
Unit 6
Streams, Dynamic Memory, and New Data Structures

Alberto Casagrande
Email: acasagrande@units.it

A.Y. 2022/2023

Streams

In POSIX, every logical (e.g., file, stdin) and physical (e.g.,
mouses, disks) objects are handled through streams.

They are logical interfaces for reading from and writing to the
associated objects.

In general, they must be opened before the usage and closed
afterward.

Some Useful Functions on Files

stdio.h allows the usage of the following functions

fopen opens a stream

FILE ∗ fopen (const char ∗name ,
const char ∗mode) ;

The mode specifies whether the file will be written ("w"),
read ("r"), or both of them ("r+").

See manpages for the full list.

fclose closes a stream

i n t f c l o s e (FILE ∗ f p) ;

Some Useful Functions on Files (Cont’d)

fgetc read a character from the stream

i n t f g e t c (FILE ∗ f p) ;

fputc write a character from the stream

i n t f p u t c (const i n t ch , FILE ∗ f p) ;

High Level Stream Functions

Luckly, we also have high level stream functions fscanf and fprintf
. . . reminding you something?

fscanf reads data from an open input stream

i n t f s c a n f (FILE ∗ fp , char ∗ fmt , a r g s . . .) ;

fprintf write data in an open output stream

i n t f p r i n t f (FILE ∗ fp , char ∗ fmt , a r g s . . .) ;

High Level Stream Functions (Cont’d)

printf and scanf can be “emulated” by using stdin and stdout

f s c a n f (s t d i n , ”%d” , &a) ;

f p r i n t f (s tdout , ”We can emulate p r i n t f ”) ;

f p r i n t f (s t d e r r , ”and output i n s t d e r r \n”) ;

stdin, stdout, and stderr need to be neither opened nor closed.

By the way. . .

C has very similar functions to deal with buffers: sprintf and
sscanf

i n t main (i n t argc , char ∗ argv []) {

char buf [1 0 0] ; i n t a ;

s s c a n f (a rgv [1] , ”%d” , &a) ;
s p r i n t f (buf , ”The f i r s t a rg was %d\n” , a) ;

return 0 ;
}

A Simple Exercise

Example (Prime Numbers)

Write a function that takes a natural number n and returns the
first n prime numbers.

Any problem?

How to return the prime numbers?

Using an array would be nice, but:

its size is not known at compilation time

if declared inside a function, it only exists inside it

A Simple Exercise

Example (Prime Numbers)

Write a function that takes a natural number n and returns the
first n prime numbers.

Any problem?

How to return the prime numbers?

Using an array would be nice, but:

its size is not known at compilation time

if declared inside a function, it only exists inside it

A Simple Exercise

Example (Prime Numbers)

Write a function that takes a natural number n and returns the
first n prime numbers.

Any problem? How to return the prime numbers?

Using an array would be nice, but:

its size is not known at compilation time

if declared inside a function, it only exists inside it

A Simple Exercise

Example (Prime Numbers)

Write a function that takes a natural number n and returns the
first n prime numbers.

Any problem? How to return the prime numbers?

Using an array would be nice, but:

its size is not known at compilation time

if declared inside a function, it only exists inside it

A Näıve Solution

Over-estimate n and pass a pointer as a parameter.

void g e t p r ime s (uns i gned i n t ∗ output ,
const uns i gned i n t n) { . . . }

. . .
un s i gned i n t output [1 0 0 0 0 0] ; i n t n=10;

g e t p r ime s (output , n) ;

when n << 100000, memory is “wasted”

when n > 100000, other data are overwritten

not really “readable”

We Need. . .

. . . a mechanism to:

allocate the right amount of memory at runtime

free the memory when it is no more required

“resize” the allocated memory if needed

Pointers can be used to refer to this memory and can be returned.

We need Dynamic memory handling

We Need. . .

. . . a mechanism to:

allocate the right amount of memory at runtime

free the memory when it is no more required

“resize” the allocated memory if needed

Pointers can be used to refer to this memory and can be returned.

We need Dynamic memory handling

Dynamic Memory

By including the header stdlib.h, we can use:

malloc allocates an uninitialized memory region having a given size.
A pointer for it is returned.

void ∗mal l oc (const s i z e t b u f f e r s i z e) ;

calloc allocates a 0-initialized memory region meant for an array.

void ∗ c a l l o c (const s i z e t num elem ,
const s i z e t e l em s i z e) ;

Dynamic Memory (Cont’d)

realloc resizes pre-allocated dynamic memory space

void ∗ r e a l l o c (void ∗mem ptr ,
const s i z e t n e w t o t a l s i z e) ;

free deallocates pre-allocated dynamic memory space

void f r e e (void ∗mem ptr) ;

The get prime Exercise

uns i gned i n t ∗ g e t p r ime s (uns i gned i n t n) {
uns i gned i n t ∗p

p=(uns i gned i n t ∗) c a l l o c (n ,
s i z e o f (uns i gned i n t)) ;

. . . /∗ f i l l the a l l o c a t e d b u f f e r
by u s i n g pr ime numbers ∗/

return p ;
}

The get prime Exercise (Cont’d)

. . .
un s i gned i n t ∗ pr imes = ge t p r ime s (1000) ;

f o r (uns i gned i n t i =0; i <1000; i++)
p r i n t f (”Prime number #%u : %u\n” ,

i , p r imes [i]) ;

. . .

f r e e (p r imes) ; /∗ when you don ’ t need
the p r imes anymore ∗/

. . .

A Different Exercise

Write a program to represent n students.

Every student must be associated to

a name

a family name

a student ID

his/her courses and grades

We may want to:

find the list of the student IDs corresponding to given a name

find all those students having a given average grade

. . .

A Different Exercise

Write a program to represent n students.

Every student must be associated to

a name

a family name

a student ID

his/her courses and grades

We may want to:

find the list of the student IDs corresponding to given a name

find all those students having a given average grade

. . .

A Different Exercise

How can we code it? How many variables/arrays do we need?

n strings to represent names

n strings to represent family names

n unsigned integer to represent IDs

n string arrays for course IDs

n integer arrays for grades

We can use arrays . . .

but we will have to handle the
names-surnames-IDs-courses-grades relations by our own

So what?

A Different Exercise

How can we code it? How many variables/arrays do we need?

n strings to represent names

n strings to represent family names

n unsigned integer to represent IDs

n string arrays for course IDs

n integer arrays for grades

We can use arrays . . .

but we will have to handle the
names-surnames-IDs-courses-grades relations by our own

So what?

A Different Exercise

How can we code it? How many variables/arrays do we need?

n strings to represent names

n strings to represent family names

n unsigned integer to represent IDs

n string arrays for course IDs

n integer arrays for grades

We can use arrays . . . but we will have to handle the
names-surnames-IDs-courses-grades relations by our own

So what?

Coding New Data Structures

We can define new data structures by using struct

s t r u c t <s t r u c t u r e name> {
<1s t member type> <1s t member name>;
<2nd member type> <2nd member name>;
. . .

} ;

E.g.,

s t r u c t c o u r s e t {
uns i gned i n t ID ;
char grade ;

} ;

How to “Use” New Data Structures?

Variables and arrays can have the new structure as “type”.

E.g.,

s t r u c t c o u r s e t computer programming ;

s t r u c t c o u r s e t my cour se s [3 4] ;

s t r u c t c o u r s e t ∗ p t r = (s t r u c t c o u r s e t ∗)
ma l l o c (s i z e o f (s t r u c t c o u r s e t)) ;

How to “Use” New Data Structures? (Cont’d)

We can access members by using “.”

“ptr->” is a shortcut for “(*ptr).”

E.g.,

computer programming . ID = 15 ;

my cour se s [5] . g rade = −1;

pt r−>grade = 30 ; /∗ ptr−>grade i s a s h o r t c u t f o r
(∗ p t r) . g rade ∗/

Back to The Student Example

A new data structure for students

s t r u c t c a r e e r t {
uns i gned i n t num o f cou r s e s ;
s t r u c t c o u r s e t ∗ c o u r s e s ;

} ;

s t r u c t s t u d e n t t {
char name [1 0 0] ;
char f ami l y name [1 0 0] ;
un s i gned i n t ID ;
s t r u c t c a r e e r t c a r e e r ;

} ;

Adding a Struct the the Type List

We can add a struct to the list of types by using typedef.

E.g.,

t y p ed e f s t r u c t c o u r s e t c o u r s e t y p e ;

t y p ed e f i n t g e n e r i c t y p e ;

Structs vs Types

Struct and type/function identificators are in different space name.

Thus, a struct can have the same name of a type or a function.

E.g.,

t y p ed e f s t r u c t c o u r s e t c o u r s e t y p e ;

void c o u r s e t () { . . . } /∗ admi t ted ∗/

void c o u r s e t y p e () { . . . } /∗ not admi t ted ∗/

Where Define Structs and Types

In an header to share the definition itself

However, we need a way to elude multiple inclusion to avoid . . .

I n f i l e i n c l u d e d from s t r u c t −bad . c : 4 :
s t r u c t −bad . h : 1 : 8 : e r r o r : r e d e f i n i t i o n o f

’ s t r u c t s t r u c t t e s t ’
s t r u c t s t r u c t t e s t {

ˆ˜˜˜˜˜˜˜˜˜˜
In f i l e i n c l u d e d from s t r u c t −bad . c : 3 :
s t r u c t −bad . h : 1 : 8 : note : o r i g i n a l l y d e f i n e d he r e
s t r u c t s t r u c t t e s t {

ˆ˜˜˜˜˜˜˜˜˜˜

Avoiding Multiple Inclusions of Headers

Use pre-processor directives in the header!!!

#i f n d e f HEADER NAME
#de f i n e HEADER NAME

. . . /∗ w r i t e he r e s i g n a t u r e s and macros ∗/

#end i f

Coming next. . .

abstract and concrete data types

recursion

dynamic programming

