Esame di Analisi matematica I : esercizi $A.a.\ 2021-2022$ appello autunnale

N. Matricola Corso di S. CUCCAGNA ESERCIZIO N. 1. Si calcoli al variare di $a>0$ e per $[x]$ la parte intera di x , il valore del limite $L_a:=\lim_{x\to +\infty}\frac{\log(1+x+e^{x^2})-\int_x^{2x}[t]dt}{\int_x^{2x}\tanh(t^a)\frac{1+t^a}{1+t}dt}.$
ESERCIZIO N. 1. Si calcoli al variare di $a > 0$ e per $[x]$ la parte intera di x , il valore del limite

ESERCIZIO N. 2. Si consideri

$$f(x) = \int_0^x e^{-\frac{1}{t^2}} \frac{1+t}{1+t^2} dt$$

Si determinino (spiegando come si ottengono le risposte):

$$\bullet \lim_{x \to \pm \infty} f(x);$$

ullet stabilire dove f cresce e dove decresce;

• determinare il numero degli zeri di f;

• stabilire se ci sono rette asintotiche;

• tracciare il grafico.

	α	GN	Γ	ÆΓ	~ N	$\mathbf{\Omega}$	N/IE	ı
١	$\cup \cup$	ノしェニン	\cup		$e \rightarrow$	w	IVLE	1

_____ N. Matricola _

Si consideri

$$f(x) = \begin{cases} \int_0^x \frac{1-t}{1+2t+2t^2+t^3} dt & \text{se } x \ge 0\\ \sqrt{1+x^2} - 1 - x & \text{se } x < 0. \end{cases}$$

• si calcolino $\lim_{x \to \pm \infty} f(x)$;

 \bullet si calcoli f'(x) dove é definito e si trovino eventuali punti di massimo e di minimo locali e assoluti;

 \bullet si stabilisca dove f(x) e' concava e dove e' covessa;

 \bullet si stabilisca se esistono rette asintotiche e si tracci il grafico .

4 Università degli Studi di Trieste – Ingegneria. Trieste, 12 settembre 2022
ESERCIZIO N. 4. Calcolare le derivate di ogni ordine in 0 di $f(x) = \int_{x}^{2x} e^{-t^2} dt$.
ESERCIZIO N. 5. Calcolare $\int_0^1 \arctan(x) x^2 dx$.