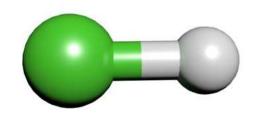
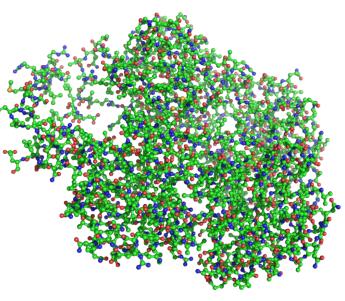
Molecole


Alcuni elementi si trovano in natura come specie monoatomiche: è il caso dei gas nobili He, Ne, Ar, Kr e Xe.


In altri casi, un atomo di lega ad un altro per formare una molecola biatomica: è il caso di H_2 , N_2 , O_2 , F_2 , Cl_2 , Br_2 e l_2 .

La molecola è definita come la più piccola unità di una sostanza chimica che mantiene inalterata la composizione e le proprietà della sostanza stessa.

La molecola è formata da un numero finito di atomi, legati assieme in modo specifico.

Una molecola può avere un numero variabile di atomi di elementi diversi. Esistono molecole formate da due soli atomi, ad esempio la molecola di ossigeno O₂, oppure il cloruro di idrogeno (o acido cloridrico, HCl), e molecole formate da un altissimo numero di atomi, come le proteine o il DNA.

Formule chimiche

Rappresentazione simbolica di atomi, molecole e ioni.

Ciascun atomo ha un simbolo, indicato nella tavola periodica.

K
P

C₁₂H₂₂O₁₁ Ciascuna formula contiene due tipi di informazioni: il tipo e il numero di atomi contenuti in una singola molecola.

Nel caso di ioni, la rappresentazione simbolica include la carica dello ione.

Esempi:

 $C_9H_{13}NO_3$ rappresenta l'ormone adrenalina, la cui molecola è costituita da 9 atomi di carbonio, 13 atomi di idrogeno, un atomo di azoto e 3 atomi di ossigeno.

 $C_{11}H_{12}N_2O_2$ rappresenta una molecola di triptofano, un amminoacido, costituita da 11 atomi di carbonio, 12 di idrogeno, 2 di azoto e 2 di ossigeno.

Formula molecolare (o bruta): per una molecola, rappresenta l'esatto numero di atomi presenti nella molecola.

 $C_6H_{12}O_6$

Formula minima (o empirica): non indica l'esatto numero di atomi presenti nella molecola, ma il rapporto tra gli elementi chimici.

CH₂O

Formula di struttura: indica le connessioni presenti tra gli atomi della molecola. Alcune formule di struttura rappresentano anche la struttura tridimensionale del

Isomeri: molecole con la stessa formula molecolare ma diversa formula di struttura.

e

 C_2H_6O

Esempio:

etanolo

etere dimetilico

Sali

I sali sono composti formati da cationi (ioni positivi) e anioni (ioni negativi), non da molecole. Uno ione è un atomo o un gruppo di atomi che ha una carica elettica.

La rappresentazione simbolica per un sale, detta unità formula, rappresenta il rapporto tra ioni positivi e negativi. In questo caso, il catione viene riportato prima dell'anione. E' importante che la carica complessiva dell'unità formula del sale sia zero: per ottenere questo risultato, le cariche positive e le cariche negative devono essere in egual numero.

Esempi:

 $Ca(NO_3)_2$ è un sale formato dagli ioni Ca^{2+} e NO_3^- . Per bilanciare la carica, per ciascuno ione Ca^{2+} devono essere presenti 2 ioni NO_3^- . Per ciascun atomo di calcio sono presenti 2 atomi di azoto e 6 di ossigeno.

$$Na_2SO_4$$
 $Al_2(CO_3)_3$ $Ca(H_2PO_4)_2$ Na^+/SO_4^{2-} Al^{3+}/CO_3^{2-} $Ca^{2+}/H_2PO_4^{-}$

Massa molecolare

La massa di molecole poliatomiche può essere calcolata come massa degli atomi che le compongono.

Ad esempio: la molecola H_3AsO_4 è costituita da 3 atomi di idrogeno, uno di arsenico e 4 di ossigeno, quindi la sua massa sarà data dalla somma:

$$MM = 3 \cdot MA_H + MA_{AS} + 4 \cdot MA_O =$$

= $3 \cdot 1.01 \ u.m. \ a. +74.92 \ u.m. \ a. +4 \cdot 16.00 \ u.m. \ a.$
= $141.95 \ u.m. \ a.$

Per i sali, si calcola allo stesso modo la **massa formula**, o massa dell'unità formula.

In alcuni casi è presente nella formula del sale anche una certa quantità di acqua di cristallizzazione (ad esempio: $CuSO_4 \cdot 5H_2O$). In questo caso la massa del composto deve essere calcolata tenendo conto della presenza delle molecole d'acqua, la cui massa deve essere sommata a quella del sale.

Nomenclatura

Per identificare in modo univoco un composto chimico, è importante avere un sistema che consente di attribuire a ciascun composto un nome.

Esistono diversi tipi di nomenclatura, per diversi tipi di composti:

- Nomenclatura **organica**: per composti del carbonio.
- Nomenclatura **inorganica**: comprende i composti che non contengono carbonio e alcuni composti semplici del carbonio (diossido di carbonio, carbonati)

Per dare un nome sistematico e facile da ricavare a ciascun composto, l'organizzazione internazionale IUPAC (International Union of Pure and Applied Chemistry) ha definito una serie di regole. Oltre alla nomenclatura IUPAC, rimangono alcuni nomi tradizionali, molto usati nel lavoro quotidiano.

In alcuni casi è utile anche indicare lo stato (o numero) di ossidazione di un elemento in un composto mediante la **notazione di Stock**, in cui il numero di ossidazione è indicato tra parentesi come numero romano.

Il numero di atomi di un elemento viene indicato con prefissi che derivano dal greco: *mono-, di-, tri-, tetra-, penta-, esa-, epta-...*

Regole per attribuire il numero di ossidazione agli atomi di una molecola o di un sale:

1. Una sostanza allo stato elementare ha numero di ossidazione 0.

Esempio: Fe (n.o. = 0), $O_2(0)$, $Cl_2(0)$, $O_3(0)$, $S_8(0)$...

2. Il numero di ossidazione di uno ione monoatomico è pari alla carica dello ione. metalli alcalini (gruppo 1A) hanno numero di ossidazione +1, i metalli alcalinoterrosi (gruppo 2A) hanno numero di ossidazione +2.

Esempio: Na⁺ (n.o. = +1), Cu^{2+} (+2), Al^{3+} (+3), Cl^{-} (-1), S^{2-} (-2)

- 3. L'ossigeno ha numero di ossidazione –2 in tutti i composti tranne i perossidi (-1), i superossidi (-1/2) e il composto OF_2 (+2).
- **4.** L' idrogeno ha numero di ossidazione +1, tranne che negli idruri (-1).
- 5. La somma dei numeri di ossidazione in una specie è uguale alla carica della specie: 0 se la specie è una molecola neutra oppure pari alla carica dello ione.

Esempi:

$$+6 -2$$
 $| n.o.(O) = -2 | 3 |$ $| (NH_4)_3 PO_4 | \rightarrow 3 | NH_4 + PO_4^{3-1} |$ $| n.o.(S) + 4 | s.o.(O) = -2 |$ $| n.o.(N) + 4 | s.o.(H) = +1 |$ $| n.o.(P) + 4 |$ $| n.o.(P) = -3 |$ $| n.o.(P) = -3 |$ $| n.o.(P) = -5 |$ $| n.o.(P) =$

$$(N) = 10^{-3} + 10^{-1}$$

Regole per attribuire il numero di ossidazione agli atomi di una molecola o di un sale:

1. Una sostanza allo stato elementare ha numero di ossidazione 0.

Esempio: Fe (n.o. = 0), $O_2(0)$, $Cl_2(0)$, $O_3(0)$, $S_8(0)$...

2. Il numero di ossidazione di uno ione monoatomico è pari alla carica dello ione. I metalli alcalini (gruppo 1A) hanno numero di ossidazione +1, i metalli alcalinoterrosi (gruppo 2A) hanno numero di ossidazione +2.

Esempio: Na⁺ (n.o. = +1), Cu²⁺ (+2), Al³⁺ (+3), Cl⁻ (-1), S²⁻ (-2)

- 3. L'ossigeno ha numero di ossidazione –2 in tutti i composti tranne i perossidi (-1), i superossidi (-1/2) e il composto OF₂ (+2).
- 4. L' idrogeno ha numero di ossidazione +1, tranne che negli idruri (-1).
- 5. La somma dei numeri di ossidazione in una specie è uguale alla carica della specie: 0 se la specie è una molecola neutra oppure pari alla carica dello ione.

Esempi:

$$N_2^{+3}O_3^{-2}$$
 $\frac{\text{n.o.(O)} = -2}{\text{n.o.(N)} = +3}$ CIO_3^{-1} $\frac{\text{n.o.(O)} = -2}{\text{n.o.(CI)} = +5}$ $N_2^{+7}O_4^{-2}$ N_3^{-2} $N_$

Cationi monoatomici

I cationi monoatomici, formati da metalli, sono chiamati con il nome dell'elemento.

Formula	Nome IUPAC	Formula	Nome IUPAC
Na ⁺	lone sodio	Fe ³⁺	Ione ferro (III)
K ⁺	Ione potassio	NH ₄ ⁺	Ione ammonio
Zn ²⁺	lone zinco	H ₃ O ⁺	Ione ossonio

Anioni monoatomici

Gli anioni monoatomici prendono la desinenza -uro (eccetto ossigeno).

Formula	Nome IUPAC	Formula	Nome IUPAC
H-	lone idr <u>uro</u>	S ²⁻	Ione solf <u>uro</u>
Cl-	Ione clor <u>uro</u>	O ₂ ²⁻	Ione perossido
F-	Ione fluor <u>uro</u>	O ₂ -	Ione superossido
Br-	lone brom <u>uro</u>	OH-	Ione idrossido
l-	lone iod <u>uro</u>	CN-	Ione cianuro

Composti binari (composti di 2 specie atomiche)

Composto più elettronegativo (il secondo nella formula) prende la desinenza -uro, a parte che per i composti di ossigeno che sono ossidi.

1. Idruri: idrogeno con metallo

Formula	Nome IUPAC	Formula	Nome IUPAC
NaH	Idr <u>uro</u> di sodio	CaH ₂	Diidr <u>uro</u> di calcio
KH	Idr <u>uro</u> di potassio	FeH ₂	Diidr <u>uro</u> di ferro

2. Idracidi: idrogeno con non-metallo

Formula	Nome IUPAC	Formula	Nome IUPAC
HF	Fluor <u>uro</u> di idrogeno*	NH ₃	Ammoniaca
HCl	Clor <u>uro</u> di idrogeno*	PH ₃	Fosfina
HBr	Brom <u>uro</u> di idrogeno*	CH ₄	Metano
HI	lod <u>uro</u> di idrogeno*	N_2H_4	Idrazina
H ₂ S	Solf <u>uro</u> di diidrogeno*		

^{* &}lt;u>Se in soluzione</u> vengono indicati come acido fluor<u>idrico</u> (HF), acido clor<u>idrico</u> (HCl), acido brom<u>idrico</u> (HBr), acido iodidrico (HI) e acido solf<u>idrico</u> (H₂S). A questi si aggiunge anche l'acido cian<u>idrico</u>, HCN.

Composti binari

3. Ossidi di metalli (ossidi basici)

Formula	Nome IUPAC/Stock	Formula	Nome IUPAC/Stock
Na ₂ O	Ossido di (di)sodio	MgO	Ossido di magnesio
CaO	Ossido di calcio	MnO	Ossido di manganese (II)
Cu ₂ O	Ossido di dirame/Ossido di rame (I)	FeO	Ossido di ferro/Ossido di ferro (II)
CuO	Ossido di rame/Ossido di rame (II)	Fe ₂ O ₃	Triossido di diferro/Ossido di ferro (III)

4. Ossidi di non-metalli (ossidi acidi)

Formula	Nome IUPAC/Stock	Formula	Nome IUPAC/Stock
CO ₂	Diossido di carbonio	SO ₂	Diossido di zolfo/Ossido di zolfo (IV)
N_2O_3	Triossido di diazoto	P_2O_5	Pentossido di difosforo
N_2O_4	Tetraossido di diazoto	OF ₂	Difluoruro di ossigeno
SO ₃	Triossido di zolfo/Ossido di zolfo (VI)	H ₂ O	Acqua

Composti binari

5. Perossidi: ossigeno con stato di ossidazione -1 (ione perossido) con metallo

Formula	Nome IUPAC	Formula	Nome IUPAC
H ₂ O ₂	Perossido di diidrogeno (acqua ossigenata)	K ₂ O ₂	Perossido di dipotassio
Na_2O_2	Perossido di disodio	CaO ₂	Perossido di calcio

6. Superossidi: ossigeno con stato di ossidazione -1/2 (ione superossido) con metallo

Formula	Nome IUPAC	Formula	Nome IUPAC
NaO ₂	Superossido di sodio	KO ₂	Superossido di potassio

Composti binari

7. Sali binari: metallo come ione positivo (catione) + non-metallo come ione negativo (anione)

Formula	Nome IUPAC/Stock	Formula	Nome IUPAC/Stock
Nal	lod <u>uro</u> di sodio	Fe ₂ S ₃	Trisolf <u>uro</u> di diferro/Solf <u>uro</u> di ferro (III)
CoCl ₂	Clor <u>uro</u> di cobalto (II)	CaF ₂	Difluor <u>uro</u> di calcio

8. Composti di non metalli

Formula	Nome IUPAC/Stock	Formula	Nome IUPAC/Stock
PCI ₅	Pentaclor <u>uro</u> di fosforo	SF ₆	Esafluor <u>uro</u> di zolfo
OF ₂	Difluor <u>uro</u> di ossigeno	B_2Br_4	Tetrabrom <u>uro</u> di diboro

Quando nei composti binari è presente un metallo che possa assumere diversi stati di ossidazione, la nomenclatura tradizionale assegna al nome del metallo il suffisso -ico per lo stato di ossidazione maggiore e -oso per lo stato di ossidazione minore.

Formula	Nome tradizionale	Formula	Nome tradizionale
CuCl	Cloruro rame <u>oso</u>	Fe ₂ S ₃	Solfuro ferr <u>ico</u>
CuCl ₂	Cloruro rame <u>ico</u>	FeS	Solfuro ferr <u>oso</u>

Composti ternari (composti di 3 specie atomiche) Idrossidi

Formalmente formati da uno ione metallico (positivo) con tanti ioni idrossido (OH^-) , con una carica negativa) quante sono le cariche positive del catione. Oppure possono essere considerati come derivati dall'aggiunta di acqua ad un ossido di un metallo:

$$Fe_2O_3 + 3H_2O \rightarrow 2Fe(OH)_3$$

 $CaO + H_2O \rightarrow Ca(OH)_2$

Formula	Nome IUPAC/Stock	Nome tradizionale
NaOH	Idrossido di sodio	Idrossido di sodio
КОН	Idrossido di potassio	Idrossido di potassio
Ca(OH) ₂	Diidrossido di calcio	Idrossido di calcio
Mg(OH) ₂	Diidrossido di magnesio	Idrossido di magnesio
Fe(OH) ₂	Diidrossido di ferro/idrossido di ferro (II)	Idrossido ferroso
Fe(OH) ₃	Triidrossido di ferro/idrossido di ferro (III)	Idrossido ferrico
Pb(OH) ₂	Diidrossido di piombo/idrossido di piombo (II)	Idrossido piomboso
Pb(OH) ₄	Tetraidrossido di piombo/idrossido di piombo (IV)	Idrossido piombico

Ossiacidi

Formalmente derivati dalla reazione tra l'ossido di un non-metallo e l'acqua:

$$SO_3 + H_2O \rightarrow H_2SO_4$$

 $P_2O_5 + \mathbf{1} H_2O \rightarrow 2 HPO_3$ (meta)
 $P_2O_5 + \mathbf{2} H_2O \rightarrow H_4P_2O_7$ (piro)
 $P_2O_5 + \mathbf{3} H_2O \rightarrow 2 H_3PO_4$ (orto)

Formula	Nome IUPAC	Nome tradizionale
HNO ₃	Acido triossonitrico	Acido nitrico
HNO ₂	Acido diossonitrico	Acido nitroso
H ₂ CO ₃	Acido triossocarbonico	Acido carbonico
H_2SO_4	Acido tetraossosolforico	Acido solforico
$H_2S_2O_3$	Acido triossodisolforico	Acido tio solforico
H_3PO_4	Acido tetraosso(orto)fosforico	Acido (orto)fosforico
H ₃ AsO ₄	Acido tetraosso(orto)arsenico	Acido (orto)arsenico
H_3BO_3	Acido triosso(orto)borico	Acido (orto)borico
H ₂ SO ₃	Acido triossosolforico	Acido solforoso

Formula	Nome IUPAC	Nome tradizionale
H_3PO_3	Acido triossofosforico	Acido fosfonico
H_3PO_2	Acido diossofosforico	Acido fosfinico
HCIO	Acido monoossoclorico	Acido ipo clor oso
HCIO ₂	Acido diossoclorico	Acido clor oso
HClO ₃	Acido triossoclorico	Acido clor ico
HClO ₄	Acido tetraossoclorico	Acido per clor ico
HBrO	Acido monoossobromico	Acido ipo brom oso
HBrO ₄	Acido tetraossobromico	Acido per brom ico
HIO	Acido monoossoiodico	Acido ipo iod oso
HIO ₄	Acido tetraossoiodico	Acido per iod ico
$HMnO_4$	Acido tetraossomanganico	Acido permanganico
H ₂ CrO ₄	Acido tetraossocromico	Acido cromico
$H_2Cr_2O_7$	Acido eptaossodicromico	Acido dicromico

Quando il non metallo può assumere più di 2 diversi stati di ossidazione, la nomenclatura tradizionale assegna:

- il prefisso *per-* e il suffisso *-ico* allo stato di ossidazione maggiore
- il prefisso *ipo* e il suffisso *-oso* allo stato di ossidazione minore.

Anioni derivati da acidi ossigenati

Formalmente, gli anioni dei sali ossigenati possono essere ottenuti rimuovendo ioni H⁺ dall'acido da cui derivano. L'anione che rimane ha tante cariche negative quanti sono gli ioni positivi rimossi.

Formula	Nome IUPAC	Nome tradizionale
NO ₃ -	Ione triossonitrato	Ione nitr ato
NO ₂ -	Ione diossonitrato	Ione nitr ito
CO ₃ ²⁻	Ione triossocarbonato	Ione carbonato
SO ₄ ²⁻	Ione tetraossosolfato	Ione solfato
S ₂ O ₃ ²⁻	Ione triossodisolfato	Ione tiosolfato
PO ₄ ³⁻	Ione tetraosso(orto)fosfato	Ione (orto)fosfato
CIO-	Ione monoossoclorato	Ione ipoclorito
ClO ₂ -	Ione diossoclorato	Ione clorito
ClO ₃ -	Ione triossoclorato	Ione clorato
ClO ₄ -	Ione tetraossoclorato	Ione perclorato

Formula	Nome IUPAC	Nome tradizionale
CrO ₄ ²⁻	Ione tetraossocromato	Ione cromato
Cr ₂ O ₇ ²⁻	Ione eptaossodicromato	Ione dicromato
HPO ₃ ²⁻	Ione idrogeno-triossofosfato	Ione fosfonato
H ₂ PO ₂ -	Ione diidrogeno-diossofosfato	Ione fosfinato
AsO ₄ ³⁻	Ione tetraosso(orto)arseniato	Ione (orto)arseniato
BO ₃ ³⁻	Ione triosso(orto)borato	Ione (orto)borato
SO ₃ ²⁻	Ione triossosolfato	Ione solfito
BrO⁻	Ione monoossobromato	Ione ipobromito
BrO ₄ -	Ione tetraossobromato	Ione perbromato
IO ⁻	Ione monoossoiodato	Ione ipoiodito
1O ₄ -	Ione tetraossoiodato	Ione periodato
MnO ₄ -	Ione tetraossomanganato	Ione permanganato

Sali di ossiacidi

Formati da un catione metallico e un anione derivato da un ossiacido.

Formula	Nome IUPAC	Nome tradizionale
Na ₂ CO ₃	Sodio triosso-carbonato	Carbonato di sodio
$Cu(NO_3)_2$	Rame (II) triosso-nitrato	Nitrato rameico
$Al_2(SO_4)_3$	Alluminio tetraossosolfato	Solfato di alluminio
NH ₄ ClO ₄	Tetraosso-clorato di ammonio	Perclorato d'ammonio
$Na_2S_2O_3$	Sodio triosso-disolfato	Tiosolfato di sodio

Sali idrati

I composti idrati sono composti ionici (in genere sali) che formano cristalli contenenti molecole d'acqua in proporzione definita. Il nome del sale idrato si indica utilizzando il nome del sale seguito dal termine idrato preceduto dal prefisso che indica il numero di molecole d'acqua contenute in ciascuna unità formula.

Esempi: $CuSO_4 \cdot 5 H_2O$ solfato rameico pentaidrato $CrCl_3 \cdot 6 H_2O$ cloruro di cromo esaidrato

Un sale idrato che perde l'acqua di idratazione dà luogo al sale anidro.

Anioni di sali acidi

Dissociazione incompleta dell'acido (poliprotico) da cui l'anione deriva:

$$H_2SO_4 \rightarrow HSO_4^- + H^+$$

 $H_2S \rightarrow HS^- + H^+$

Formula	Nome IUPAC	Nome tradizionale
HCO ₃ -	Idrogeno-triosso-carbonato (IV)	Carbonato acido, bicarbonato
HSO ₄ -	Idrogeno-tetraosso-solfato (VI)	Solfato acido
HSO ₃ -	Idrogeno-triosso-solfato (IV)	Solfito acido
H ₂ PO ₄ -	Diidrogeno-tetraosso-fosfato (V)	Fosfato biacido
HPO ₄ ²⁻	Idrogeno-tetraosso-fosfato (V)	Fosfato acido
HS-	Idrogeno-solfuro	Solfuro acido
HSe ⁻	Idrogeno-selenuro	Selenuro acido

Qualche esempio:

 Na_2HPO_4 : fosfato acido di sodio, o idrogenotetraossofosfato (V) di disodio $Cu(HS)_2$: solfuro acido rameico, o idrogeno solfuro di rame (II)

- Idruri (metallo + H)
- Idracidi (H + non-metallo)
- Ossidi basici (metallo + O)
- Ossidi acidi (non-metallo + O)
- Perossidi (formati dallo ione O₂²⁻)
- Superossidi (formati dallo ione O₂⁻) - Sali binari Composti di non metalli Composti quaternari → Sali acidi Sali idrati

Formula	Nome IUPAC	Nome tradizionale
NaHCO ₃		
CaF ₂		
AIPO ₄		
Ba(CIO) ₂		
(NH ₄) ₂ SO ₄		
KHS		
KMnO ₄		
Al ₂ S ₃		
MgO		
CuSO ₄		
KCN		
Ni(OH) ₂		
HBr		
Fe(BrO ₂) ₂		
NaH		

Formula	Nome IUPAC	Nome tradizionale
NaHCO ₃	Idrogeno-triosso-carbonato (IV) di sodio	Bicarbonato di sodio
CaF ₂	Fluoruro di calcio	Fluoruro di calcio
AIPO ₄	Triosso(orto)fosfato di alluminio	(Orto)fosfato di alluminio
Ba(CIO) ₂	Monossoclorato di bario	Ipoclorito di bario
(NH ₄) ₂ SO ₄	Tetraossosolfato di ammonio	Solfato d'ammonio
KHS	Idrogenosolfuro di potassio	Solfuro acido di potassio
KMnO ₄	Tetraossomanganato di potassio	Permanganato di potassio
Al ₂ S ₃	Solfuro di alluminio	Solfuro di alluminio
MgO	Monossido di magnesio	Ossido di magnesio
CuSO ₄	Tetraossosolfato di rame (II)	Solfato rameico
KCN	Cianuro di potassio	Cianuro di potassio
Ni(OH) ₂	Diidrossido di nichel	Idrossido nicheloso
HBr	Bromuro di idrogeno	Acido bromidrico
Fe(BrO ₂) ₂	Diossobromato di ferro (II)	Bromito ferroso
NaH	ldruro di sodio	Idruro di sodio

Formula	Nome IUPAC	Nome tradizionale
	Dicloruro di stronzio (II)	
		Fosfato di calcio
	Acido tetraossosolforico	
		Ipoclorito di calcio
	Eptaossodicromato di sodio	
		Idruro di bario
_	Triossonitrato di argento	
		loduro titanico
	Esaossido di tetrafosforo	
		Bromato stannico
	Idrogenotetraosso(orto)fosfato di potassio	
_		Idrossido titanioso
	Diossonitrato di ammonio	
	-	Solfato acido di calcio
	Superossido di sodio	

Formula	Nome IUPAC	Nome tradizionale
SrCl ₂	Dicloruro di stronzio (II)	Cloruro di stronzio
Ca ₃ (PO ₄) ₂	Tetraosso(orto)fosfato di calcio	Fosfato di calcio
H ₂ SO ₄	Acido tetraossosolforico	Acido solforico
Ca(CIO) ₂	Monossoclorato di calcio	Ipoclorito di calcio
Na ₂ Cr ₂ O ₇	Eptaossodicromato di sodio	Dicromato di sodio
BaH ₂	Idruro di bario	Idruro di bario
AgNO ₃	Triossonitrato di argento	Nitrato di argento
Til ₄	loduro di titanio (IV)	loduro titanico
P_4O_6	Esaossido di tetrafosforo	
Sn(BrO ₃) ₄	Triossobromato di stagno (IV)	Bromato stannico
K ₂ HPO ₄	Idrogenotetraosso(orto)fosfato di potassio	Fosfato acido di potassio
Ti(OH) ₂	Diidrossido di titanio	Idrossido titanioso
NH ₄ NO ₂	Diossonitrato di ammonio	Nitrito di ammonio
Ca(HSO ₄) ₂	Idrogenotetraossosolfato di calcio	Solfato acido di calcio
NaO ₂	Superossido di sodio	Superossido di sodio

Nomenclatura dei composti organici

<u>Idrocarburi</u> (composti binari di **C/H**)

- Alcani con formula C_nH_{2n+2}, si indicano con il suffisso -ano
 Esempi: CH₄ metano, C₂H₆ etano, C₃H₈ propano, C₄H₁₀ butano...
 Alcheni con formula C_nH_{2n}, si indicano con il suffisso -ene
 Esempi: C₂H₄ etene (etilene), C₃H₆ propene, C₄H₈ butene...
 Alchini con formula C_nH_{2n-2}, si indicano con il suffisso -ino
 Esempi: C₂H₂ etino (acetilene), C₃H₄ propino...

> Aromatici C_6H_6 benzene

Alcoli (composti ternari di **C/H/O** che contengono il gruppo -OH)

Il nome viene formato utilizzando il suffisso -olo. La formula in genere è scritta in modo da sottolineare la presenza del gruppo -OH.

Esempi: CH_3OH metanolo (o alcol metilico), C_2H_5OH etanolo (o alcol etilico)

(segue)

Acidi carbossilici (composti ternari di C/H/O che contengono il gruppo -COOH)

Il nome viene formato utilizzando il suffisso -oico. La formula è scritta in modo da sottolinare la presenza del gruppo -COOH.

Esempi: HCOOH acido metanoico (o acido formico), CH_3COOH acido etanoico (o acido acetico), C_2H_5COOH acido propanoico.

Eteri (composti ternari di C/H/O che contengono il frammento C-O-C)

Esempi: CH_3OCH_3 etere dimetilico (o etere metilico), $CH_3OC_2H_5$ etere metiletilico, $C_2H_5OC_2H_5$ etere dietilico (o etere etilico).

Chetoni (composti ternari di C/H/O che contengono il frammento -C=O)

Il nome viene formato utilizzando il suffisso -one.

Esempio: CH_3COCH_3 propanone (o acetone).

Aldeidi (composti ternari di C/H/O che contengono il frammento -CHO)

Il nome viene formato utilizzando il suffisso -ale.

Esempio: CH_3CHO etanale (o acetaldeide), CH_3CH_2CHO propanale (o propionaldeide).

(segue)

Ammine (composti ternari di **C/H/N** che contengono il gruppo -NH₂)

Il nome viene formato utilizzando il suffisso -*ammina*. La formula è scritta in modo da sottolinare la presenza del gruppo - NH_2 .

Esempi: CH_3NH_2 metilammina, $C_2H_5NH_2$ etilammina.

Alogenoalcani (composti ternari di **C/H/X** dove X è un alogeno, cioè fluoro, cloro, bromo o iodio)

Il nome viene formato anteponendo al nome dell'alcano il nome dell'alogeno, o indicando l'alogeno con il suffisso -uro (nome tradizionale).

Esempi: CH₃Cl clorometano (cloruro di metile),

CH₃Br bromometano (bromuro di metile),

CHCl₃ triclorometano (o cloroformio),

*CCl*₄ tetraclorometano (tetracloruro di carbonio).