ESERCIZI

Esercizio 1:

Calcolare la temperatura normale di ebollizione di una soluzione acquosa contenente 1.95 g glicole etilenico, $C_2H_6O_2$, non volatile ed indissociato, in 175 mL di H_2O (d = 0.996 g/mL). La temperatura normale di ebollizione dell'acqua è 100.00°C e la costante ebullioscopica molale è 0.512°C·kg/mol. [100.09°C]

Esercizio 2:

Determinare la formula molecolare del Selenio, sapendo che una soluzione ottenuta da 0.808 g di selenio in 90.5 g di benzene presenta un abbassamento crioscopico di 0.069°C. La K_{cr} del benzene 4.88°C·kg/mol. [Se₈]

Esercizio 3:

Determinare la temperatura a cui una soluzione contenente 0.705 g di glucosio ($C_6H_{12}O_6$) in 100.0 mL di soluzione è isotonica con una soluzione in cui sono contenuti 1.59 g di glicerolo ($C_3H_8O_3$) in acqua, in modo da avere $4.50\cdot10^2$ mL di soluzione alla temperatura di 25.0° C. [19.2°C]

Esercizio 4:

Il cloruro di calcio, $CaCl_2 \cdot 2H_2O$, si dissocia completamente in acqua negli ioni che lo compongono. Calcolare la pressione osmotica a 32.0°C di una soluzione di concentrazione molale 0.800 mol/kg di $CaCl_2 \cdot 2H_2O$, sapendo che la densità della soluzione è 1066 g/L. [57.3 atm]

Esercizio 5:

Determinare il volume di etanolo C_2H_6O (d=0.790 g/mL) che, addizionato a 258 mL di acqua (d=0.996 g/mL), dà 302 mL di soluzione avente densità 0.979 g/mL. [Attenzione: in questo caso NON è possibile approssimare considerando i volumi additivi.] Calcolare inoltre la molarità della soluzione e le percentuali in volume dei due componenti. [49.0 mL; 2.78 mol/L; 16.2%; 85.4%]

Esercizio 6:

Calcolare le concentrazioni molale e molare di una soluzione acquosa di NaCl, soluto completamente dissociato, che presenta lo stesso abbassamento crioscopico di una soluzione di glucosio $C_6H_{12}O_6$ al 5.80% in peso. La soluzione acquosa di NaCl ha una densità di 1.005 g/mL. Per l'acqua, Kcr = 1.86°C kg/mol.

[0.171 mol/kg; 0.170 mol/L]