
Unit 2
OS and Tools

Alberto Casagrande
Email: acasagrande@units.it

A.Y. 2021/2022

As Programmers . . .

we are interested in:

reading data from an input device

implementing functions to operate on data sets

providing results to an output device

As Programmers . . .

we are NOT interested in:

how the I/O devices work

where the data are physically stored in memory

how our programs will be executed

. . .

We need an abtraction layer between HW and programs

We need an Operating System

As Programmers . . .

we are NOT interested in:

how the I/O devices work

where the data are physically stored in memory

how our programs will be executed

. . .

We need an abtraction layer between HW and programs

We need an Operating System

As Programmers . . .

we are NOT interested in:

how the I/O devices work

where the data are physically stored in memory

how our programs will be executed

. . .

We need an abtraction layer between HW and programs

We need an Operating System

Operating Systems

Software that manage resources

memory

disks

CPUs

. . .

Provide interfaces for programs (Application
Programming Interface aka API) and users

There exist hundreds of operating systems e.g., Windows, macOS,
BeOS, GNU/Linux, iOS, Android, ReactOS

Operating Systems

Software that manage resources

memory

disks

CPUs

. . .

Provide interfaces for programs (Application
Programming Interface aka API) and users

There exist hundreds of operating systems e.g., Windows, macOS,
BeOS, GNU/Linux, iOS, Android, ReactOS

POSIX standard

Is a IEEE standard about:

Process (i.e., programs in execution) creation and control

File and directory operations

C library

I/O port interface and control

Command interpreter

Standard utility and command

. . .

macOS is POSIX-certified, Windows is not POSIX compliant.

POSIX standard

Is a IEEE standard about:

Process (i.e., programs in execution) creation and control

File and directory operations

C library

I/O port interface and control

Command interpreter

Standard utility and command

. . .

macOS is POSIX-certified, Windows is not POSIX compliant.

GNU/Linux

Is a free (as in speach) OS.

Linux is the core

GNU is a project that provides tools and command, e.g., GNU
C Compiler - GCC

There exist many different distributions. They customize:

installer

software manager

additional software

POSIX compliant, but not certificate (freedom has a price)

GNU/Linux

Is a free (as in speach) OS.

Linux is the core

GNU is a project that provides tools and command, e.g., GNU
C Compiler - GCC

There exist many different distributions. They customize:

installer

software manager

additional software

POSIX compliant, but not certificate (freedom has a price)

GNU/Linux

Is a free (as in speach) OS.

Linux is the core

GNU is a project that provides tools and command, e.g., GNU
C Compiler - GCC

There exist many different distributions. They customize:

installer

software manager

additional software

POSIX compliant, but not certificate (freedom has a price)

GNU/Linux

You will extensively use GNU/Linux during DSSC program (but
macOS is fine)

Let’s see how to install it and use it

We will focus on Ubuntu distribution (not the “best”, but
user-friendly)

GNU/Linux

You will extensively use GNU/Linux during DSSC program (but
macOS is fine)

Let’s see how to install it and use it

We will focus on Ubuntu distribution (not the “best”, but
user-friendly)

How to install Ubuntu

We need:

1 a PC or an Intel Mac with a USB port

2 16GB of free disk space

3 a USB key (at least 2GB)

4 a network connection

or

1 a PC running a virtualization environment, e.g., VirtualBox

2 16GB of free disk space

3 a network connection

https://www.virtualbox.org/

How to install Ubuntu

We need:

1 a PC or an Intel Mac with a USB port

2 16GB of free disk space

3 a USB key (at least 2GB)

4 a network connection

or

1 a PC running a virtualization environment, e.g., VirtualBox

2 16GB of free disk space

3 a network connection

https://www.virtualbox.org/

How to install Ubuntu

If you have a M1 Mac you can only install it as a Virtual Machine

1 a virtualization environment, e.g., UTM

2 16GB of free disk space

3 a network connection

https://mac.getutm.app

How to install Ubuntu

If you opt for a “real” installation, you need to:

download Ubuntu

download and install Etcher

prepare a bootable USB Live key by using Etcher

reboot your PC and select the USB key ad boot device

follow the instructions (pay attention and do not delete your
OS!!!)

https://www.ubuntu.com/#download
https://etcher.io/

How to install Ubuntu

If you opt for a “virtual” installation, you need to:

download Ubuntu

download and install your preferred virtual environment

create your VM

attach the Ubuntu ISO to your VM and boot from it

follow the instructions (don’t worry about messing up with the
VM’s disk)

https://www.ubuntu.com/#download

How to install Ubuntu

Demo session

Users in Modern OS

Modern OS are multi-users, i.e., they support many users on the
same system

Every user has a reserved disk space (dubbed home in POSIX)
where they can store personal data and program

So, after the boot, the system asks for a username and a password

Say “Hello” to Command Line

Ubuntu has a fully functional Graphical User Interface (GUI)

We will use the Command-Line user Interface (a.k.a. shell)
because it’s:

easier to use (for experts)

powerful

programmable

cool

The default shell in Ubuntu is BASH.

Say “Hello” to Command Line

Ubuntu has a fully functional Graphical User Interface (GUI)

We will use the Command-Line user Interface (a.k.a. shell)
because it’s:

easier to use (for experts)

powerful

programmable

cool

The default shell in Ubuntu is BASH.

Say “Hello” to Command Line

Ubuntu has a fully functional Graphical User Interface (GUI)

We will use the Command-Line user Interface (a.k.a. shell)
because it’s:

easier to use (for experts)

powerful

programmable

cool

The default shell in Ubuntu is BASH.

Few info about secondary memory

Data are maintained in disks by an OS component called file
system

Many kinds of FS e.g., VFAT, Ext4 (GNU/Linux “default”), APFS
(macOS), NTFS (Windows)

Data are organized in a tree of directories (branches of the tree).

File Systems in POSIX

the symbol / to distinguish branch levels, e.g., /home/al

/ is the root of the tree

/home contains the users’ homes

./ is the current directory

../ is the parent level

˜ denotes the current user’s home

Directory names can be composed to specify a path

absolute paths start from the root e.g., /home/al/Desktop/
or /user

relative paths start from the current active/directory, e.g.,
Desktop, ./Download/, or Download/../Desktop

File Systems in POSIX

the symbol / to distinguish branch levels, e.g., /home/al

/ is the root of the tree

/home contains the users’ homes

./ is the current directory

../ is the parent level

˜ denotes the current user’s home

Directory names can be composed to specify a path

absolute paths start from the root e.g., /home/al/Desktop/
or /user

relative paths start from the current active/directory, e.g.,
Desktop, ./Download/, or Download/../Desktop

Demo session

Some simple BASH commands

ls lists the content of a directory

foo@bar : ˜/ $ l s
Desktop Download P i c t u r e s Templates
Documents Music Pub l i c V ideos

pwd prints the name of the current/working directory

foo@bar : ˜/ $ pwd
/home/ foo

Some simple BASH commands (Cont’d)

mkdir create new directories

foo@bar : ˜/ $ mkdir te s t
foo@bar : ˜/ $ l s
Desktop Music Templates
Documents P i c t u r e s te s t
Downloads Pub l i c V ideos

cd change directory. Without parameter means “go to home”

foo@bar : ˜/ $ cd tes t
foo@bar : ˜/ t e s t $ cd . . / . . / . . / u s r
foo@bar : / u s r$ cd
foo@bar : ˜/ $ cd f oo
bash : cd : f oo : No such f i l e o r d i r e c t o r y

Some simple BASH commands (Cont’d 2)

rm delete files/directories

foo@bar : ˜/ $ rm −r te s t

man print command manual pages

foo@bar : ˜/ $ man l s

apropos search words in manual pages

foo@bar : ˜/ $ apropos compress

Some simple BASH commands (Cont’d 3)

grep print lines matching a pattern

foo@bar : ˜/ $ grep . ba sh r c
. ba sh r c
foo@bar : ˜/ $ grep ’ l a ’ . ba sh r c
a l i a s l a=’ l s −A ’

cat print a file on the stdout

less print a file on terminal one screenful at a time

head output the first part of files

foo@bar : ˜/ $ head −n 3 . ba sh r c
˜/ . ba sh r c : e xecu t ed by bash (1) f o r non− l o g i n s h e l l s .
see / u s r / sha r e /doc/bash / examples / s t a r t up− f i l e s (i n the package bash−doc)
f o r examples

Pipelining

We can use | (pipe) to use the output of a command as the input
of another

foo@bar : ˜/ $ echo ’ Hi , Foo ! ’
He l l o , man !
foo@bar : ˜/ $ echo ’ Hi , Foo ! ’ | sed s /Hi/ He l l o /
He l l o , Foo !

Output Redirection

foo@bar : ˜/ $ echo ’ Hi , Foo ! ’ > msg . t x t
foo@bar : ˜/ $ cat msg . t x t
Hi , Foo !
foo@bar : ˜/ $ echo ’ Th i s i s c o o l ’ > msg . t x t
foo@bar : ˜/ $ cat msg . t x t
Th i s i s c o o l

foo@bar : ˜/ $ echo ’ Th i s i s b e t t e r ’ >> msg . t x t
foo@bar : ˜/ $ cat msg . t x t
Th i s i s c o o l
Th i s i s b e t t e r

File Descriptors

Are positive numbers that “name” files

POSIX systems handle everything as files

stdin, stdout, and stderr have FD 0, 1, and 2.

File Descriptors (Cont’d)

We can stream data to either stdout and stderr

foo@bar : ˜/ $ echo ’WHAT? ! ? ! ’ >&1
WHAT? ! ? !
foo@bar : ˜/ $ cat msg . t x t
Th i s i s c o o l
Th i s i s b e t t e r
foo@bar : ˜/ $ cat msg . t x t | grep c oo l
Th i s i s c o o l
foo@bar : ˜/ $ cat msg . t x t >&2 | grep c oo l
Th i s i s c o o l
Th i s i s b e t t e r

File Descriptors (Cont’d 2)

We can also data from either stdin, stdout and stderr

foo@bar : ˜/ $ cat tes t . t x t
cat : te s t . t x t : No such f i l e o r d i r e c t o r y
foo@bar : ˜/ $ (echo ”N” >&1; echo ”Y” >&2)
N
Y
foo@bar : ˜/ $ (echo ”N”>&1;echo ”Y”>&2)1>te s t . t x t
Y
foo@bar : ˜/ $ cat tes t . t x t
N
foo@bar : ˜/ $ (echo ”N! ” ; echo ”Y”>&2)1>te s t . t x t
Y
foo@bar : ˜/ $ cat tes t . t x t
N!

(Extended) Regular Expressions

Are patterns to describe strings.

E.g., [az]T. describes strings beginning with either aT or zT and
having 3 characters

. any single character

- denotes a range e.g., a-z

? the prev item at most once e.g., a?

+ the prev item at least once

* the prev item occurs from 0 to many times

() bound a sub-RE

| match both RE e.g., (it)|(comm)

[] choose one in the set e.g., [a-z]

(Extended) Regular Expressions (Cont’d)

^ and $ denote begin and end of a line, respectively.

foo@bar : ˜/ $ grep h .∗ b .∗ msg . t x t
Th i s i s b e t t e r
foo@bar : ˜/ $ grep ” \(b . ∗ \) \ | \ (c oo l \) ” msg . t x t
Th i s i s c o o l
Th i s i s b e t t e r

The escape character \ is needed because grep uses basic regular
expression by default.

Programmability

Shells can be programmed to perfom complex tasks

foo@bar : ˜/ $ f o r i i n $ (seq 1 3) ; do
> echo t e s t $ { i } ;
> done > te s t . t x t
foo@bar : ˜/ $ cat tes t . t x t
t e s t 1
t e s t 2
t e s t 2

If we have enough time, we will focus on it next week.

A user to rule them all . . .

Not all users must have the same privileges

E.g.,

The system owner should be able to do everything

A “host user” should not mess-up other users’ data

Modern OS provide a “superuser” to rule all the system
files/programs.

root in POSIX systems, administrator in Windows.

A user to rule them all . . .

Not all users must have the same privileges

E.g.,

The system owner should be able to do everything

A “host user” should not mess-up other users’ data

Modern OS provide a “superuser” to rule all the system
files/programs.

root in POSIX systems, administrator in Windows.

Impersonate Superuser

Ubuntu and macOS implement a mechanism to impersonate
superuser.

sudo (Super User DO) lets authorized users to impersonate
superuser.

foo@bar : ˜/ $ mkdir / te s t
mkdir : cannot c r e a t e d i r e c t o r y ’ / t e s t ’ : P e rm i s s i on
den i ed
foo@bar : ˜/ $ sudo mkdir / te s t
[sudo] password f o r a l :
foo@bar : ˜/ $

Conda

Conda is package and environment management system for
Windows, macOS, and GNU/Linux.

It is useful to search, install, and update software at user level.

(base) foo@bar : ˜/ $ conda s e a r c h j u p y t e r
Name Ve r s i on Bu i l d Channel
j u p y t e r 1 . 0 . 0 py37hd43f75c 7 pkgs /main
j u p y t e r 1 . 0 . 0 py38hd43f75c 7 pkgs /main
j u p y t e r 1 . 0 . 0 py39hd43f75c 7 pkgs /main

(base) foo@bar : ˜/ $ conda i n s t a l l j u p y t e r
. . .

Conda Environment

Moreover, conda also provides environments

They contain all the software needed for a specific project

If the clang compiler is required for the project JoJo . . .

(base) foo@bar : ˜/ $ conda c r e a t e −−name JoJo
. . .

(base) foo@bar : ˜/ $ conda a c t i v a t e JoJo

(JoJo) foo@bar : ˜/ $ conda i n s t a l l c l ang
. . .

(JoJo) foo@bar : ˜/ $ c l ang
c lang −10: e r r o r : no i npu t f i l e s

Conda Environment (Cont’d)

At the end of the working day . . .

(JoJo) foo@bar : ˜/ $ conda d e a c t i v a t e

(base) foo@bar : ˜/ $ c l ang
Command ’ c l ang ’ not found .

But

(base) foo@bar : ˜/ $ conda a c t i v a t e JoJo

(JoJo) foo@bar : ˜/ $ c l ang l i s t
packages i n env i ronment at /home/ foo /min iconda3 / envs / JoJo
Name Ve r s i on Bu i l d Channel
. . .
c l a ng 1 0 . 0 . 1 d e f a u l t h 6b8 c 85 e 2
. . .

Managing Conda Environments

To list all the user’s environments

(base) foo@bar : ˜/ $ conda env l i s t
conda env i r onment s :
#
base ∗ /home/ foo /min iconda3
JoJo /home/ foo /min iconda3 / envs / JoJo

To remove an environment

(base) foo@bar : ˜/ $ conda env remove −−name JoJo

Remove a l l packages i n env i ronment /home/ foo /min iconda3 / envs / JoJo

Coming next. . .

the first C program

types

variables

assignments

numeric expressions

output

