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Figure 7.1 Geometry for scattering of a photon by an electron initially at rest.
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Figure 7.2 Scattering geometries in the observer’s frame K and in the electron
rest frame K'.
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Fig. 3. The scattering geometry, in the frame of rest of the electron before the interaction. An incoming photon, at angle
0 relative to the x. axis, is deflected by angle ¢,, and emerges after the scattering at angle 0" with almost unchanged
energy (Eq. (21)). In the observer’s frame, where the electron is moving with velocity fc along the x. axis, the photon
changes energy by an amount depending on f and the angles 6 and 6" (Eq. (29)).
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Fig. 4. The scattering probability function P(s;f), for = 0.01, 0.02, 0.05, 0.10, 0.20, and 0.50. The function becomes
increasingly asymmetric and broader as f increases.
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Fig. 5. The scattering kernel, P(s), for gases at 5.1 and 15.3keV. The solid line shows the scattering kernels calculated
according to Eq. (33), as derived by Rephaeli (1995a). The dotted line indicates the scattering kernels as calculated by
Sunyaev (1980), based on the results of Babuel-Payrissac and Rouvillois (1969).
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Fig. 6. The scattering kernel, P,(s), for a power-law electron distribution with energy index o = 2.5 (see Eq. (37)). The
stronger upscattering tail here, relative to Fig. 5, is caused by the higher proportion of fast electrons in distribution (37)
than (35).
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Fig. 7. The spectral deformation caused by inverse-Compton scattering of an incident Planck spectrum after a single
scattering from a thermal population of electrons as a function of dimensionless frequency x = hv/kgT,.q =
0.0176(v/GHz), with scaling I, = (2h/c*)(ksT,.q/h)’. Left, for electrons at kzT.= 5.1keV; right for electrons at
kgT. = 15.3keV. The result obtained from the Kompaneets kernel is shown as a dotted line. The shape of the distortion
1s independent of T, (and the amplitude is proportional to T',) for the Kompaneets kernel, but the relativistic expression

leads to a more complicated form.
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Fig. 8. The fractional spectral deformation caused by inverse-Compton scattering of an incident Planck spectrum by
a single scattering from a power-law population of electrons with o = 2.5 (Eq. (37)). The spectral deformation has
a similar shape to that seen in Fig. 7, but with a deeper minimum and more extended tail. This arises from the larger
frequency shifts caused by the higher Lorentz factors of the electrons (see Fig. 6).
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Fig. 9. The variation of the positions of the minimum, zero, and maximum of the spectrum of the thermal
Sunyaev—Zel'dovich effect, Al(x), as the electron temperature varies. The positions of the spectral features are described
by the dimensionless frequency x = hv/kyT,.q. and the electron temperature is characterized by @ = kyT./m.c”.
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‘ See lectures by R. Sunyaev ‘
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Inverse Compton & thermal SZ {
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The thermal SZ effect
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Fig. 12. The geometry for the discussion of the kinematic Sunyaev—Zel’dovich efiect, as seen in the frame of an observer
at rest in the Hubble flow.
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