization of the Boltzmann law: 

d N C ( 0 )  - g [ ( X r + f m e u 2 )  

kT --exp - 
NO g o  

(9.41) 

where x, is the ionization potential. Here dN,,+(u) is the differential 
number of ions in the ground level with the free electron in velocity range 
(u,u+du),  and No is the number of atoms in the ground level. The 
statistical weight of the atom in its ground state is g,. The statistical weight 
g is the product of the statistical weight of the ion in its ground state g: 
and the differential electron statistical weight g,: 

The statistical weight g, is gven by 

(9.43) 

where the factor 2 comes about from the two spin states. The volume 
element satisfies dx,dx2dx3 = 1 / N e ,  where N, = electron density, since we 
are applying Boltzmann's law to a region containing one electron. Since 
the electrons have an isotropic velocity distribution, we have 

dp ,dp2c4v3 = 4nm2v2dv. 

Thus Eq. (9.41) becomes 

dN$(v)  - 8mm2 

No h3 
-- 

To find the total N:, irrespective of the electron's velocity, we integrate 
over all t i :  

where the substitution x ~ ( m e / 2 k T ) ' / 2 v  has been made. The integral has 
the value ~ ' / ~ / 4 .  Thus  we obtain 

(9.45) 



To find the number of atoms or ions in any state, not just the ground state, 
we use the Boltzmann laws [cf. Eqs. (9.38)], 

We then obtain Saha's equation: 

(9.46) 

(9.47) 

Here N and N + are the total number densities of neutral atoms and first 
ionized atoms, respectively, and U and U + are the corresponding partition 
functions. 

A similar derivation shows that there is a Saha equation connecting any 
two successive stages of ionization: 

where the subscripts here refer to stages of ionization. These equations are 
often stated in terms of pressures rather than number densities. The ideal 
gas law is 

P = NkT, 

so that 

To calculate the ionizational equilibrium of a mixture of various ele- 
ments, some further equations must be used. First there must be an 
equation giving the conservation of nuclei 

N,(" = N ( ' )  (9.50a) 

where N ( ' )  IS the number density of species i in thejth stage of ionization, 
and N ( ' j  is the total number density over all stages of ionization (the 
number density of nuclei of that species). Also, there is an equation for 
conservation of charge (number of electrons): 

N , =  2 q N J ' ) .  (9.50b) 
1 J  

Here 3. is the charge (in units of e )  of thejth stage of ionization. 



The actual solution to these equations must proceed numerically, in 
most cases by an iterative procedure. For many cases of physical interest, 
most of a given species is found in a few (one to three) ionization stages for 
any one set of conditions (see Problem 9.4). This reduces the numerical 
problems considerably, so that a solution can usually be obtained after a 
few iterations. 

The ionization equilibrium of pure hydrogen can be worked out analyti- 
cally (neglecting the H- ion as unimportant) (see Problem 9.5), but this is 
an exception. Also, one must be quite careful in such situations to take into 
consideration species that have a low ionization potential, even if such 
species are not abundant. This is because the electron density may be 
completely determined by ionization of these trace constituents. Because of 
this, a “pure” hydrogen case rarely occurs in nature. 

It is common in astrophysics to denote neutral and ionized hydrogen by 
HI and HII, respectively. In general, an element Q which is in its nth 
ionization state is denoted by Q followed by the Roman numeral for n + 1. 

PROBLEMS 

9.1-Consider two electronic orbitals ua and u, occupied by two electrons, 
1 and 2. Neglect the electrostatic repulsion of the two electrons. 

a. Show that the mean square distance, ( R  ’), between the two electrons 
is 

where 

(The integration here also imply a summation over spins.) 

b. For states a and b defined by n, i,m,m, show that ra =rb =0, so that 

(R 2> = (2)a  + ( T z ) b  + 21rab12. 
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c. For electrons having different spins show that 

rob = 0 

so that for such electrons 

which is the same as for the classical uncorrelated motion of two 
particles. 

d. Thus show that electrons having the same spins are on the average 
further apart than electrons having different spins. This is an example 
of an electron correlation effect. 

9.2-Give the spectroscopic terms arising from the following configura- 
tions, using L-S coupling. Include parity and J values. Give your argu- 
ments in detail for deriving these results. 

a. 2s’ 

b. 2p3s 

c. 3p4p 

Find the terms corresponding to the following configuration. 

d. 2p43p 

93-For each of the configurations in the problem above evaluate its 
degeneracy from the 1 values involved [you may omit (d) here]. Next 
evaluate the degeneracy of each of the terms from the L and S values. 
Finally, evaluate the degeneracy of each of the levels from the J values. 
Show that these degeneracies are consistent, in that the degeneracy of any 
configuration is equal to the sum of the degeneracies of the terms it 
generates, and that the degeneracy of any term is equal to the sum of the 
degeneracies of the levels it generates. 

9.4-The thermal de Broglie wavelength of electrons at temperature T is 
defined by A =  h/(2nrnkT)’/’. The degree of degeneracy of the electrons 
can be measured by the number of electrons in a cube A on a side: 

t= NeA3 = 4. I x I 0- I6Ne T -3’2. 

For many cases of physical interest the electrons are very nondegenerate, 



the quantity y ~ l n t - '  being of order 10 to 30. We want to investigate the 
consequences for the Boltzmann and Saha equations of y being large and 
only weakly dependent on temperature. For the present purposes assume 
that the partition functions are independent of temperature and of order 
unity. 

a. Show that the value of temperature at which the stage of ionization 
passes from j to j + 1 is given approximately by 

X k T - -  
Y 

where x is the ionization potential between stages j and j + 1. There- 
fore, this temperature is much smaller than the ionization potential 
expressed in temperature units. 

b. The rapidity with which the ionization stage changes is measured by 
the temperature range AT over which the ratio of populations ?./?.+, 
changes substantially. Show that 

Therefore, AT is much smaller than T itself, and the change occurs 
rapidly. 

c. Using the Boltzmann equation and result (a) above, show that when y 
is large, an atom or ion stays mostly in its ground state before being 
ionized. 

9.5-A cold neutral hydrogen gas of density p resides inside a metal 
container. The container walls are then heated to temperature T.  Find the 
equilibrium value of the ratio 6 of ionized to neutral hydrogen as a 
function of p and T. 

a. Find a single, dimensionless parameter A(p ,T)  that determines 6 (cf. 
9.4 above). 

b. Derive an explicit algebraic expression for 6(A). You may assume that 
the partition function is constant and equal to the ground state 
statis tical weight. 
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10 
RADIATIVE TRANSITIONS 

10.1 SEMI-CLASSICAL THEORY OF RADIATIVE 
TRANSITIONS 

So far we have looked only at those properties of atomic systems-such as 
ionization potentials and statistical mechanics-that depend solely on the 
energies of the various states. Now we want to investigate the nature of the 
light produced in transitions between these states. There are two major 
objectives here: first, to give so-called se[ection rules for radiative transi- 
tions and second, to determine the strengths of the radiation. The first of 
these is in some sense a special case of the second, but we shall regard it 
separately. The rules we give will be mostly applicable to L-S coupling 
and, additionally, to electric dipole transitions, although we do discuss 
some generalizations. 

We use the so-called semi-classical theory of radiation, in which the 
atom is treated quantum mechanically, but the radiation field is treated 
classically. It is found that this theory correctly predicts the induced 
radiation processes, that is, those processes described by Einstein B coef- 
ficients, but that it fails to predict the spontaneous process, described by 
the Einstein A coefficient. This is not a great difficulty, because the 
Einstein coefficients are related, and any one can be used to derive the 
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other two. The physical argument used to justify the semi-classical ap- 
proach is the following: the classical limit of radiation is the one in which 
the number of photons per photon state is large. Thus the induced 
processes, which are proportional to the number of photons, dominate the 
spontaneous process, which is independent of the number of photons. 
Because of the linearity of the induced processes in the number of photons, 
these processes may be extrapolated to small photon numbers, i.e. the 
quantum regime. The spontaneous rate can then be found by the Einstein 
relations . 

The Electromagnetic Hamiltonian 

The relativistic generalization of the Hamiltonian for a particle in an 
external electromagnetic field is 

H = [ (cp - eA)’+ m2c4] ”’+ e+. (10.1) 

If we expand this in the nonrelativistic limit, ignoring the (constant) rest 
mass, we obtain 

H=’(p-$) 2 +e# 

2m 

+ e+. 
=-- p2 -A.p+- e e2A 

2m mc 2mc2 
(10.2) 

In Eq. (10-2) we have used the “Coulomb gauge,” (see $2.5 for a discussion 
of Gauge transformations), 

V *A = # =0, (10.3) 

so that the momentum operator p commutes with A in their scalar product: 

Q-A- A-p. 

We may estimate the ratio of the two terms in A: 

where LY is the fine-structure constant 

(10.4) 
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Since U/C-(Y [cf. Eqs. (9.6) and (9.7)] for atoms and A - U ,  where E is 
the electric field and X is the wavelength, we have 

4hw 

217cia~XE~ . T2- 

Since X--ao/a and nph-E2/hw is the photon density, we have 

(10.5) 

as the condition that the linear term in A dominates the quadratic one. In 
other words, the number of photons inside the atom at one time is small. 
In fact, the term quadratic in A contributes to two-photon processes, which 
we ignore here under the assumption that the number of photons is 
sufficiently small. Note that the photon density at which this assumption 
fails is nph-ld5 ~ m - ~ ,  whereas at the sun's surface we have only nph-1012 
cmP3. Ordinarily, the neglect of the A' term is justified. 

We now want to apply this to an atomic system of electrons. To do this 
we regard the sum of terms of the sort ( -  e/mc)p*A as a perturbation to 
the atomic Hamiltonian, and we use time-dependent perturbation theory 
to calculate the transition probabilities between the atomic states. (We 
continue to work in the Coulomb gauge, so that $J = 0 and V -A = 0.) 

The Transition Probability 

First, we split the Hamiltonian of Eq. (10.2) into a time-independent and a 
time-dependent piece: 

H =  H O + H 1 .  ( 10.6) 

Here H o  is the atomic Hamiltonian, assumed independent of time, and H '  
is the perturbation due to the external electromagnetic field. The atomic 
eigenvalues Ek and eigenfunctions C$k of H o  are given by 

Ii0C$k = Ek@kk. (10.7) 

Therefore, the zeroth-order time dependent wave functions are 
~$~eexp( - iEkt/h). We may expand the actual wave function in this com- 
plete set 

It is now straightforward to show from the Schrodinger equation (e.g., 
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Merzbacher, 1961) that the probability per unit time for a transition from 
state i to statef, wfi, is given by 

(10.9) 

where 

( 10.1 Oa) 

H i (  t) E I$? H d3x, (10.1Ob) 

(10.1oc) 

Here the perturbation is assumed to be active only during the time interval 
0 to T. 

For a number of atomic electrons we have the perturbation from an 
external field 

(10.11) 

since p,+ - ihV,. We assume that A(r, t )  has the form 

A(r, t )  =A( t )eik’r ,  

where A(t) vanishes outside the interval 0 <t < T. T is assumed to be large 
enough that a well-defined frequency of the wave exists. Then we obtain 

(10.12) 

where 

which does not depend on time. Here d3x denotes integration over the 
coordinates of all particles. A(w) is defined in the same mariner as Hifa), 
[cf. Eq. (lO.lOa)]. The transition rate is then 

(10.13) 



where I is a unit vector specifying the polarization of the wave: A = A I .  We 
want to express A(wfi) in terms of the intensity of the electromagnetic wave 
traveling in direction n. This intensity is [cf. 02.31 

Also, for the monochromatic intensity we have [cf. Eq. (2.34)] 

But since E= - c - ’ a A / a t  we have E(w)= - iwc-’A(w) so that 

Thus we obtain 

( 10.16a) 

This formula applies equally to absorption or to induced emission. The two 
processes can be simply related. The probability rate for the inverse 
process is the same, except w4 is replaced by wlj, and the integral is 
replaced by (ile’krl.cV,lf). I f  we interchange labels f and i integrate by 
parts, noting 1. k = 0 for a plane wave, we have 

which is the same as (10.16a). Thus we have 

w)l = W1p 

the “principle of detailed balance.” 

10.2 THE DIPOLE APPROXIMATION 

The transition probabilities contain terms of the form 

( 10.17) 
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We now wish to justify an expansion of the exponential 

ik.r - - 1 + ik-r+ f(ik-r)’+. . 

This is appropriate, since 

at least for moderate Z .  The lowest order of this approximation, in which 
en.r is set equal to unity, gives rise to the dipole approximation. When the 
results of this approximation yield a zero result for certain transition rates, 
however, one needs to go to the higher terms in the expansion to derive the 
actual rates. These higher order terms give rise to electric quadrupole, 
octupole, and so on and magnetic dipole, quadrupole, and so on. Since the 
quantity Za! is also the order of magnitude estimate for u/c of the 
electrons in an atom [cf. Eq. (9.15b)], therefore, an equivalent condition for 
the applicability of the dipole approximation is 

V 

C 
-<<1. 

The expansion in k . r  may be regarded as an expansion in v / c .  Note that 
as higher order terms in u/c are retained, one must also add correction 
terms of these orders to the nonrelativistic form of the Schrodinger 
equation, Eq. (10.2). The reason that electric quadrupole and magnetic 
dipole radiation have roughly the same order of magnitude is that the 
magnetic force is already down by a factor u/c from the electric force. 

By setting e ik.r = 1, the integral (10.18) becomes 

( 10.19) 

where ( )$ denotes the matrix elements between states f and i. A useful 
alternative expression may be found by using the commutation relations 

rj pj - pfr J J  . = 2 iApj. 

It follows that rj commutes with the Hamiltonian 

1 
2m 

H ’ = -  Cp:+ V(r, ,r2 ,..., rN) (10.20) 
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in the following way: 

h-'(r,H,- H#,)= ih-'pj. 

Using this to replace ih-lp, in the matrix element yields 

where we have used the fact that H ,  acting on its eigenfunctions yields the 
corresponding eigenvaiues. Thus the transition rate is 

where 

d - e x r j  
i 

(10.22) 

(1 0.23) 

is the electric dipole operator. 
Often we are only concerned with unpolarized radiation from atoms 

with random orientations. We then average the above formula over all 
angles, which gives 

since 

1 
3 .  

(cos28 ) = - 

Here we interpret the quantity Ic$12 to mean the combination 

Thus the average transition rate is 

( 1  0.25) 
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10.3 EINSTEIN COEFFICIENTS AND OSCILLATOR 
STRENGTHS 

We can relate this to our previous discussion in terms of the Einstein B 
coefficients ($1.6). Letting u and I refer to the upper and lower-states, 
respectively, we have 

Note that Jvu, = ( 4 ~ ) -  ’ $ ( vu,), since the intensity considered here is undirec- 
tional. Also, we have the relation that &(v,,)=277$(wu,) so that 

Comparing this with the above expression gives 

(10.27) 

From the Einstein relations (Eqs. 1.72) we have for nondegenerate levels 

(10.28a) 

If the levels are degenerate, the transition rate is found by averaging over 
the initial states and summing over the final states. Thus the Einstein A 
coefficient is given by 

(10.28b) 

where the sum is over all substates of the upper and lower levels. In this 
case the Einstein relations have their usual statistical weight factors. 

It is convenient to define the absorption oscillator strength fi, by the 
relationship 

( 10.29a) 

(10.29b) 
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The reason for naming it such is that the B coefficient associated with a 
classical oscillator can be defined in terms of the total energy extracted 
from a beam of radiation [cf. Eqs. (3.65), (1.66), and (1.74)] 

so that 

classical - 4r2e2 
4 4  hu,mc * 

(1 0.30) 

(10.31) 

The oscillator strength (or f value) is just that factor which corrects this 
classical result. One can in this way picture the quantum mechanical 
process a s  being due to a number (usually fractional) f l ,  of equivalent 
classical electron oscillators of the same frequency v. Normally fi, is of 
order unity, so that it is a particularly useful quantity to characterize the 
strengths of transitions. 

It is also convenient to define an emission oscillator strength by the 
formula 

47r2e2 
fur. But= - 

hu, me 

Since g, B,,, = g,, B,,, and v,,, = - v,, we have the general relation 

(10.32) 

(10.33) 

Thus emission oscillator strengths are negutiue. We may write the A 
coefficient in terms of the emission and absorption oscillator strengths: 

(10.34) 

One modification of the oscillator strength concept is necessary when 
the upper state happens to lie in a continuum. In this case it is meaningless 
to talk about the probability of a transition to a single state, but rather we 
need to define the probability per unit energy (or frequency) range. With this 
in mind we define the derivatives off such that (df/dc)dc is the strength 
for a transition from state i to a set of continuum states in an energy range 
dc. The frequency of the emitted photon is given by hv = E +x where x is 
the ionization potential from the state i .  This is illustrated in Fig. 10.1. 
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Figure 10.1 
the ionization potential 

Tmmition between lewl i and the c o n h m  (slraded). Here x is 

The continuum oscillator strength f, is the total oscillator strength to all 
continuum states: 

fc=I z d c = I  df * -dv df 
dv 0 "0 

(10.35) 

where hvo=x.  
The oscillator strengths must be found by direct calculation or by 

experiment. The theoretical determination of f values (or A values) is 
difficult, but with the advent of large computers, much can now be done to 
obtain accurate, reliable results. The basic difficulty is that most approxi- 
mate wave functions for complex atoms, such as Hartree-Fock, tend to be 
most accurate at small radii where the associated contribution to the total 
energy is most important. However, the transition probabilities depend 
more critically on the wave functions at large radii. We can see this simply 
by noting that the energies depend on averages of inwrse distances, 

while the dipole operator depends on averages of distance, 

$* r 4 d 'r. 

For this reason one needs better wave functions than those ordinarily 
available. 

There are a number of general result relating oscillator strengths, known 
as sum rules. They are of great value in determining approximate values or 
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bounds for f values that cannot easily be measured or calculated, and also 
in obtaining absolute f values from relativef values. The simplest and most 
general sum rule is the Thomas-Reiche-Kuhn sum rule: 

(10.36) 

where N is the total number of electrons in the atom, and the summation is 
over all states of the atom. For each initial state this rule gives a relation 
involving transitions to all other states. Equation (10.36) follows from the 
expressions for A, Eqs. (10.23) and (10.29b), and the easily proved identity 

In many cases, such as when there is a closed shell and a smaller number q 
of electrons outside the closed shells that are involved in a more limited set 
of transitions, we also have 

(10.37) 

where the sum is now only over those states which involve transitions of 
these outer electrons. 

The sum can be split into two sums, depending on whether n’ is a state 
above or below n :  

The first sum gives the contribution due to absorption from the state n, 
and the second sum gives the contribution due to emission from state n to 
all lower states. Since in the second sum these emission oscillator strengths 
are negative, we have 

Z f n n ,  249 (10.39) 
n‘ 

En. > En 

the equality holding only for the ground state or for an excited state that 
cannot radiate by a dipole transition (metastable state). 

Other types of sum rules also exist under more restrictive assumptions 
about the nature of the atomic states (e.g., single configuration, L-S 
coupling, j - j  coupling, single electron). 
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10.4 SELECTION RULES 

In general, there will always be some probability for radiative transition 
between two states, but in some cases this probability can be exceedingly 
small. This occurs when the states involved fall approximately into a 
classification scheme (hke L- S coupling) for which the transition probabil- 
ity would be strictly zero if that scheme held rigorously. For example, a 
transition probability may be strictly zero in the dipole approximation but 
nonzero for higher order multipole radiation or two-photon emission. 

The precise statements of when a transition probability vanishes under 
some specified set of assumptions are called selection rules. We are prim- 
arily concerned with dipole selection rules, so that the crucial question 
involves when the dipole matrix element dfi vanishes. The most general 
result is Laporte’s rule: there are no transitions between states of the same 
parity. This is easily proved by recalling the definition 

If we reflect all coordinates we note 2r,+ - Zr, while @?+, is unchanged if 
f and i have the same parity. Thus the integral is equal to its negative, and 
vanishes. 

For states with a specific configuration assignment the parity is (- 
where the I, are the angular momentum quantum numbers of the individ- 
ual orbitals. Thus we deduce that the configuration must change by at least 
one orbital, from Laporte’s rule. There are no dipole transitions between 
states of the same configuration. 

A sharpened selection rule applies to the transitions between configura- 
tions: The configuration must change by precisely one orbital. This is 
proved by noting that a given configuration may be expressed as a 
superposition of determinental wave functions, which in turn are super- 
positions of products of one-particle orbitals. The dipole operator is a sum 
of the r, over all electrons, so that ultimately one can write the matrix 
element d,, as a sum of matrix elements of a single r, between product 
wave functions corresponding to the two configurations: 

Juylu;. . . u;(r,)u,,ub’. . . u,,d3x. 

The particular one-particle wave functions having the coordinates r, will 
integrate out to some result (in general nonzero), but all the other integrals 
will be simply the orthonormality integrals of the functions u; therefore, in 
order not to give a zero result, all the corresponding functions must be the 
same, except for the one involving r,. The only way to ensure that all the 
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terms in the grand summation will not vanish is to make all orbitals 
the same except for one. This selection rule is known as the one-electron 

jump rule. It can be violated by states that are superpositions of several 
configurations (configuration interaction), but i t  will be obeyed for L-S 
coupling, which assumes no such configuration interaction. 

As indicated above, under the assumption of configuration assignments 
we may evaluate the dipole matrix element by evaluating a simplified 
matrix element that connects states of the jumping electron orbitals only. 
Recall these orbitals have a very simple representation (Eq. 9.9) times a 
spin function. Since r and s commute, we see that the spin cannot change, 
so that ni, = m,,; thus we may deal with the space parts alone. The dipole 
matrix element between two such orbitals will involve the integral 

which is called the radial integral. It will also involve an integral over 
spherical harmonics. An examination of this latter integral, using the fact 
that the dipole operator is a vector, leads to the selection rules (see 
Problem 10.6) 

A I =  2 1, ( 10.40a) 

Am=O, 2 1. (10.40b) 

In a multielectron atom these rules apply to the jumping electron. These 
rules completely determine the spectra of one-electron atoms, such as HI 
and HeII, and also the alkali metals. 

There are also selection rules for many electron atoms that involve the 
total quantities L, S ,  and J .  One general result (which applies even to 
higher multipole radiation) is that the transition J = 0 to J = 0 is forbidden, 
because the photon carries off one unit of angular momentum. In L-S 
coupling we find that we must have 

AS=O (10.41a) 

AL =0, t 1, (10.41b) 

AJ=O,  t 1. (except J=O to J=O)  (10.41~) 

The rule A S = O  follows from the fact that the dipole operator does not 
involve spin. We note that AL=O is allowed here but that A1=0 is not. 
This is because there is no direct relation of L to the parity; for example, 
for two equivalent p electrons we have the state 3P which has odd L but 
even parity, and ' S  which has even L and even parity. 

For higher multipole radiation the selection rules for J remain un- 
changed (AJ=O,  -e 1, except J =O to J =O), but the panty rule becomes: for 
magnetic dipole and electric quadrupole radiation, parity is unchanged. 



For magnetic dipole transitions the configuration does not change. This 
allows for many of the forbidden lines in the ground configurations of C,  
N ,  0, for example, and for the important 21-cm lines. 

10.5 TRANSITION RATES 

One case in which a fairly complete discussion of transition rates can be 
given purely theoretically is the pure Coulomb case of hydrogen (and for 
other hydrogen-like ions, such as He11 and LiIII). The frequency of a 
photon absorbed or emitted in a transition between two discrete levels with 
principal quantum numbers n' and n' is given by 

~ J J  = Ry (n - * - n'- 2), (10.42a) 

where 

e2 

2% 
Ry- - = 13.6 eV. (10.42b) 

When the upper level is in the continuum, so that there is a free electron 
with energy c = mv2, we have 

hv= R y / n 2 +  z. (10.43) 

To liberate a free electron one needs a photon of at least the threshold 
energy, hv, =& =ionization potential from the initial state n.  

Bound-bound Transitions for Hydrogen 

To calculate the dipole oscillator strength we must evaluate the dipole 
operator matrix element. This will involve integrals over the radial wave 
functions R,,(r) of the form 

(10.44) 

By the selection rule (10.40a) we know that AI= 1. Since these radial 
functions are analytically known [Laguerre polynomials; see Eq. (9. lsa)], 
the integrals of Eq. (10.4) can be performed, but are complicated 
(Gordon, 1929.) When the integral is performed, it can then be summed 
over all I appropriate to a given n and n'. The Lyman-a transition ( n  = 1 
n'=2) in hydrogen is treated explicitly in Problem 10.3 and yields the f 
value 

(10.45) 
2 '4  gf= - =0.8324. 
39 
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For other members of the Lyman series (n’= I), the result is (Menzel and 
Pekeris, 1935) 

(10.46) 

In general, the expression for f can be reduced to a closed form. Note that 
for high values of n the oscillator strengths decrease rapidly 

29 e - 2  1 

3n3 e2 n3 
- -3.1 - . -- (1 0.47) 

Further values of oscillator strengths for the bound-bound transitions can 
be obtained from Table 10.1. 

Table 10.1 

n 1 2 3 n 1 2 3 

n‘ n‘ 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

4.162X 10-I 
7 . 9 1 0 ~  lo-’ 6 .408~  lo - ’  
2.899X 1.193X lo-’ 8.420X 10-1 
1 . 3 9 4 ~  lo-’ 4 . 4 6 7 ~  1 . 5 0 6 ~  10-I 
7.800X10-3 2.209X lo-’ 5.585X 
4.814X 1.271 X 2.768X lo-’ 
3.184X10-3 8.037X 1.604X 
2.216X 5.429X ID-’ 1.023X lo-’  
1.605X 3.851 x 6.981 X 

9.215X J0-4 2.150X lo-’ 3.711 X 

7.226 x 1.672 x 2.839 X lo-’  

1.201~10-3 2.836~10-3 4.996~10-3 

5 . 7 7 4 ~ 1 0 - ~  1 . 3 2 6 ~  2 . 2 2 3 ~  1 0 - ~  
4 . 6 8 7 ~  10-4 1.070~ 1 0 - 3  1 . 7 7 6 ~  10-3 
3 . 8 5 5 ~  1 0 - ~  8 .770~  1 0 - ~  1 . 4 4 3 ~  
3.21 1 X 7.273X 1.189X lop3 
2.703X 6 . 0 9 8 ~  9.914X 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

2.295X 5.167X 8 . 3 6 4 ~  
1.966X 4.418X 7 . 1 1 7 ~  
1.698 X 3.803 X 6.1 1 I x 
1 . 4 7 6 ~  3 . 3 0 2 ~  5 . 2 8 6 ~  
1.276X 2.885X 4 . 6 0 8 ~  
1 . 1 3 7 ~  10-4 2 .534~  10-4 4 . 0 4 0 ~  10-4 
1 . 0 0 5 ~  10-4 2 .240~  10-4 3 . 5 5 8 ~  10-4 
8.931 x lo-’ 1.987~ w4 3 .155~  
7.963X 1.772X 2 . 8 0 9 ~  
7.138X 1.587X lop4 2.513X 
6.431 X 1.427X 2.243X 
5.809X 1.288X loW4 2.034X 
5.260X 1.167X10-4 1.84OX 
4 . 7 8 4 ~  1 . 0 6 0 ~  1 0 - ~  1 .670~  I O - ~  

4 . 3 5 9 ~  1 0 - ~  9 . 6 5 4 ~  1 0 - ~  1.521 x 1 0 - ~  
3.982X 8.829X 1.389X 
3.656X 8.084X 1.272X 



Bound-free Transitions (Continuous Absorption) for Hydrogen 

When the upper state lies in the continuum, there can be absorption in a 
continuous range of frequencies. Since the absorption results in an electron 
being liberated from the atom, this process is also called photoionization. 
We express our results in terms of the cross section for the transition. The 
differential transition rate, dw, for a transition from bound state i to a 
continuum state f, with electron in momentum range dp and solid angle 
range dQ,  is 

dn 
& = - -  4n2e2 ’ ( w )  l(fleik’l*V[i)/2[ m d p d Q ] .  (10.48) 

m2c w2 

Here the term in brackets is the number of free electron states available, 
that is, the “density of states” dn/dpdSt multiplied by the differential 
range dpdfi ,  and the remaining factor is identical to our expression for the 
transition rate for bound-bound transitions, Eq. (10.16). By energy con- 
servation, we have that the frequency interval dw of incident photons is 
related to the momentum interval dp of nonrelativistic electrons by 

PdP Ad@=---. m (10.49) 

We also have, by definition, that the number of photons per unit area per 
unit time per unit frequency in the incident beam satisfies 

(10.50) 

If the final electron is localized to a volume V, then the density of states 
for a given final spin state is [cf. Eq. (9.43)] 

(10.51) 

Combining Eqs. (10.48) to ( l O S I ) ,  we obtain for the differential bound- 
free cross section, 

(10.52) 

where o = p / m  is the final electron velocity. 
For the simple case of a bound-free transition from the ground state of 

hydrogen, ionized by a photon of frequency w, t h s  differential cross 



Transition Rates 283 

section is evaluated explicitly for Ao>>Ry in Problem 10.4. The total cross 
section, ubf=j(du/di2)dQ,  is 

(10.53) 

For the more general case of a bound-free transition from state n and I ,  a 
detailed calculation (Karzas and Latter, 1961) gives 

512.rr7meloZ4 g(w, n, I ,  Z )  
3 V 5  ch6n5 w 3  

'bf = , (10.54) 

where g is the bound-free Gaunt factor. If M is the ionization potential for 
the initial level, Ubf is zero for w < on where 

(10.55) 

rises abruptly to Eq. (10.54) at threshold w =on and then decreases roughly 
as oP3. Near threshold, the Gaunt factor g is unity, to within 20%. 

log a 

I I 1  + log v 
v i  v2 v3 

Figure 10.2 Schematic illustmtion of the frequency depndence of the absotp- 
tion coefficient. The sharp rises, absorption edges, occur at the fmquency of 
ionization of a particular lewL 
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For convenience, Eq. (10.54) can also be written in the form 

(10.56) 

We can also write our results in terms of the absorption coefficient, 
4 = Nno, where N,, is the atomic density at the absorbing level. The total 
absorption coefficient equals the sum of terms of this form and is 
illustrated schematically in Fig. 10.2. The absorption edges correspond to 
the onset of absorption from different levels. The relative strength of these 
edges depends on the number of atoms in each level. For example, if the 
material is in thermodynamic equilibrium, these numbers are given by the 
Boltzmann law. 

Radiative Recombination; Milne Relations 

The process inverse to photoionization is radiative recombination, in which 
an electron is captured by an ion into a bound state n with emission of a 
photon. There are connections between rates for photoionization and 
recombination, analogous to the Einstein relations. These are called the 
Milne relations and are examples of general detailed balancing relations. If 
we want to apply these directly to a single capture event we first have to 
consider the distribution function for the electrons, that is, how many 
electrons are moving in each speed range. However, it is also quite useful, 
and usually sufficient, to deal with a thermal distribution of electrons. The 
detailed balance relations can then be obtained by the simple requirement 
that the radiation field in equilibrium is the Planck function B,(T). Since 
the coefficients refer to atomic properties, they then can be used for any 
distributions of electrons and radiation. 

Let U @ ( U )  be the cross section for recombination for electrons of velocity 
v .  Then the number of recombinations per unit time per unit volume due 
to thermal electrons in speed range du is 

N+N,u,J( t . )udu,  (10.57) 

where N, is the electron density, N ,  is the ion density, and f(u) is the 
Maxwellian velocity distribution. The number of photoionizations per time 
per volume for a blackbody radiation field (Z,,= B,) in frequency range d v  
is, (cf. Problem 1.2), with N ,  the neutral atom density, 

477 
N, a,,( 1 - e - h ” / k T )  B, dv, (10.58) 
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where the factor (1 - , - “ ” I k T )  now gives the net photoionization rate when 
“stimulated recombinations” are subtracted out. Then equating (10.57) and 
(10.58) and using the Planck function and Eq. (10.49), we obtain 

But, we also know 

and from Saha’s equation [cf. Eq. (9.47)] 

Using the result 

we obtain the Milne relation: 

(10.59) 

( 10.60) 

(10.61) 

(10.62) 

Since we have already found abf, we can compute a@. 
In this way recombination coefficients can be computed for given 

velocity distribution, say Maxwellian. We have the following results for the 
thermal recombination coefficient onto the nth level of hydrogen: (Gaunt 
factor = 1) 

where f(u) is the speed distribution of the thermal electrons, Eq. (10.60). 
Substitution of Eqs. (10.56), (10.61), and (10.62) into (10.63) then yields 
(Cillie 1932) 

(ua,) =3.262x 10-6M(n, T ) ,  ( 10.64a) 
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where 

(10.64b) 

and where 

--I 

( 10.64~) 

In evaluating Eqs. (10.64) we have used ge=2, g + =  1, gn=2n2 as the 
values for the statistical weight factors. 

Also of interest is the recombination coefficient summed over all bound 
states n. A convenient approximation is (Seaton, 1959) 

2 (uu,) =5.197x 10-'4h'/2(0.4288+ ~lnX+0.469X-i/3) 
n 

(10.65a) 

where 

A- 1.579 x lo5/ T. (10.65b) 

Recombination can proceed in other ways besides radiative recombina- 
tion. Three-body recombination is usually quite slow at astrophysical densi- 
ties, since it requires a close encounter of three bodies simultaneously. 
However, dielectronic recombination (see, e.g., Massey and Gilbody 1974) 
can be very important for some ions. 

The Role of Coupling Schemes in the Determination off Values 

When particular coupling schemes are appropriate, it is possible to relate 
the f values for different transitions by means of formulas (or tables). For 
L-S coupling (Russell-Saunders coupling) we can interrelate the f values 
of all lines between two given terms; this set of lines is called a multiplet. 
The relative strengths of the lines within a multiplet depend only on the 
term types of the two terms involved. For example, if we have an upper 'P  
term and a lower 'S term, the transition 2S,/2 - 'P,,, is twice as strong as 
the transition 2Sl ,2 -2P , /2 .  The factor of 2 is due to there being two times 
the number of states in J = 3 / 2  as in J = 1/2. This is the situation with the 
Lyman - a  (Lya)  transition in HI. If we know the total strength of the 
multiplet, we can then find the strengths of the individual line components. 
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Thus since the total gf is 0.8324 [cf (10.45)], we have (gf) 1/2-3/2= 
0.5549, (gf) 1/2 - 1/2 = 0.2775. Tables to deduce the relative strength of 
lines within a multiplet can be found in Allen (1974) and Aller (1963). 

Another use of the L-S coupling scheme is to deduce the relative 
strengths of rnultipkts between two configurations. This kind of calculation 
is affected more by deviations from L-S coupling than the preceding, so 
that it is not as reliable. The set of multiplets arising out of transitions 
between two configurations is called a transition array, and the relative 
strengths of multiplets within a transition array is discussed in the above 
references. 

Other coupling schemes give their own rules for relatingf values, but we 
do not discuss these here. In cases where a particular coupling scheme is 
not applicable, or its applicability is dubious, we must obtain f values for 
the desired transitions either directly by experiment or by a more sophisti- 
cated theoretical calculation. 

10.6 LINE BROADENING MECHANISMS 

Atomic levels are not infinitely sharp, nor are the lines connecting them. 
This was already recognized in our discussion of the Einstein coefficients, 
where we introduced the line profile function +(u)  to account for the 
nonzero width of the line. Many physical effects determine the line shape, 
and we can only deal with a few here (see, e.g., Griem 1974; Mihalas 
1978). 

Doppler Broadening 

Perhaps the simplest mechanism for line broadening is the Doppler effect. 
An atom is in thermal motion, so that the frequency of emission or 
absorption in its own frame corresponds to a different frequency for an 
observer. Each atom has its own Doppler shift, so that the net effect is to 
spread the line out, but not to change its total strength. 

The change in frequency associated with an atom with velocity compo- 
nent u, along the line of sight (say, z axis) is, to lowest order in v / c ,  given 
by Eq. (4.12) 

YOV, v - v 0 = -  
C 

(10.66) 

Here yo is the rest-frame frequency. The number of atoms having velocities 
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in the range v, to u, + dv, is proportional to the Maxwellian distribution 

where ma is the mass of an atom. From the above we have the relations 

c du 

VO 
doz = - . 

(10.67a) 

(10.67b) 

Therefore, the strength of the emission in the frequency range v to v + dv is 
proportional to 

and the profile function is 

- ( v -  4 2 / ( A v D ) 2 ,  d v )  = 
A v D G  

Here the Doppler width A v D  is defined by 

(10.68) 

(10.69) 

The constant ( A v D G ) - '  in the formula for +(v) is determined by the 
normalization condition /c#J(v) dv = 1 under the (reasonable) assumption 
that AvD<<vo. The line-center cross section for each atom, neglecting 
stimulated emission, is therefore 

r e  1 

mc A v D G  
= --fiz--- (10.70) 



for the case of Doppler broadening. Numerically this is 

avo= 1.16X 1 0 - ' 4 h , ~ f 1 2  cm2, (10.71) 

where A, is in k, T in K ,  and A is the atomic weight for the atom. 
In addition to thermal motions there can also be turbulent velocities 

associated with macroscopic velocity fields. When the scale of the turbu- 
lence is small in comparison with a mean free path (called microturbulence) 
these motions are often accounted for by an effective Doppler width 

(10.72) 

where 6 is a root mean-square measure of the turbulent velocities. This 
assumes that the turbulent velocities also have a Gaussian distribution. 

Natural Broadening 

A certain width to the atomic level is implied by the uncertainty principle, 
namely, that the spread in energy AE and the duration A t  in the state must 
satisfy A13At-h. We note that the spontaneous decay of an atomic state n 
proceeds at a rate 

where the sum is over all states n' of lower energy. If radiation is present, 
we should add the induced rates to this. The coefficient of the wave 
function of state n,  therefore, is of the form e-"'I2 and leads to a decay of 
the electric field by the same factor. (The energy then decays proportional 
to eTYt, )  Therefore, we have an emitted spectrum determined by the 
decaying sinusoid type of electric field, as given in $2.3 and Fig. 2.3. Thus 
the profile is of the form 

= Y/4T2 (10.73) 
( v  - %I2 + (Y/4TI2 . 

This is called a Lorentz (or natural) profile. 
Actually, the above result applies to cases in which only the upper state 

is broadened (e.g., transitions to the ground state). If both the upper and 



lower state are broadened, then the appropriate definition for y is 

Y = Y u  + Yl? (10.74) 

where y, and y, are the widths of the upper and lower states involved in the 
transition. Thus, for example, we can have a weak but broad line if the 
lower state is broadened substantially. 

Collisional Broadening 

The Lorentz profile applies even more generally to certain types of 
collisional broadening mechanisms. For example, if the atom suffers colli- 
sions with other particles while it is emitting, the phase of the emitted 
radiation can be altered suddenly (see Fig. 10.3). If the phase changes 
completely randomly at the collision times, then information about the 
emitting frequencies is lost. If the collisions occur with frequency vcol, that 
is, each atom experiences vcol collisions per unit time on the average, then 
the profile is (see Problem 10.7). 

(10.75a) 

where 

r = +2v,01. (10.75b) 

I I 

4 t 2  

Figure 10.3 Time-dependence of the electric feld of emitted radiation which is 
(a) pum& sinusoidal and (6) subject to random phase intemrptions by atomic 
collisions. 



Combined Doppler and Lorentz Profiles 

Quite often an atom shows both a Lorentz profile plus the Doppler effect. 
In these cases we can write the profile as an average of the Lorentz profile 
over the various velocity states of the atom: 

We can write this more compactly using the definition of the Voigt function 

(10.77) 

Then Eq.. (10.76) can be written as 

where 

r a= - 
47rAuD ’ ( 10.79a) 

( I0.79b) 

For small values of a, the center of the line is dominated by the Doppler 
profile, whereas the “wings” are dominated by the Lorentz profile. (See 
problem 10.5). 

PROBLEMS 

10.1 -What radiative transitions are allowed between the fine structure 
levels of a 3P term and those of a 3S term? Draw a diagram showing the 
levels with spacings determined by the Lande interval rule. How many 
spectral lines will be produced, and how will they be spaced relative to one 
another? Consider the different possibilities of 3P being normal or inverted 
and being the upper or lower term. 
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10.2-Which of the following transitions are allowed under L-S cou- 
pling selection rules for electric dipole radiation and which are not? 
Explain which rules, if any, are violated. 

a. 3s 2 ~ , / 2 + + 4 s  2 ~ 1 / 2  

b. 2p 2P, / ,++3d 'D , / ,  

c.  3s3p 3P,+-+3p2 ID, 

d. 2p3p 3 D , t , 3 p 4 d  3F2 

e. 2p2 3 ~ o w 2 p 3 s  3 ~ 0  

f. 3s2p ' P l t t 2 p 3 p  IP, 

g. 2s3p 'P0-3p4d ' P I  

h. 1s' 'So*2s2p ' P I  

i. 2p3p 3 S , t t 2 p 4 d  3D2 

j. 2p3 2 D 3 / 2 t ) 2 p 3  ' D , / ,  

103-Derive Eq. (10.45) for the Lyman-a oscillator strength. 

10.4-Derive Eq. (10.53) for the bound-free cross section, using the 
nonrelativistic Born approximation. 

10.5-Line radiation is emitted from an optically thn, thermal source. 
Assuming that the only broadening mechanisms are Doppler and natural 
broadening, show that the observed half-width of the line is independent of 
the temperature T for T<<T, and increases as the square root of T for 
T>T, ,  where T, is some critical temperature. For the Lyman-a line of 
hydrogen estimate T, in terms of fundamental constants, and give its 
numerical value. 

10.6-Derive the simple dipole selection rule, Eq. (10.40). 

10.7-Derive the profile function, Eq. (10.75), when phase-destroying 
collisions occur with frequency Y , ~ .  
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MOLECULAR STRUCTURE 

When two or more atoms join together into a molecule there is consider- 
able complexity, as compared to a single atom. Many of the simple 
symmetries of the atom, such as complete rotational symmetry about the 
nucleus, are lost, and this means fewer quantum numbers are available to 
help sort out the molecular states. On the other hand, there are a few 
consolations: 

1. For diatomic molecules (to which we restrict ourselves exclusively) 
there is still rotational symmetry about a line. 

2. Some of the most important transitions in molecules involve rotation 
and/or oibrution of the nuclei with respect to each other; these 
transitions do not occur in atoms and are actually quite a bit simpler 
than any atomic transitions. The primary difficulties in understanding 
molecules are electronic states. 

11.1 THE BORN-OPPENHEIMER APPROXIMATION: AN 
ORDER OF MAGNITUDE ESTIMATE OF ENERGY LEVELS 

A great simplification in the understanding of molecules was made when it 
was realized that the motions of the electrons and nuclei could be treated 
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separately. This comes about because of the great disparity between the 
masses of the electron and a typical nucleus, which have ratios m / M  in 
the range: -lop4- From the uncertainty relations we see that this 
implies that the electrons are much faster than the nuclei and characteristi- 
cally have much higher energies. Let a be a typical molecular size. Then 
the momentum of an electron is of order tr/u and will have energy states 
with typical spacings 

(11.1) 

For typical molecular sizes (-lo-* cm) this amounts to about a few eV. 
The slowly moving nuclei only sense the electrons as a kind of 

smoothed-out cloud. Therefore, as the nuclei move the electrons have 
sufficient time to adjust adiabatically to the new nuclear positions. The 
nuclei then feel only an equivalent potential that depends on the inter- 
nuclear distance and on the particular electronic state. This separation 
of nuclear and electronic motions is called the Born-Oppenheimer ap- 
prox imation. 

For stable molecules the internuclear potential has a minimum at some 
point (see Fig. 1 I .  1). Vibrations about the minimum can occur and can be 
estimated roughly by comparing to a harmonic oscillator. We can ap- 
proximate the potential as ;Ma2.$*, where .$ is the displacement of the 

K 

Figure 11.1 Potential between two atoms in a molecule as u fiurct;on of their 
separation R. 



nucleus from its equilibrium position and w is the frequency of vibration. 
When 5 is of order a the electronic energies must change to something of 
order h2/2ma2,  so we set 

so that 

( 1  1.2) 

These energies are typically tenths or hundredths of an eV, lying in the 
infrared. 

The nuclei can also rotate about each other. Let us estimate the energes 
involved in such motions. If the angular momentum of this motion is Ih 
(I = 0, 1,2,. . .), then the energy of rotation is 

(11.3) 

where I is the moment of inertia of the molecule: I--Mu2. Thus for small 
values of I (low-lying rotational states) 

(11.4) 

These energies are of order iOP3 eV, lying in the far infrared or radio. 
The various energies of the molecule are approximately addtive 

E =  Eelect + EVlb + Erot ,  (11.5) 

and the contributions are in the approximate ratios 

Eelect : Evlb : Ero, = I : ( $)‘I2 . -!!? 
’ M ’  

11.2 ELECTRONIC BINDING OF NUCLEI 

(11.6) 

We give below a couple of simple examples in which approximate solu- 
tions are found for the molecular potential as a function of separation 
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distance of the nuclei. These solutions provide qualitative understanding of 
the natuire of the potential minimum. 

The HZ Ion 

The simplest molecule is H:, formed when two protons are held together 
by one electron. The Hamiltonian for the ion is, in the same units as Eq. 
(9.81, 

(see Fig. 11.2). We have neglected the kinetic energy of the nuclei and have 
assumed that their positions are fixed. This problem can be treated 
approximately by a variational method. We assume that the electron is in a 
state that is a superposition of two hydrogen atomic states, each centered 
on a different nucleus: 

where, for +A and +B both ground states [cf. Eq. f9.16)] 

The potential is symmetric about the midpoint of the molecule (RA+ 
R,)/2, so we can classify the states by their parities: thus either a =/3 or 

f -  

Figurn 11.2 Schematic dlustmtion of the location of particks in an H2+ ion. 
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(Y = - p, and we can write 

The normalization constant C, must be found by integrating l+,(r)I2 over 
all space: 

Thus we obtain for C, - 

JC, )-’=2 +-2S( R ) ,  

where S ( R )  is the overlap integral 

(11.11) 

S(R)=ReJ$;(r)+B(r)d3r 

=( 1 + R + fR2)e-R, (11.12) 

and where 

R =IRA -RBI. ( 1  1.13) 

Equation (1  1.12) is derived in problem 11.2. A quite similar evaluation 
applies to the other integrals below (see Baym, 1969). Choosing C, - to be 
real, we obtain 

c, = [ 2 + 2 S ( R ) ]  -1’2. 

The expectation value of H is 

( 1 1.14) 

where 

= ( B I H I B ) = - Z + ( l + R - ’ ) e - 2 K .  1 ( I  1.16) 
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Note the 1 / R term, arising from the repulsive force of the nuclei at  small 
distances and causing large positive energies at  small R. The term -; is 
the energy of the 1s state of atomic hydrogen (in atomic units). Also, we 
have the result 

=( -++ R- ' )S(R)-Re $zlr-RBIp1+bBd3r. (11.17) J 
The integ,ral here is the exchange integrul 

/$>Ir-RBl-I$Bd3r=(l +R)eCR.  (11.18) 

Plotting the sum of all these terms we have two curves of E , ( R ) ,  one for 
even, one for odd parity (see Fig. 11.3). We seek a minimum of these 
curves with respect to R. The odd parity state has no minimum, and 
therefore, there is no bound molecular state with odd parity. However, an 
even parity state does exist at  internuclear separation 1.3 A and at a 
relative binding of - 1.76 eV. Experimentally, it is found that R,= 1.03 A 
and AE:= -2.8 eV, which is some indication of the crudeness of our 
approximations. 

Figure 11.3 
and e- denote the ecen and odd parity solutiom. 

Energv of an H2+ ion as a function of the proton separation R. E + 



A single electron wave function is called a molecular orbital. In particu- 
lar, a molecular orbital such as +b%, chosen to be a linear combination of 
atomic orbitals, is called LCAO. Orbitals such as ++ are called bonding 
orbitals, and orbitals such as +- are called antibonding orbitals. 

In this case we can understand the reason why ++ is a bonding orbital 
and +- is not. Since 4- has odd parity, it vanishes at the midpoint of the 
molecule; but even stronger, it vanishes everywhere on the midplane 
because of rotational symmetry around the internuclear line. Thus the 
electron has a low probability of being between the two nuclei where it can 
perform a bonding function. On the other hand, ++ is larger along the 
midplane, which leads to a higher concentration of the electron there, and 
this in turn produces the bonding. 

When R is large, we simply have a wave function that is a superposition 
of two separated hydrogen atoms in 1s states. Since the wave functions do 
not overlap, this is equivalent to saying that the electron can be bound to 
either proton with equal probability. The energy of this state is correctly 
given by the above wave functions, since we have constructed it out of 
exact 1s functions, having the exponential form e-lr-RI. 

In the opposite limit, when R-0, the two protons come together, and we 
have a He+ atom. The electronic energy of this case is not well approxi- 
mated by our wave function, because the exponential for He+ should be 

. For t h s  reason the binding of the electrons to the protons is 
underestimated by our wave functions near R=O. This explains why we 
obtained a binding energy significantly less than the experimental value. 
Some account of this can be made by taking modified atomic orbitals that 
have an arbitrary scaling factor T ,  +bA(r)-++bA(qr) and by using 77 as a 
variational parameter. In our case this makes the wave functions correct at 
R = 0 and improves the binding energy estimate. 

- 2lr- RI 

The H, Molecule 

The next simplest molecule is the neutral hydrogen molecule H,. Because 
of the two electrons, we must take account of the Pauli principle. As a first 
approximation let us take two molecular orbitals for the HT molecule and 
form a wave function from these. Since we are concerned with finding the 
ground state, we expect that we want two binding orbitals of the type ++. 
The space part of the wave function will then be symmetric; thus we must 
choose an antisymmetric spin part, that is, the singlet spin state. Thus 
choose 
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There is :i difficulty with this wave function that can be seen when we 
expand out the space parts: 

Let us examine the meaning of these terms as R-+co. The first set of terms 
correspond to a proton plus a H- ion, while the second set corresponds to 
two separated H atoms. We know that the binding of the H- ion is very 
weak, so that we expect that it is the second set of terms that will lead to 
strong binding in H2, and not the first set. Since we are doing a variational 
calculation of sorts, we are at liberty to use any information we have to 
bring to bear on the selection of trial functions. Thus we simply eliminate 
the first set of terms; this gives the valence bond or London-Heiter method 
(as opposed to the molecular orbital method): 

Note that the normalization is now dependent on the square of the overlap 
integral S .  Note also that this state has even parity. A similar result 

holds for the triplet states. This state has odd parity. 
With these trial functions the internuclear potentials can be computed as 

before. The details are complicated, however, and are omitted. The results 
are quite similar in form to Fig. 11.3. The curve E + ( R )  has a minimum at a 
value less than -27.2 eV, which is the value for two separated H atoms. 
Thus a H, molecule can exist in the singlet spin state. 

Similar problems to those in the H: molecule occur here when we go to 
the limit R-0. The electronic states should approach the ground state of 
the He atom, but because our wave functions have been defined in terms 
of H-llke functions, this limit is rather badly approximated. Similar rescal- 
ing can be used to improve the results. Extensive variational calculations 
have been done on H2, and the results compare extremely well- to experi- 
ment. 

One seeming contradiction implied by the above results is that for atoms 
we argued that electrons with aligned spins (large total spin) led to the 
lowest Coulomb energies and thus to the tightest binding. Now we find 
that it is the low spin (singlet) state that binds, while the triplet state does 
not. This paradox is explained by the fact that for molecules it is the 
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electron density between the nuclei that leads to binding and this effect 
outweighs the lower interelectron Coulomb energy in the high spin states. 

Another point of interest involves the large R behavior of the inter- 
nuclear potential. In a second-order perturbation expansion it is found that 
two H-atoms will attract each other with a R -6  Vun der Wuals potential. 
Thus the triplet curve eventually becomes attractive at large R. However, 
the depth of the resulting potential is insufficient to lead to binding in H,, 
although it can lead to binding in other molecules. 

11.3 PURE ROTATION SPECTRA 

Energy Levels 

In the ground state a diatomic molecule is very near to the bottom of the 
potential between two nuclei. (Because of zero point motions we cannot 
say that they are precisely at the bottom.) In this state the easiest way to 
excite it into higher energy states is to cause the molecule to rotate. This 
follows from the discussion of $ 1 1 . 1 ,  where it was shown that the energy 
required to excite a vibrational mode or an electronic state was much 
greater than typical rotation energies. Therefore, it is possible to have 
transitions solely among the rotational states when the molecule is in its 
lowest vibrational and electronic states. Such transitions give rise to a pure 
rotational spectmm, which typically lies in the radio or far-IR regimes. 

Since the moment of inertia of a diatomic molecule around the line 
connecting the nuclei is negligible, the appropriate axis of rotation to 
consider is perpendicular to this line, through the center of mass of the two 
nuclei. The moment of inertia about this axis is 

= pro, 2 (1 1.21) 

where ro is the equilibrium internuclear distance, and p is the reduced 
mass, defined below. If we denote by K the angular momentum operator 
for rotation, then the Hamiltonian is H=(1/21)K2, which leads to the 
energy eigenvalues 

h2 
21 

E K =  - K ( K +  1). ( 1  1.22) 

Corrections to this essentially classical formula can be found by consid- 
ering the radial wave equation for the nuclei of a diatomic molecule, 

+-0, (11.23) 
hZK(K+ 1) 

2cv2 
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where p is the reduced mass of the diatomic molecule 

(1 1.24) 

Here M ,  and M ,  are the masses of the two nuclei and r is their separation; 
V,(r) is the potential of the nuclei, in electronic state n ;  and K is the 
angular momentum quantum number of the molecule. 

Vibrational and rotational energy levels of the molecule may be ap- 
proximately calculated by expanding the “effective potential” 

FZ,K( K + 1) - un-vn+ =vn+ v, 
2 t v 2  

( 1  1.25) 

about its minimum in a Taylor series. Letting r, and r, be the equilibrium 
radii of V,, and U,, respectively, that is, aV/arlr,=0 and au,,/arlrK=O and 
letting the “ spring constant” k,,,, A,, and V,,, be defined by 

~ ~ r ~ - ~ , , , + ~ ~ , , , ~ r - r , ~ ~ + ~ , ~ r - r ~ ~ ~ +  . - . ,  (11.26) 

one obtains for r, 

An approximate expression for U,,(r) is then 

(1 1.27) 

Note that Eq. (1 1.22), derived classically, has the same form as the first 
two terms of U,,(r), which define rotational energy levels Enk satisfying [cf. 
Eq. (1 1.28)J 

PK( K + 1) 
Erik = vno + 

2v: 

= vno+ (1 1.29) 



The second term in brackets [cf. Eqs. (1  1.28) and (1 1.29)) corresponds to a 
stretching of the molecule in response to centrifugal forces, whch increases 
the moment of inertia and therefore decreases the lunetic energy of 
rotation for fixed angular momentum. 

Selection Rules and Emission Frequencies 

Whether a transition between two K values can be accompanied by the 
emission or absorption of radiation is governed by selection rules. For 
dipole radiation there are two such rules: 

1. d#O 

2. AK= - I (emission) or 
AK= + 1 (absorption). 

(1 1.30a) 

(1 1.30b) 

Here d is thepermanent dipole moment of the molecule: 

d -Z,er, + Z,er,+ d,, (11.31) 

where d, is the electronic contribution. 
These selection rules can be understood physically. A rotating system 

will radiate classically only if its dipole moment changes. Clearly, if d-0,  
it cannot radiate classically, which explains the first rule. The second 

I I I I - wKf i r i  .~ 

1 2 3 4 * h  

Figure 11.4 
tmsitions. 

Term dkzgmm for energy leoels and frequencies in pure rotational 
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follows from angular momentum considerations, essentially identical to 
those leading to the selection rule of Eq. (10.40). See also Problem 10.6. 

An immediate consequence of rule 1 is that a homonuclear diatomic 
molecule cannot show pure rotation spectrum in the dipole approximation [cf. 
Eq. (11.31)) This rules out molecules such as H,, 0,, C;, although weak 
pure rotation spectra due to higher order radiation have been observed. 

Rule 2 allows us to immediately write down the emission frequencies for 
rotational transitions [cf. Eqs. (1 1.29)]: 

. (1 1.32) 1 - E n ~ + l - E n ~  - h(K+l)  4A2(K+1), 

h Po2 [ I -  k n  

- O K  = 

This can also be depicted in a term diagram in Fig. 11.4. The frequencies 
are almost equidistant, but get slightly closer together with high K. 

11.4 ROTATION-VIBRATION SPECTRA 

Energy Levels and the Morse Potential 

Because the energies required to excite vibrational modes are much larger 
than those required to excite rotation, it is unldcely to have a pure 
vibrational spectrum in analogy to the pure rotational spectrum. There is, 
instead, what is called a rotation-vibration spectrum, in which both the 
vibrational state and the rotational state can change together. We can, 
however, consider cases in which the electronic state remains the same. 

The third term in U,,(r) of Eq. (1 1.28) is the potential of a harmonic 
oscillator, leading to vibrational energy levels 

En, = Awn,( V + ;) 

Here u is the harmonic oscillator quantum number, u = 0, 1,2, . . . 
The above vibrational energy levels are those of a harmonic oscillator 

and result from the approximate expansion of the potential up to quadratic 
displacements from equilibrium. A more exact treatment clearly must 
include cubic, quartic, and higher order terms in the potential. Alterna- 
tively, the potential U,,(r) may be approximated by a closed analytic 
expression which is both accurate and simple. An expression of this form 



has been proposed by Morse (1929): 

~ n ( r )  = Uno + Bn { 1 -exp [ - Pn(r - ' 0 )  1 12, (11.34) 

where B,,, j?,,, and ro are three parameters that must be properly chosen to 
fit the observed potential curve. The energy eigenvalues (relative to the 
potential minimum Uno) corresponding to this potential may be solved for 
exactly and are 

where 

(1 1.35a) 

(1 1.35b) 

Note that the first term in En, corresponds to a simple harmonic oscillator, 
coming from the first nonconstant term in an expansion of the Morse 
potential about its minimum. The vibrational quantum number u is an 
integer lying in the range 

(11.36) 

The upper limit corresponds to the condition d E / h  =O. Two properties of 
vibrational levels correctly predicted by Eqs. (1 1.35) and (1 1.36) of the 
Morse potential are that there are a finite number of discrete vibrational 
levels below Bn and that the energy levels are more closely spaced with 
increasing v .  

Selection Rules and Emission Frequencies 

The selection rules for vibration-rotation transitions are: 

1. dfO (1  1.37a) 

2. y\ r - r o  #O 

3. u =  - 1 (emission) or 
u = + 1 (absorption) 

4. K =  z t  1 for A==O 
K =  -+ 1,0 for AZO. 

(1 1.37b) 

(11.37~) 

(1 1.37d) 
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Here A is the component of electronic orbital angular momentum along 
the internuclear axis (figure axis). The electronic states A = 0,1,2,3,. . . are 
denoted b y  2, II, A, @, ..., respectively, in analogy with atomic spectro- 
scopic notation. 

The second of these rules requires that d change during a change in 
vibrational state. The third is the familiar rule from quantum theory for 
harmonic (oscillators. The fourth rule is more complicated. Changes in the 
vibrational state of the molecule do not affect its panty, which must 
change in a dipole transition (810.4). For A=O, the panty is determined 
completely by the rotational quantum number K ,  and we obtain the same 
selection rule as in the pure rotational transitions, Eq. (1 1.30b). For A#O, 

P Branch R Branch K '  
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P(3)  P(1) , R ( 0 )  R ( 2 )  

P(4) P(2) w e  R ( 1 )  K ( 3 )  
1 1 1 1 ! 1 1 1 1  f w  

Figure 11.5 
Here v and K a~ vibrational 4 mtatiod quantum nwnbers 

Term akgmm for P and R branches in vibmtional tmnsitions. 



however, each rotational level splits into two almost degenerate levels, 
corresponding to the two possible signs of A. This is called A doubling. 
These two levels have opposite parity, thus allowing an overall change of 
parity even when AK = 0. 

Note that in either emission or absorption, both AK= + 1 and AK= - 1 
are allowed, because the majority of the total energy change is in the 
vibrational transition. This allows a classification of the rotational “fine- 
structure” according to the change in K as follows 

A K =  - 1  : R  branch 

A K =  + I : P branch 

A K = 0 : Q branch (when allowed). 

(1 1.38a) 

( 1  I .38b) 

( 1  1.38~) 

Here A K =  K ” -  K’ ,  where K ‘  refers to the upper state, and K “  to the 
lower state. The P and R branches are illustrated in Fig. 11.5. 

1 1.5 ELECTRONIC-ROTATIONAL-VIBRATIONAL SPECTRA 

Energy Levels 

An approximate expression for the energy levels of electronic states is 

End= Vn0+ ynh2A2+anhJ(J+ I)+(u+~)Tzw,, ,  (1 1.39) 

where A is the component of electron angular momentum L along the axis 
separating the two nuclei, J = K + L  is the total angular momentum, and 
Vno, y,, a,,, and a,, are all constant for a given electronic state of quantum 
number n .  The rotational and vibrational energies in Eq. (1 1.39) are similar 
to the forms discussed previously and are quite adequate approximations 
when electronic transitions occur (change in n). 

Selection Rules and Emission Frequencies 

The selection rules governing electronic dipole transitions in a diatomic 
molecule are: 

1. AA= - 1, 0, + I 

2. AJ = - 1, 0, + 1, but J =O+J = O  is not allowed 

3. ilv =any positive or negative integer. 

(1 1.40a) 

( I  1.40b) 

(1 1.40~) 

and AJ = 0 is not allowed if A = O+A = 0. 

Since the dipole transition is an electronic one, there is no restriction on D.  



Again, as in vibrational spectra, we can consider emission frequencies 
for transitions in which A J =  - I ,  the R branch, A J = O ,  the Q branch, and 
A J =  + 1, the P branch: 

-wnn. + uw, - u’w,. + H ( J ) ,  (1 1.41) 

(J+ 1)[Ja,-(J+2)an,], P ( 1 1.42a) 

(a, - a,,.)J(J + I), Q (1 1.42b) 

J [  (J + l)an - (J - i)a,,.], ( 1 I .42c) R .  

The dominant term in Eq. (11.41) is LO,,., a frequency corresponding to 
the difference in a potential energy of the minima of two curves of the 
form of Fig. 11.6. The vibrational and rotational terms are successively 
finer striictures on the electronic levels. For given n and n’ (and hence, 
given w,,,,,, w,, and on.) Eq. (11.41) indicates that the vibrational fine 
structure forms a progression of uniformly spaced frequencies. For a given 
n, n’, v ,  and u‘, the rotational fine structure is superimposed on the 
vibrational structure to form a band. 

Several interesting features are apparent from Eq. (1 1.42) and the 
selection rules on AJ. Selection rule 2. and the requirement that J be 
positive forbid J = O  in both the Q and R branches, respectively. Further- 
more, a,,/a,,. is typically not an integer, so that the bracketed expression in 

A t R  
/ (state 1 i 1  

I \ 

I * K  

Figurn 11.6 Potential energy as a fmt ion of nuclear separation of a mokcuk 
in its electronic ground state and in M excited electronic state. 



310 Mokcwkr Structure 

Figuw 11.7 Spctml lines observed in the mocecule A H ,  illustrating the P, R 
and Q b m h e s .  (Taken from Bingel, W. A.  lW9, Theoy of Molecular Spectra, 
Wiky, New York.) 

the P and R branch does not vanish for any value of J. Consequently, 
H(J)#O for all branches, and there is a missing line in the sequence at 
frequency w o z  a,,,,, + uw,, - u’w,. termed, alternatively, the zero gap, null 
line, or band origin, as in the rotational-vibrational spectra. This is shown 
as the dotted line in Fig. 11.5. Since the Q and R branches converge on the 
null line as J+O (the P branch converges on it as J is artificially 
extrapolated to - I), the null line may be used to identify the origin of J 
within a band. 

Another striking feature of Eq. (11.42) is that the line spacing is quite 
nonuniform in J .  in contrast to rotation-vibration levels. In the P and R 
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F i p v  11.8 Fortmt diagram for bands shown in Fig. 11.7. Hew Iml= J, the 
total angular momentum quantum number. (Tnken fmm Herzberg, C., i950, 
Spctm of Diatomic Mo&cules, Van Nostranrl, New York.) 



311 

branches. the line spacing may not be montonic with J and can reverse at 
a particular value of JfJhead, where H ( J )  is at an extremum. Near Jhead, 
the line spacing is relatively narrow; for J much bigger or smaller than 
Jhead, the spacing gets broader. The result is a sharp edge at the boundary 
of the band, called the band head. It is straightforward to determine the 
location of the band head, and this is developed in Problems 11.3 and 11.4. 
Figure 11.7 below gives an observed band at 4241 A in the spectrum of 
AlH. The lines are labeled according to R, Q and P, with subscripts 
indicating the J of the branch. Lines corresponding to R,,, R,5, and so on 
are not shown. 

A theoretical plot of the location of the lines in the J-w,,, plane is called 
a Fortrat diagram. Figure 11.8 gives a Fortrat diagram of the same band 
shown in Fig. 11.7, where Iml -J. Note that the R branch reverses at R,,, 
as is observed in the R band head of Fig. 11.7. Reversals do not occur in 
the Q and P branches for this spectrum, but the lowest frequency lines in 
the Q branch are similar in form to the band head in the R branch. 

PROBLEMS 

11.1-Consider an electrically neutral medium of diatomic molecules in 
thermal equilibrium at temperature T. Each molecule contains a nucleus of 
mass Mp and a nucleus of mass 2Mp at an equilibrium separation ro. 

a. Estimate ro in terms of fundamental constants. 

b. Estimate the cross section a, for collisions between molecules. 

c. It is experimentally observed that, as a function of mass density p of 
the medium, the line width of the rotational lines has the form shown 
in Fig. 11.9. If only Doppler and collisional broadening are present, 
estimate po and show that it may be written completely in terms of 
fundamental constants, independent of M,. 

11.2-Derive Eq. ( 1  1.12). 

113-Show that both the P and the R branches of the electronic-vibra- 
tional-rotational transitions, Eqs. (1 1.41), (1 1.42) may be combined into a 
single formula for the emission frequency of the form 

and = unn, + ow, - vfun. 

+J( a, + an.) +J2( a, - a,.), 

where j ranges over both positive and negative integer values. 
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Figute ZZ.9 titre width 4s a fmction of density for emission fmm a medim of 
diatomic molecules. 

11.4-Derive an expression for the J value and frequency of the band 
head in electronic-vibrational-rotational transitions, give the criteria for 
whether the band head occurs in the R or P branch, and give the criteria 
for whether the frequency of the band head lies above or below the band 
origin. 

11.5-Show that the Q branch in electronic-vibrational-rotational transi- 
tions does not have a true band head but may have the observed ap- 
pearance of one under certain conditions. 

11.6-For the situation described in Probiem 11.1, estimate, in terms of 
fundamental constants, the range in T over which purely rotational emis- 
sion lines will be observed from a substantial fraction of the molecules. 
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