
Unit 5
Arrays, Pointers, and Strings

Alberto Casagrande
Email: acasagrande@units.it

A.Y. 2022/2023

The Italian Lottery and Late Numbers

The Italian Lottery (Superenalotto) is a gamble game: you have to
guess 6 numbers randomly selected without repetition among all
the naturals from 1 to 90.

The game has not memory: the probability for a
number to be one among the winning 6 is the same

at each repetition of the game

The Italian Lottery and Late Numbers

Despite this, . . .

someone keeps betting on late numbers and ask
you for a program to track them.

The Italian Lottery and Late Numbers

Despite this, . . . someone keeps betting on late numbers and ask
you for a program to track them.

A Program for Late Numbers

i n t d e l a y o f 1 =0 , . . . , d e l a y o f 9 0 =0;
. . .

i f (s e l e c t e d numbe r !=1)
d e l a y o f 1++;

e l s e
d e l a y d i 1 =0;

. . .

i f (s e l e c t e d numbe r !=90)
d e l a y o f 9 0++;

e l s e
d e l a y o f 9 0 =0;

. . .

Issues in Previous Code

not really flexible

extremely redundant

C functions do not help in this case because we want to update a
data structure, not evaluate a function.

It would be nice to select the variable delay of <number>

according to <number>

Something like delay of [selected number]

Issues in Previous Code

not really flexible

extremely redundant

C functions do not help in this case because we want to update a
data structure, not evaluate a function.

It would be nice to select the variable delay of <number>

according to <number>

Something like delay of [selected number]

Arrays

An array is an indexed data structure to store values having all the
same type.

E.g.,

A= 3 1 -1 5 0

0 1 2 3 4

A[i] refers to the ith element of array A

Array Usage

Just like any other variable, array must be declared before usage.

The syntax is

. . .
<e l ement s type> <a r r a y name>[< l eng th >] ;
. . .

Array Usage

. . .
i n t de l a y [9 0] ; /∗ the f i r s t i nd ex i s 0 ∗/

f o r (i n t i =0; i <90; i++) /∗ i n i t d e l a y s ∗/
de l a y [i]=0;

. . . /∗ l a t e r ∗/

f o r (i n t i =0; i <90; i++)
de l a y [i]++;

f o r (i n t j =0; j <6; j++)
de l a y [s e l e c t e d [j]−1]=0; /∗ s e l e c t e d numbers

have d e l a y 0 ∗/
. . .

Array Initialization

The C programming language does not initialize array elements.

If initialization is required, you have to take care of it.

Arrays and Their Elements

If A[i] refers to the ith element in the array A,

what does the “variable” A store?

A maintains the memory address of A itself.

Try the instruction printf("%ld", A);

Arrays and Their Elements

If A[i] refers to the ith element in the array A,

what does the “variable” A store?

A maintains the memory address of A itself.

Try the instruction printf("%ld", A);

Arrays and Functions

Arrays can also be used as function parameters

void t e s t (i n t A []) { A[0]=0 ; }

i n t main (i n t argc , char ∗ argv [])
{

i n t A [1 0] ; A[0]=1 ; t e s t (A) ;

p r i n t f (”%d\n” , A [0]) ;

return 0 ;
}

Pointers

Are variables whose values are memory addresses of some data
structure.

They must be declared by using the syntax:

<po i n t ed type>∗ <p o i n t e r name>;

<pointed type>* a new type for every <pointed type>.

Pointers

A pointer of any variable v can be obtained by &v.

The content of what pointed by p can be accessed by *p.

E.g.,

i n t v=0; i n t ∗ p=&v ;

∗p = ∗p + 1 ;

p r i n t f (”%d\n” , v) ;

Pointers as Parameters

Pointers can be used as parameters too.

void d v a l u e (i n t ∗ v) { ∗v=2∗(∗v) ; }

i n t main (i n t argc , char ∗ argv [])
{

i n t a ; a=1; d v a l u e (&a) ;

p r i n t f (”%d\n” , a) ;

return 0 ;
}

Reading Data from the Standard Input

Pointer parameters allow to “scan” data from the stdin.

i n t main (i n t argc , char ∗ argv [])
{

i n t a ; char c ; f l o a t f ;

s c a n f (”%d %c %f ” , &a , &c , &f) ;
p r i n t f (”%d %c %f \n” , a , c , f) ;

return 0 ;
}

C Pointer Arithmetic

C allows to handle pointers like natural numbers.

We can sum and subtract natural values to pointers.

E.g.,

i n t ∗a ;
. . .
a = a + 2 ;
. . .

The results may seem to be weird at first sight.

C Pointer Arithmetic

C allows to handle pointers like natural numbers.

We can sum and subtract natural values to pointers.

E.g.,

i n t ∗a ;
. . .
a = a + 2 ;
. . .

The results may seem to be weird at first sight.

Examples of Pointer Arithmetic

i n t main (i n t argc , char ∗ argv []) {
i n t ∗a=0;

p r i n t f (”%l d %l d %l d \n” ,
(long i n t) (((i n t ∗) a) + 1) ,
(long i n t) (((char ∗) a) + 1) ,
(long i n t) (((double ∗) a) + 1)) ;

return 0 ;
}

The execution returns

4 1 8

Semantics of Pointer Arithmetic in C

By summing a value n to a pointer, we are increasing the pointer
value by n times the size in bytes of the pointed type.

Semantics of Pointer Arithmetic in C

By summing a value n to a pointer, we are increasing the pointer
value by n times the size in bytes of the pointed type.

Semantics of Pointer Arithmetic in C

E.g., If int is a 4-bytes type and p is an int pointer, then p+1 is
equal to the address in p plus 4.

More in general, if p has type t*, then

p + n == ((uns i gned long i n t) p) + n ∗ s i z e o f (t)

Pointers vs Arrays

Due of their arithmetic, pointers can be used in place of arrays.

Array elements can also be accessed by a “pointer-like” syntax.

i n t A [] = {0 ,1 , 2} ; /∗ i n i t i a l i s e the a r r a y ∗/
i n t ∗ p = A;

p r i n t f (”%d %d\n” , A [0] , p [0]) ;
p r i n t f (”%d %d\n” , ∗(A+2) , ∗(p+2)) ;

Pointers vs Arrays

However, pointers and arrays are not equivalent!

Pointers can be re-assigned, arrays cannot.

i n t A [] = {0 ,1 , 2} ; i n t B [] ;
i n t ∗p ;

p=A+2; /∗ t h i s i s v a l i d ∗/

A=A+2; /∗ t h i s i s not v a l i d ∗/
B=A; /∗ t h i s i s not v a l i d too ∗/

Can You Now Guess . . .

. . . the type of b in

void t e s t (char ∗b []) . . .

Have you ever seen anything similar?

Can You Now Guess . . .

. . . the type of b in

void t e s t (char ∗b []) . . .

Have you ever seen anything similar?

Can You Now Guess . . . (Cont’d)

i n t main (i n t argc , char ∗ argv []) {
return 0 ;

}

argv is an “array” of arrays of chars.

What can an array of characters represent?

Strings!!!

argv stores the arguments of the command line execution.

Can You Now Guess . . . (Cont’d)

i n t main (i n t argc , char ∗ argv []) {
return 0 ;

}

argv is an “array” of arrays of chars.

What can an array of characters represent? Strings!!!

argv stores the arguments of the command line execution.

Parameters of the main Function

i n t main (i n t argc , char ∗ argv []) {
f o r (i n t i =1; i< a rgc ; i++)

p r i n t f (”Param #%d i s %s \n” , i , a rgv [i]) ;

return 0 ;
}

Execute the compiled program by using the command

. / a . out t e s t −3 5 .4

Do You Remember Escape Sequences?

\n newline

\b backspace

\t horizontal tabulation

\\ backslash character

\" double quotation character

\a alert

\0 string terminator

The string terminator should always end the string in the array of
characters!

Do You Remember Escape Sequences?

\n newline

\b backspace

\t horizontal tabulation

\\ backslash character

\" double quotation character

\a alert

\0 string terminator

The string terminator should always end the string in the array of
characters!

Strings in C

The program

i n t main (i n t argc , char ∗ argv []) {
char a s t r []= ”\” I t \” \n \ ben i \bds \0 he r e ” ;

p r i n t f (”%s %c\n” , a s t r , a s t r [3]) ;

return 0 ;
}

outputs

” I t ”
ends ”

Some Useful Functions on Strings

Include string.h and use the following functions

strcat joins two strings

char∗ s t r c a t (char ∗ s1 , const char ∗ s2) ;

s1 and the result will “contain” s1.s2

strcmp compares two strings

i n t st rcmp (const char ∗ s1 , const char ∗ s2) ;

the result will be < 0 if s1 is smaller than s2, > 0 if it is
greater, and = 0 if they are the same.

Some Useful Functions on Strings (Cont’d)

strcpy copies a string

char∗ s t r c p y (char ∗ dst , const char ∗ s r c) ;

strlen gets the length

s i z e t s t r l e n (const char ∗ s) ;

size t is a unsigned numerical type to represent data
structure size

Strings in C

char a s t r [100]=” Let me see ” ;
char b s t r [100]=”how i t works ” ;
char c s t r [1 0 0] ;

s t r c p y (c s t r , a s t r) ;
p r i n t f (” cpy %s \n” , c s t r) ;

s t r c a t (c s t r , b s t r) ;
p r i n t f (” ca t %s \n” , c s t r) ;

p r i n t f (”cmp %d %d %d” , strcmp (a s t r , b s t r) ,
s t rcmp (a s t r , a s t r) ,
s t rcmp (b s t r , a s t r)) ;

p r i n t f (” l e n %l u \n” , s t r l e n (a s t r)) ;

Coming next. . .

streams

dynamic memory handling

defining new data structure

